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REDUCIBILITIES ON TALLY AND SPARSE SETS (*)

by Shouwen TANG(1) and Ronald V. BOOK (2)

Communicated by P. VAN EMDE BOAS

Abstract. — Classes of sets that are inter-reducible to tally sets by polynomial-time computable
reducibilities are studied.

Résumé. - On considère les classes d'ensembles qui sont inter-rêductibles vis-à-vis des ensembles
de comptage {tally sets) par réductibilités calculables en polynôme-temps.

1. INTRODUCTION

The notions of tally set and sparse set represent the best known examples
of sets with "small information content". As such, sparse sets and tally sets
have played important rôles in the investigation of the structure of complexity
classes and of polynomial time-bounded reducibilities. For example, the class
of sets that have polynomial-size circuits is the class of sets that are Turing
reducible in polynomial time to sparse sets; the class of sets with small
generalized Kolmogorov complexity is precisely the class of sets that are
polynomial-time isomorphic to tally sets (Allender and Rubinstein [1]); and
the class of sets with self-producible circuits (as defïned by Ko [8]) is precisely
the class of sets that are Turing equivalent in polynomial-time to tally sets
(Balcâzar and Book [4]). These results, as well as those of Book and Ko [6],
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294 S. TANG, R. V. BOOK

are considered to be steps towards understanding how different resource-
bounded reducibiiities can (and cannot) be used to retreive information
encoded in sets with small information content.

Let SPARSE dénote the set of ail sparse sets and let TALLY dénote the
set of ail tally sets. For any of the standard (Le., many-one ^m, /sr-truth-
table^ fc_ t t, bounded truth-table ^btt, truth-table ^„ , Turing^T) reducibiii-
ties R and any class C of sets, let PR(C)={A\ there exists CeC such that
A^RC} andlet££(C)= U {A \A^R CandC^p

RA}\ PR(C) is the réduction
CeC

class of C under ^£ . [If C consists of a single set, C = {C}3 then we write
PR(Q for PR(C) and EP

R(Q for £ j ( Q J
Book and Ko [6] observed that the class of sets with polynomial size

circuits, denoted P/poly, has the property that

P/po\y = PT (SPARSE) = Ptt (SPARSE) = Ptt (TALLY) = PT (TALLY).

In addition, Pbtt (SPARSE) ^P/poly and for every fc>0,

Pk.tt (SPARSE)*P{k + 1)_tt (SPARSE).

Thus, the class P/poly can be decomposed into an infinité hierarchy of classes
based on the number of queries made to sparse oracles. In contrast, Book
and Ko showed that

Pm (TALLY) = Pbtt (TALLY) and Phtî (TALLY) # Ptt (TALLY)

so that when considering the number of queries made to tally oracles, there
are only two classes, P/poly and Pm (TALLY).

Since for any tally set T, Ptt(T) = PT(T\ neither an individual tally set
nor the union of the réduction classes of ail tally sets can be used to
distinguish between polynomial time truth-table reducibility and poîynomial
time Turing reducibility. But the situation is different when the classes of
sets interreducible to tally sets under these reducibiiities are considered: we
show in Theorem 3.5 that the resulting classes are not the same, more
specifïcally, that Ep (TALLY) ̂ E\ (TALLY); thus, there are sets with self-
producible circuits that are not truth-table equivalent in polynomial time to
tally sets. Hence, it is possible to hide information about a tally set in a non-
tally set in such a way that it is retrievable by Turing réductions to that non-
tally set but it is no retrievable by truth-table réductions to the same set.

In addition, we consider strong nondeterministic polynomial-time Turing
reducibility as deflned by Long [11] and we show in Theorem 3.3 that
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£f* (TALLY) ̂ ££ (TALLY). Thus, we have the proper inclusions

Ep (TALLY) c Ep (TALLY) c ES
T

N (TALLY).

Whether the corresponding inclusions

Ep (SPARSE) £ EP
T (SPARSE) g E$* (SPARSE)

are proper is an open question.

Based on the fact that for every k, Pfc_rt(SPARSE)#P(fc+1)_„(SPARSE),
we observe that Ep_tt(SPARSE)#^+1)_„(SPARSE). But the analogous
situation with TALLY is unresolved. It can be shown that for each k>0,
there exists a tally set T such that Ep_tt(T)^Ep

k+1)_tt(T), But for each k,
the question ££_„ (TALLY) = ?£fk+1)_t( (TALLY) is open, as are the que-
stions Ep

m (TALLY) = !Ep_tt (TALLY) and Ep
m (TALLY) = 1 Ep

htt (TALLY).
Allender and Watanabe [2] have shown each of these three questions to be
equivalent to the question of whether every honest polynomial-time computa-
ble function ƒ : E* -> {0 }* is weakly invertible. Thus, there is reason to believe
that these questions will be difficult to résolve.

2. PRELIMINARIES

In this section we review some définitions and establish notation additional
to that given in the Introduction.

Throughout this paper we will consider the alphabet S = {0, 1}. The length
of a string x will be denoted by \x\. The cardinality of a set S will be
denoted by ||»S||. For a set S and an integer n, Sn={xeS\\x\ = n) and
S-n={xeS\\x\^n}. For a set S, %s dénotes the characteristic function of
S, and if S^E*, then S = S*-S .

A set S is sparse if there is a polynomial q such that for all w, || S-n \\^q (n).
Let SPARSE dénote the class of all sparse sets. A tally set is any subset of
{0 }*. Let TALLY dénote the class of all tally sets.

We will assume the existence of a pairing function < , ) ;E*xE*->E*
with the properties that function and its inverses are computable in polyno-
mial time and that when restricted to {0}*x{0}* yields a string in {0 }*.

For an oracle machine M, L(M, A) dénotes the set of strings accepted by
M relative to oracle set A, and L(M) dénotes the set of strings accepted by
M when no oracle queries are allowed by M.
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2 9 6 S. TANG, R. V. BOOK

We assume that the reader is familiar with the well-studied polynomial-
time computable reducibilities referred to in the Introduction, with the
corresponding reducibilities that are computed nondeterministically (i.e.,
5g TP, etc.), with the complexity classes P, NP, and PSPACE and their relativi-
zations, and with the basic properties of these notions. An appropriate (and
suffïciently comprehensive) référence for these topics is the book by
Balcâzar, Diaz, and Gabarró [5].

Long [11] studied the notion of "strong" nondeterministic polynomial-time
reducibilities; ^f* dénotes strong nondeterministic Turing reducibility. For
our purposes it is sufficient to use the following characterization of
^ S

T
N : A ̂  S

T
N B if A ̂  *p B and 1^ %p B. (See [5].) Consistent with the notation

established in Section 1, we let

£*P(SPARSE) = U {A\A^P S and SS%PA}, £ f (TALLY)
S e SPARSE

- U {^|^?prand T^PA},ES
T

N (TALLY)
TeTALLY

= U {A\A^S
T

NT and TSS
T

N'A}9 and ^(SPARSE)
TG TALLY

= U {A ASSTNSandS^f A}.
S e SPARSE

The reader should be cautioned. It is known (see [3] or [5]) that the
reducibility ^ £ p is not transitive so that "A^TPSandS^pA" is not an
équivalence relation. Thus, for a set A, EjP(A) is not what might be called
the "nondeterministic polynomial-time Turing degree of A". Similarly, it is
known (see [10] or [5]) that for each k>0,^p^tt is not transitive, but that
^ p and SP are transitive and so "A^tS and S£?tA" and "A£$S and
SI^TA" are équivalence relations. In addition, it is known (see [11] or [5])
that ^TN is transitive.

3. MAIN RESULTS

In this section we establish the main results of this paper. There are various
relationships between the various classes defined from the class TALLY of
ail tally sets and from the class SPARSE of all sparse sets that follow
naturally from the définitions. The principal new results are the inequalities
EP

T (TALLY) #£f* (TALLY) and Ep (TALLY) ̂ Ep (TALLY), established in
Theorems 3.3 and 3.5 respectively. Other results follow from relationships
established elsewhere but are given hère for the sake of completeness.
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We begin by establishing an equality.

THEOREM 3.1: EN
T

P (SPARSE) = EN
T

P (TALLY).

Proof: Since TALLY g SPARSE, it follows that

EN
T

P (TALLY) e EN
T

P (SPARSE).

To see the converse, recall that for every S e SPARSE there exists Ts e TALLY
such that S^jTs [7]; the proof of this fact given by Schöning (Theorem 4.6
of [13]) shows that Ts^

p S and the réduction of Ts to S can be impiemented
by a nondeterministic oracle machine in which acceptance corresponds to
computations where all of the oracle queries yield the answer "yes"; hence,
the réduction TS^

P$ *s a conjunctive réduction. For any sparse set S, if
AeEjP(S), then A^p Ts since A^?pS and SSTTS>

 t r i e l a t t e r réduction
being carried out deterministically; also, Ts^

pA since Ts^jPS by means
of a conjunctive réduction and S^V^ (recall that ^ £ p is not transitive so
the use of some modification o f ^ P s u c n a s being conjunctive is necessary).
Thus, for any sparse set S, if AeE%p(S), then AeE%p(Ts). Hence,
EN

T
P (SPARSE) g EN/ (TALLY). •

Consider strong nondeterministic polynomial time reducibilities studied by
Long [11].

THEOREM 3.2:

Ef (TALLY) ̂  EN/ (TALLY), E8/ (TALLY) ̂  ES
T

N (SPARSE),

and for each reducibility

Re{ïm, ^ _ „ , <btt, ?kn, ST}> ER (TALLY) *EP
R (SPARSE).

Proof: Since EN
T

P (TALLY) = EN
T

P (SPARSE) by Theorem 3.1, we have

SPARSE g EF
R (SPARSE) g E%p (TALLY).

Long [ 12] has shown that there exists S e SPARSE such that for all
T G TALLY, S ££?•". Thus, SPARSE is not included in E%N (TALLY) so
SPARSE is not included in

JEJ (TALLY) and EP
R (TALLY) ^ EP

R (SPARSE)

for any R. It follows that Ef (TALLY) # E™ (TALLY) since

SPARSE g E%p (SPARSE) = EN
T

P (TALLY). •

vol. 25, n° 3, 1991
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The problem £%N (SPARSE) = ? E%p (SPARSE) remains open.
Consider the class EPÇYALLY). The inequality

EP
T (TALLY) # EP

T (SPARSE)

is estabhshed in Theorem 3.2 above. We show that ü£ (TALLY) is properly
included in E™ (TALLY); the question of whether ££ (SPARSE) is properly
included in E%N (SPARSE) remains open.

THEOREM 3.3: EP
T (TALLY) ^E%N (TALLY).

Proof : A set £<= { 0, 1 }* will be called special if for ail n^ 1, S has exactly
one element of length n. Thus, every special set is sparse. For any special set
S, let T(S)= {<0", 0 £ > | l ^ i ^ « and the z-th bit of the unique element of
length n in S is 0}; recall that we assume that the pairing function < , >
used hère satisfîes the condition that x, j e { 0 } * implies <x, j;>e{0}*, so
that T(S) is a tally set.

It is clear that S^T(S) so that SSS
T

N T(S). Notice that T(S)£%PS since
on input a string < 0", 0' > a nondeterministic machine can détermine whether
l^i^n, can guess a string y of length n whose z-th bit is 0, and détermine
(by querying the oracle) whether y e S; if ail conditions are satisfîed, then the
machine can accept < 0", 0* > . Similarly, notice that T(S)^jP S since on input
a string <0rt, 01) a nondeterministic machine can détermine whether l^z^n,
can guess a string y of length n whose z-th bit is 1, and détermine (by
querying the oracle) whether y e S; if ail conditions are satisfîed, then the
machine can accept <0M, O*). Thus T(S)£%NS. Hence, S^S

T
NT(S) and

T(S)STNS SO that SeE?T
N(T(S))^Z?T

N(TALLY).
We claim that there is a special set that is not in EP

T (TALLY) so that
EP

T (TALLY) # Ef (TALLY).
2

Let S be a special set with the property that for each n of the form
2

the unique string sn of length n in S is random in the sensé that sn has
Kolmogorov complexity greater than n/2; let s„ = 0" for other n. The fact that
each string sn has Kolmogorov complexity greater than n/2 may be interpreted
as saying that S is not self-reductible.

Suppose SeEp
T(TALLY). Let T be a tally set such that S ^ £ T a nd

T^jS. Let M be a deterministic oracle machine that witnesses Tf^jS, and
let q(ri) be a polynomial that bounds M's running time. For each n, every
tally string in T of length at most q(n) can be recognized by M relative to S,
and each such string can also be recognized by M relative to S— {$n} (since
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sn has Kolmogorov complexity greater than n/2, no machine can generate sn

from a string with only O(\ogri) bits so in M's computation on a tally string
of length at most q(n), sn is never generated as a query string). Since every
tally string in T of length at most q(n) can be recognized by M relative to

S— {sn}, the fact that S the strings in S whose length is of the form
2"

are random allows us to conclude that every tally string in T of length at
most q(n) can be generated in polynomial time by using c + O(\ogri) bits,
where c is a constant (that accounts for the short strings in S).

Recall that S ^ £ r . Since S^T and T^S, the argument in the last
paragraph shows that S is self-reducible, contradicting the choice of S. (An

2
alternative view is that for each n of the form . • , a machine generate in

2'
turn each string of length n and reduce each to T, thus discovering which of
these strings is sn. Thus, sn can be determined by using O(\ogn) bits, contra-
dicting the choice of sn as a string with Kolmogorov complexity greater than
n/2.) •

Recall that

PT (TALLY) = Ptt (TALLY) = Ptt (SPARSE) = PT (SPARSE) = P/poly.

We know that

Ep (TALLY) ̂  Ep (SPARSE) and Ep (TALLY) # Ep (SPARSE).

In Theorem 3.5 below we separate Ep (TALLY) from EP
T (TALLY) even

though Ptt (TALLY) = PT (TALLY). The problem

Ep (SPARSE) = 1EP (SPARSE)

remains open.

LEMMA 3.4: If AsEP(TALLY), then PT(A) = Ptt(A).

Proof: This follows immediately from the fact that for any tally set T,

THEOREM 3.5: Ep (TALLY) ̂ Ep (TALLY).

Proof: For any tally set Tg {0 }*, defme A (T)= {xx 1 x2 1 . . . 1 xt \ each
xte {0 }*, t^.1, | xx I < I x2 I < . . . < I xt I, and there exists n such that
T=n= \xu x2i . . ., xt}}. It is clear that A(T)^P

TT. Since A(T) is a set that

vol. 25, n° 3, 1991



300 S. TANG, R. V. BOOK

is linearly ordered, on input 0" a machine Computing in polynomial time
relative to A(T) can obtain the longest weA(T) such that |w| ^w2, From
this w it is easy to détermine whether 0" is in T. Hence, T^PA(T). Thus,
for every tally set T, A(T)eEp(T)^E$(TALLY). Thus, to prove that
££ (TALLY) #££ (TALLY), it is sufficient by Lemma 3.4 to show the exist-
ence of a tally set X such that X%p

tA (X).

We use the following notation: for any we {0, 1 }*, if w = x11 x2 1 . . . 1 xt,
t^l, each X;e{0}*, then tally-set (w)= {xl9 . . ., xt}.

[Recall that a set B is truth-table reducible to set C, written B^PC, if
there exist polynomial time computable functions ƒ (the generator) and g (the
evaluator) such that for ail x, ƒ (x) is a list of strings, g(x) is a Boolean
circuit with the number of input variables being equal to the number of
strings in the list ƒ (x), and xeB if and only if g(x) évaluâtes to true on
<XcOiX • • -, XcOfc)> where/(x)= (yu . . . ,ƒ*>•]

The existence of a tally set X such that X^p
tA{X) can be shown by

diagonalization. Since each function ƒ and each function g making up réduc-
tion < ƒ, g ) is polynomial time computable, we can assume an enumeration
of ^ ^-réductions: { <ƒ-, gt ) | z^ 1 } where for every /, there is a machine that
computes both ft and g,- and has running time at most pt (n) = nl+ i.

The set X can be constructed by stages and only a sketch is presented.

Stage 0: Xo : = 0 and n0 : = 1.
Stage i>0: Choose w so that m>pi_1(ni_1) and 2m>pi(2rn)7ït. Let

ni: = 2m. At the beginning of this stage X ^ is a tally set containing no
string longer than «,-_!•

If/i(02m)= <^i,^2, • • •> J>r>> then choose 5 g {0m, 0m + 1, . . ., O2*""1} so
that for every yj9 Xi_l\jS^ (tally-set (yj) - {02m}) [the choice of m such
that 2m>pi(2m)^t guarantees that such an S exists]. For such a set S,
observe that for every yp y^AiX^^ S) and y^A^X^^S\J {Q2m}).
Hence,

gt(O2m, W i _ 1 u 2 2 2

Finally, if

then let X£ : = Xt_ 1 U 5; otherwise, let Xi : = X^ x U 5 U {02 m }.
This complètes Stage z.
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From the construction, 0B' G X if and only if gt (0"s %A m (ft (O"0)) = 0. Thus,
for every i, (f, gt} does not witness X^PA(X). Hence, X^PA(X) as
desired. •

To obtain other séparations from known results, we use the following
simple fact.

LEMMA 3.6: Let C be a class of sets and let a and P be two different
reducibilities in { ^ r , ^„ , ^btt, Sk-nfor each fc>0, ^m). If Pa

Proof: For any sets A, B<^T,*, let A@B dénote {OJC, ly\xeA,
Suppose that thefe exists ^eP a (C) -P p (C) . Since AeP„(C), there exists

C O G C such that A^C0. Thus, A®C0^C0 and C0^A®C0, so that
A@C0 = lCQ and A®CoeE^{C). Since ^ ^ ( C ) , for every C G C , ^ $ J C .
If there exists C1eC such that A®CO = ̂ CU then A@C0^C1 and, hence,
A^Cl9 contradicting the fact that A $ Pp (C). Thus, A ® Co $ E% (C). •

Notice that Ep
btt (TALLY) /E\ t t (SPARSE) by Theorem 3.2. Furthermore,

Ep
btt (TALLY) *££ (TALLY) and Ep

tt (SPARSE) # ^ (SPARSE) as in Theo-
rem 3.7 (<2) and (b) below.

THEOREM 3.7:

(a) Ep
btt (TALLY) # ^ (TALLY).

(b) Ep
tt(SPARSE)^^(SPARSE).

(c) For every k9 Ep^tt(SPARSE)^Ep
k+1)_tï(SPARSE).

(d) ^(SPARSE)/^.„(SPARSE).

(e) EP
tt(SPARSE)^££(SPARSE).

(ƒ) £ ^ (SPARSE) ̂ £ftt (SPARSE).

(g) £S,(SPARSE)^££,(SPARSE).

(h) ££, (SPARSE) #££, (SPARSE).

(i) ^(TALLY)*£*(TALLY).

(/•) £S, (TALLY) ïEp
dtt (TALLY).

(/) Ep
tt (TALLY) # £ j (TALLY).

(m) ££, (TALLY) #£ftt (TALLY).

The proof of Theorem 3.7 follows easily from Lemma 3.6 and by results
of Book and Ko [5] and of Ko [9] on the séparation of réduction classes.

The most interesting open questions are those stated in Section 1; they
have been studied by Allender and Watanabe [2]. Other questions remain
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3 0 2 S. TANG, R. V. BOOK

open; for example, the question of whether EF
T (SPARSE) is properly included

in P/poly.
Note added in proof: There are some recent results concerning the open

problems. These results are reported in the following:
R. GAVALDA and O. WATANABE, Computational Complexity of Small Descriptions,

Proc. 6th I.E.E.E. Conference on Structure in Complexity Theory, July 1991,
Chicago, IL. (to appear).

E. ALLENDER, L. HEMACHANDRA, M. OGIWARA and O. WATANABE, Relating Equivalence
and Reducibility to Sparse Sets, Proc. 6th I.E.E.E. Conference on Structure in
Complexity Theory, July 1991, Chicago, IL. (to appear).
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