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ON Z-SUBMONOIDS AND Z-CODES (*)

by M. MADONIA (X), S. SALEMI (X) and T. SPORTELLI (X)

Communicated by J.-E. PIN

Abstract. - This paper deals wilh z-submonoids and z-codes. It is shown that the z-submonoid
generaled by a z-code is free. Moreover, a gêneralization to the z-codes of the Schützenberger's
theorem regarding maximal and complete codes is given: a recognizable z-code is a z-code maximal
if it is z-complete.

Résumé. - On montre que le z-sousmonoïde engendré par un z-code est libre. En outre, on
prouve une généralisation du théorème de Schù'tzenberger sur les codes maximaux et complets : un
z-code reconnaissable est un z-code maximal si il est z-complet.

1. INTRODUCTION

In the framework of automata theory, recent studies [l, 3, 4, 5], have
examined the relationship between the languages that are recognized by a
two-way automaton and the languages that it is possible to obtain by the
closure of a new "zigzag product" on words.

Indeed, in [1], the notions of "zigzag factorization" and "zigzag code"
have been introduced and an algorithm to verify if a set of words is a z-code
has been given.

In this paper, we have preferred to change the terminology and, for short,
the previous terms have been modified in "z-factorization" and "z-code"
respectively.

Based on these concepts the paper is organized as follows.

First the point of view is very close to that used in [1].

(*) Received September 1989, revised February 1990.
(1) Université di Palermo, Dipartimento di Matematica ed Applicazioni, via Archirafi, 34,

90123 Palermo, Italy.
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306 M. MADONIA, S. SALEMI, T. SPORTELLI

In section 2, given a subset X of A*9 we defme the set Z r and we introducé
some basic notations.

Afterwards, we defme a ternary partial opération in A*, which we dénote
by î, and, based on this opération, we defme the z-submonoids of A*, as
the subsets of A* which are stable with respect to | opération.

Then we show that X1 is a z-submonoid of A* and, in particular, that it is
the smallest z-submonoid of A* that contains X.

Moreover we characterize the class of the z-submonoids of A* and we
show that this class is properly included in the class of the submonoids of A*.

It is also stated that any z-submonoid N of A* has only one minimal
generating System with respect to the | opération and such a System is
denoted by ZG(N). This approach leads to discover that ZG(N) is always
included or equal to the minimal generating System of N with respect to the
well known * opération.

By using results previously developed in [1], the section 3 deals with the
concept of z-code and introduces the définition of trivial z-code.

It is shown that not always ZG{N) is a z-code also when N is a free
submonoid of A*; conversely, it is proved that if ZG(N) is a z-code, then N
results also free with respect to * opération.

In the section 4 the définitions of maximal z-code and of z-complete set
are given. Using these notions, we obtain a generalization of the well known
Shützenberger's theorem regarding maximal and complete codes.

At last, the measure of a z-code is considered in the section 5, and it is
shown that there exist some z-complete (or maximal) z-codes which have
measure less than 1.

To conclude some open problems are given.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let A be a finite alphabet and A* the free monoid generated by A. As
usual, the éléments of A* are called words and the empty word is denoted
by 1. LetX<^A*.

It is possible to define in A* x A* an équivalence relation generated by the
set T= { ((KX, v), (u, XV)):U, veA*, xeX}.

If ((u, v), (u, v'))eTor ((V, v), {u, v))eT, then we say that (u, v) produces
in only one step (u\ v), and we dénote this fact by (M, V) -> (u', v).

Informatique théorique et Applications/Theoretical Informaties and Applications



ON Z-SUBMONOIDS AND Z-CODES 307

We call "step to the right on x" a step as follows: (u, XV) -> (ux9 v); in the
same way (HX, Z>) -> (M, XU) is called a "ste/? to the left on x". A /?a//z is a
séquence of steps.

With u®v we dénote the équivalence class of the pair (u, v).

DÉFINITION 1: Given a set X g i * , X^ dénotes the set:

This means that a word w e i * belongs to X1 if there exists at least one finite
path between the pairs (1, w) and (w, 1). Clearly the first and the last step in
the path must be "steps to the right".

The following theorem has been proved in [1]:

THEOREM 1: For any recognizable X<=A* there exists an effectively compu-
table deterministic automaton that recognizes X].

Thus we obtain from the previous theorem that X1 e Rec (A*) and therefore
that X^ is a rational set.

Example 1; Let A = {a,b} and let X= {a3baA, a2b, b, ba].

The word w = aaba£X* but weX^. Indeed, it suffices to consider the path:

(1, w) = (l , aaba)^(aab, a)-*(aa, ba)^{aaba3 l) = (w, 1).

This path can be visualized as follows:

/a a Qy a \

Remark 1; For any X^A* we have I * c ^ î . i n fact, if weJT*, then
w = x1x2 . . . xn with xteX for i= 1,2, . . . ,« . Therefore, there exists a path
(given by a séquence of steps to the right), as follows:

(l,w) = ( l ,x 1 . . .xB)->(x l 9x2 . . . * „ ) - > . . .

The converse is not always true, as it has been shown in the example 1.

DÉFINITION 2: Given a word weX\ & z-factorization of w over X9 of length
m, is a séquence of steps (ui9 vt)^(ui + 1, vi + 1)for i=\92, . . ., m which vérifies
the following conditions:

vol. 25, n° 4, 1991



3 0 8 M. MADONIA, S. SALEMI, T. SPORTELLI

3. (uh, vh

The condition 3 is necessary to exclude the présence of "cycles" in the
z-factorization. In fact, since these cycles should be repeated an arbitrary
number of times, they should generate an infmity of different paths from
(1, w) to (w, 1), corresponding, indeed, to the same z-factorization of w
over X.

DÉFINITION 3: Given weX\ l(w9 X) dénotes the minimal length of a
z-factorization of w over X.

DÉFINITION 4: A z-factorization of weA* is trivial iff its length is equal
to 1.

Let us recall the following classical définitions (see [2]):

DÉFINITION 5: A submonoid of A* is a subset M which is stable under the
concaténation and which contains the neutral element of A*.

DÉFINITION 6: Let M be a submonoid of A* and let Y^A*. Y is a minimal
generating System of M (with respect to the * opération) if:

- Y* = M
- for any Z^A* such that Z* = Mit holds Y^Z.

It is well known that any submonoid M of A* admit s an unique minimal
generating System (see [2]), which, from now on, we dénote by G (M). In
particular: G(M) = (M— 1) — (M— l)2.

Let us define a new ternary partial opération " î " in A*,

Given u, V, weA* we define:

__ f u' vw' if u = u v and w = vw' with u, w' e A*

undefmed otherwise

DÉFINITION 7: A z-submonoid of A* is a subset N which is stable under
the f opération and which contains the neutral element of A*.

Remark 2: Any z-submonoid of A* is a submonoid of A*. In fact it suffices
to remark that for any u, we i* , MW=Î(W, 1, w). Therefore the î opération
coincides to the concaténation whenever we set v = 1.

The converse is not always true: there exist submonoids of A* that are
not z-submonoids of A*. For example let M— {a, aba}*. Of course M is a
submonoid of A*, but it is not a z-submonoid of A*. In fact if we consider
î (aba, a, aba) = ababa^M and thus M is not stable under | opération.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Remark 3: For any X^A*9 XT is trivially a z-submonoid of A*.
Moreover:

PROPOSITION 1: For any X<=A*, X1 is the smallest z-submonoid of A* thaï
contains X,

Proof: We have just remarked that X^ is a z-submonoid of A* and that
I * c J T

5 so X^X^', in order to complete the proof, ît suffices to show that,
if N is a z-submonoid of A* that contains X, then XT g iV.

W e set Ch(Xï)={weX1, s u c h t h a t l(w, X) = h } .

So we have to prove that Ch(X^)^N for every positive integer h. We
proceed by induction on h.

For h= 1 Ct (JSTt) = Ar£iV and the proposition is trivially true.
Now we suppose that Ck(X^)^N for every k<h and we show that

In fact, let weJf1 such that l(w, X) = h. Then there exists a z-factorization
of w over X of length h, as follows:

x W'\ Wm) -> (W! W" Wm5 1) = (W,

with wx, w", wmeA*.
We set

Lw={xleA*, such that the pair (xt, yt) appears in the z-factorization of w}

and

Rw={yteA*, such that the pair (xl9 yt) appears in the z-factorization of w } .

Then let x be the shortest element of Lw that is prefix of w1 and let y be the
shortest element of Rw that is suffix of wm. With these notations we have:

w='\(xwl, wt, wty) with

such that w = xwty (see fig. 1).

Figure 1

vol. 25, n° 4, 1991
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But w( e X^. In fact, in the z-factorization of w over X, there is the subpath

. . . - > ( * , wiy) -> Oi> J i ) - > . - . - > (*t, J>t) -> O ^ } 0 -> . . .

such that:

— O, w^y) -> (x l5 j / J and (xf, yt) -> (xwt, y) are steps to the right

— x is prefix of any xt for i= 1, . . ., t

— y is suffix of any y{ for z= 1, . . . , * .

From analogous considérations we have that xwh wtyeX^.

Since l{xwb X)<h, l(wh X)<h and l(wty, X)<h, we have that xwb wi9

wtyeN, by inductive hypothesis. Therefore, since N is stable under the |
opération, w e TV and this complètes the proof.

The following proposition 2 characterizes the submonoids of A* that are
also z-submonoids of A*\

PROPOSITION 2: Let M be a submonoid of A* and let Y=G{M). Then M is
a z-submonoid of A* iff Y*=Yî.

Proof: We first show that if 7*^ Y\ then M is a z-submonoid of A*,
From Y=G(M) we have F* = M. But 7*= yî thus it follows that M= 7T

and trivially M is a z-submonoid of A*.

Conversely, let M be a z-submonoid of A*, M= 7*. Since 7 ^ 7* = M, we
have that M is a z-submonoid of A* that contains 7. From the proposition 1,
we know that 71 is the smallest z-submonoid of A* that contains 7 and so
7T^M=Y*. The inclusion F c f î is trivially true and therefore we have
Y*=Yl

Example 2; Let 7= { aab, ab, abb, aabb } and let us consider the submonoid
of A*9 M=Y*. It is possible to verify that Y=G(M) and that Y*=Y^.
Therefore M is a z-submonoid of A*.

Given a z-submonoid N of A*, let us now define a minimal generating
System of N, with respect to the t opération; from now on, it is called a
minimal z-generating System.

DÉFINITION 8: Let N be a z-submonoid of A* and let X<^A*. X is a minimal
z-generating System of N if:

- for any Z g ^ * such that ZT =N it holds XgZ.
Therefore, let X be a subset of ^4*; if we consider the z-submonoid X} of
*, not always X is a minimal z-generating System of X1.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Example 3 Let

X= {n4
3 ab, aba6, aba3b> aba3 ba2, aba2 ba, aba2 ba2,aba2 b2, aba2 b2 a2, b,ba2},

X isn't a minimal z-generating System of the z-submonoid ZT of A*« In fact
there exists

Z = {a4, ab, aba2 ba, aba2 ba3, b, ba2 }

such that: Z J X and Z1=X1.

The following proposition 3 shows the reîationship between a Tninimal
z-generating System of a z-submonoid TV and G (TV).

PROPOSITION 3: Let N be a z-submonoid of A* and suppose thaï X is a
minimal z-generating System of N. Let Y= G(N)0 it folîows that X<= 7.

Proof: Since Y=G(N) and X is a minimal z-generating System of N, we
have Y^ — N—J^. Let w e l Since X^X1 ~ 7**5 w admits a factorization over
Y, let it be w = yx . . , yn with j { e 7 f = l , . . . , I Î and suppose n> 1. On the
other hand, 7 g 7* = 3fT and, therefore, any word belonging to 7 admits a
z-factorization over X. This implies that w should admit a non trivial
z°factorization over X contradicting the hypothesis that X is a minimal
z-generaîlug System. Thus n=\ and we 7.

We now show that any z-subrnonoid TV of A* has a minimal z-generating
System; Indeed, we prove that such a System is unique and it is effectively
deduced from G (TV).

PROPOSITION 4: Let N be a z-submonoid of A* and let Y<^A*, 7= G (TV).
Then îhe minimal z-generaîing System of N is unique and it is (Y— TY) with
TY={yeY:!{y, Y-y)>l}.

Proof: First we show that ( 7 - TY) is a z-generating System of TV, namely
that TV=(7- Tyy. First we show that T V ^ ( 7 - r y ) r . It suffices to verify that
any weTV has a z-factorization over (Y—TY). In fact, since 7 = G (TV) then
7* = TV, Thus if w e TV then we 7*, i. e. w=^y1y2 . . yn with yteY, i= 1, . . .,n.
Suppose that at least one among yt belongs to TY9 let it be yv Therefore, it
should exist a non trivial z-factorization of yt over 7, L e. it should exist a
path:

with

yt=y't/t' a n d y't,y
f
t'eA*.

vol. 25, n° 4, 1991



312 M. MADONIA, S. SALEMI, T. SPORTELLI

Therefore, it is possible to dérive the z-factorization of w over (Y—TY) as
follows:

. .yn)-> . . . -*(yuy2 . . . yn) -> . . .

- • O i j ^ • • • J>*9J>Ï+I . . . ƒ „ ) - > . . . ->0>ij>2 • • . j>M,i)=O, 0-

On the other hand ( 7 - TY)^N. In fact ( F - TV) g 7 g 7* = AT. Therefore N
is a z-submonoid that contains (Y— TY) and, since (Y— TYY is the smallest
z-submonoid that contains (Y-TY)9 we have that (7-7Y)T£ i V = ( y - r y ) î .

Now we can prove that (7— TY) is a minimal z-generating System. Suppose
that there exists Zg,4* such that Z] = N. We show that (Y- TY) is contained
in Z.

Let j ; e ( r -7V) then ye(Y- TF)Î = A^=ZÎ; therefore there exists a
z-factorization of j over Z. But Z i Z î = = ( F - Tr)

T and this implies that exists
also a z-factorization of y over (Y—TY). Since y$TY, such a z-factorization
has only one step and this step is to the right; it follows that also the
z-factorization over Z has only one step and this step is to the right; according
to the previous observations it follows that there exists zeZ such that y = z
and y e Z.

From now on, ZG(N) dénotes the minimal z-generating System of N,
where iVis a z-submonoid of A*,

Remark 4; Given iV z-submonoid of A*, the proposition 4 shows that
ZG{N)^G{N). This points out that the î opération is more powerful than
the * opération in the class of the z-submonoids of A*.

Example 4: Let Y= { aab, ab, abb, aabb } , as in the example 2, and consider
M= 7*. We have seen that G (M)- Y and M= 7 * - 7T is a z-submonoid of
A*. Then it is possible to fmd the minimal z-generating System of M; in
particular ZG (M) = { aab, ab9 abb}. In fact TY = { aabb}, since:

(i) l(aabb, Y—aabb)>l; in fact, it suffices to consider the following
z-factorization:

(1, aabb) -> (aab, b) -> (a, abb) -> (aabb, 1);

(ii) any other word of Y belongs to TY.

In this case ZG (M) J G (M).

Informatique théorique et Applications/Theoretical Informaties and Applications
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3. z-CODES AND FREE SUBMONOIDS

An algorithm for testing if a set X is a z-code or not is given in [1]. This
test is based on some properties that must be verified by the non-deterministic
automaton which recognizes ZT.

This section concerns the relationships between z-codes and minimal
z-generating Systems. Some examples and new results on z-codes and trivial
z-codes are presented.

Moreover, it is shown that the minimal z-generating System of a z-sub-
monoid of A*, free with respect to * opération, is not always a z-code.

Nevertheless, the theorem 3 states that any z-submonoid, which admits as
minimal z-generating System a z-code, is free and therefore it has also a
minimal generating System that is a code.

DÉFINITION 9: A set X<=A* is a z-code iff any word we A* has at most
one z-factorization over X.

Remark 5: If X<=A* is a z-code, trivially it must be also a code.

Remark 6: If X is prefix or suffix it is easy to see that X is also a z-code;
in fact, any word we A* admits at most one z-factorization and this
z-factorization is equal to the factorization of w over X. In this case X* = X\

Example 5: Let X= {a, aba } be a code.
It is easy to see that X is also a z-code. In fact, if we consider the words

of A* which admit a z-factorization with at least one step to the left, they
must be as follows:

^ — — > ^ ^
v' W i th U, V e A *

On the other hand, the word w = ababa hasn't any other z-factorization.

Example 6; Let X— {a3 ba4, a2 bD ba } . X is a code and it is also a z-code.
A formai proof that X is a z-code is based on some properties regarding the
non-deterministic automaton which recognizes X1 (see [1]).

On the other hand, it is not easy to verify, as we have done in the previous
example, that X is a z-code, by simple considérations on the words of X.

Example 1: Let X= {abb, abba, ba, babb}. X is a code, but it isn't a
z-code. In fact, the word w = abbabb has two different z-factorizations:

(\,abbabb) -> (abb, abb) -> (abbabb, 1)

(l, abbabb) -> (abba, bb) -> (ab, babb) -> (abbabb, 1).

vol. 25, n° 4, 1991
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Remark 1: Let X be a z-code. Then X=ZG(X^). In fact, suppose that X
isn't the minimal z-generating System of ZT; then there exists Z<= 4̂* such
that ZT — X^ and Z J X This implies that there exists x e l such that x$Z.
Since J i I T =Z\ x admits a non trivial z-factorization over Z (this
z-factorization is not trivial because x$Z). But Z^ZX = X\ therefore such a
z-factorization over Z gives a non trivial z-factorization of x over X and this
is a contradiction being X a z-code.

DÉFINITION 10: Let X be a z-code. X is a trivial z-code iff ZT = JT*.

Prefix or suffix codes give some examples of trivial z-codes. The code
X— { a, aabbb, bb}, although it is neither prefix nor suffix, is a trivial z-code.

COROLLARY 1: Let X be a z-code and let 7=G(ZT). Then X<= Y. Moreover
X is a non trivial z-code iff X<^ F.

Proof: It immediately follows from remark 7 and from proposition 3.

In the theory of codes the following theorem is well known (see [2]):

THEOREM 2: If M is afree submonoid o f A*, then G (M) is a code. Conversely
if Y^A* is a code, then the submonoid Y* of A* is free and Y is its minimal
generating System.

As regards to z-codes, the following problem rises:

PROBLEM: Let Y^ A* be a code. By the theorem 2 we have that 7* is a
free submonoid of A* and G(Y*)= Y. Suppose that F* is also a z-submonoid
of A*. By the proposition 4, ZG(Y*)= Y~ TY. A question obviously rises:
such a ZG(Y*) is always a z-code?

The answer is négative. In fact, it suffices to consider the following example.

Example 8; Let Y={aay aab, ab, abb, bb}. Y is a code then F* is free. It
is possible to verify that Y*= Y1 and therefore 7* is a z-submonoid of A*.
Moreover Y=ZG(Y*) since TY = 0. But Y isn't a z-code (for instance,
w = aabb is a word which has two distinct z-factorizations over Y).

Nevertheless, the following theorem holds:

THEOREM 3: Let N be a z-subrnonoid of A*. Let Y=G(N) and X=ZG(N).
If X is a z-code then Y is a code.

Proof: Trivially F* = N^ X^.

In order to prove that F is a code, it suffices to prove that M, VW9 uv, xeN
imply veN.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Since Y* = N=X\ there exist fl9 f2, f3 a n d / 4 z-factorizations over X of u,

vw, uv, w respectively.
Let us suppose

/ i : (1, ü) -> (ul9 u[) -> . . . -> (MB9 W;) -> (wB + l s WB + 1) = (M, 1)

ƒ2 : (1, tnv)-> (z1? z'i)-> . . . ->(zr, z;)->(zr + 1, z'r+1) = (vw9 1)

/ 3 : (l,uv)-*(tl9 *i)-> . . . ->(*„ O - > ( ' , +1> ^+i) = («v, 1)

/ 4 : (1, w)->(w l s wi)-> . . . ->(wm, O - > ( v v m + 1 ) < + 1 ) = (w9 1)

and let us consider the word uvweN.

If we opportunely combine the z-factorization f1 with f2, and / 3 with / 4 ,
we can obtain two z-factorizations over X,f[ a n d / 2 , of the word uvw

f \ : (1, uvw) -> («x, w'x Ï ) W ) - > . . . - > (un, u'n, vw) -* (MB+1S MB

(UVWU W'i) - > . . . - > (MVWm, W^) - > O t W m + 1 , W ^ + 1 ) = (MTJW, 1 ) .

Since Z is a z-code, ƒ'x must be equal to f2. Then, suppose (u, vw) = {thJ t'hw)

with \<h<s+l, and, therefore, (uzu z[) = (th+l9 t'h + 1w).

Let us consider in ƒ 2 the séquence of steps

O*. ^ w) -• (//ï+19 4 + 1 w) -> - . . -> (r5> /; w) -• (is+19 îr
s+ ! w) = (uv, w).

We have that u is prefix of t{ and that ^ is a prefix of m; for i=h, . . ., s+ 1.
Thus we can conclude that

is a z-factorization of v over X.

Therefore, veX1 = TV and the theorem is proved.

4. MAXIMAL Z-CODES AND Z-COMPLETE SETS

The définitions of maximal z-code and of z-complete set are introduced in
this section. An interesting resuit is given in the theorem 5, which establishes
the relationship between maximal z-codes and z-complete z-codes. Indeed,
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this theorem is analogous to the well known Schützenberger's theorem regard-
ing the codes in.

For a more clear exposition, the theorem 5 is preceded by a lemma stating
that if X is a z-code such that G (X1) is a maximal code, then X is surely a
maximal z-code.

DÉFINITION 11: Let X<=A* be a z-code. X is a maximal z-code over A if it
is not properly contained in any other z-code over A. In other words X is a
maximal z-code iff X<=Z and Z z-code imply X=Z.

DÉFINITION 12: Let X<^A* and weA*. The word w is completable in Xr if
there exist two words «, veA* such that uwveX\

The set of the words of A* that are completable in XT is denoted

DÉFINITION 13: Let X^A*. X is z-complete in A* if any word we A* is
completable in XT.

In other words, Jf is z-complete in A* iff F(X^) = A*.

Remark S: Let Z be a z-complete set and let Y=G(X^). Then F is
complete. In fact, since X is z-complete, F(X1) = A*. But X^ = y*, therefore

î and then the thesis.

LEMMA 1: Let X be a z-code and let F=G(X r). If Y is a maximal code,
then X is a maximal z-code,

Proof: Since Y=G(X^), F* = XÎ. Suppose that X isn't a maximal z-code.
Therefore there exists xeA* such that x$X and X' = X\j{x) is a z-code.
Note that x<£F. Indeed, if x should belong to F, from F E y*5 it follows
that xe F* = JfT; in other words this means that there exists a z-factorization
of x over X and such a z-factorization isn't trivial since x$X. Then x has
two distinct z-factorizations over I U { x } (one is the non trivial z-factoriza-
tion over X and the other is trivial and it consists of a single step to the
right on x) and this is in contradiction with the hypothesis that X U {x} is
a z-code.

Let N=(Xry be the z-submonoid generated by X''. From the remark 7,
we have that ZG(N) = X'. Let us show that Y{J {x}^G(N).

The contradiction will follow: by theorem 3, G(N) is a code and, therefore
F U {x} is a code which is impossible.

First, xeG(N) since, from proposition4, Xf = ZG(N)<^G(N). Then let
y e F and suppose j ; £ G (TV). Then y = uv where u, ve N— 1. The words u and
v have exactly one z-factorization over X' and in one of them a step on x
must occur, otherwise j<£G(XT) = G(F*)= F. On the other hand, as
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y e Y<= Y*~X\ y has another z-factorization over X' but without steps on x.
This is impossible since X' is a z-code. It follows that Y<=G(N) and the
lemma has been proved.

Let Y e Ree (̂ 4*) and suppose that Y is a code. The following theorem is
well know in the theory of codes (see [2]):

THEOREM 4: Y is a complete code iff Y is a maximal code.
We can prove a theorem analogous to the previous one, holding for the

family of the recognizable z-codes:

THEOREM 5: Let X^A* be a recognizable z-code. X is z-complete iffX is a
maximal z-code.

In order to prove the theorem we give a lemma.

LEMMA 2: Let X<=A*. Suppose that X isn't a z-code and that weA* has
two distinct z-factorizations over X. Then, there exists a suffix of w which has
two distinct z-factorizations over X, f1 and f2, such that the first step of f1 is
different from the first step off2.

Proof: Consider fx and f2 and suppose that the first steps of the two
z-factorizations of w are both steps on xeX. We can suppose that there
exists, in ft or f2, a step(w, v) such that w is a proper prefix of x.

Let L1 = {uieA + , such that the pair (uh vt) appears in fx) and
L2

:={uf
ieA +

 9 such that the pair (wj, v\) appears i n / 2 } . Then, let uh be the
shortest element of Lx that is prefix of x and let ur

k be the shortest element
of L2 that is prefix of x. Suppose |w£|^|«fc|3 then vk is a suffix of w which
has two z-factorizations over X with distint first steps (sec fig. 2).

In figure 2, the two distinct z-factorizations of vk over X are denoted one
by the dotted line and the other one by continuons line.

Proof of the theorem 5. - First we prove that if X is z-complete, then X is
a maximal z-code.
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Let us consider X1 and lei: Y^G{X}), From remark8 ît follows that Fis
complete and from îlieorem 3 we know that Y is a code. Moieovet3 since
XreRec(yîv)3 ^so f1* e "Reet/P''). From previous remarks on T. and ftom
theoretri 4 It follows thaï Y h a maximal code Therefore by lemma 1, X is a
maximal z-cod^o

We now show the conveise: if J i s a maximal z-code$ then X îs 7-coxnplete.

If Card(>t)= 1 thïs is uiviaîiy true. Suppose Card (A)>1 and suppose that
X isn't z=CGînpiate, Thxis there exlsts ^e>P such that i^ i* 1 ^) Lei" a be the
fïist iettei of the word u aad let 6e*4-a. Let us consider x^aô1"1 and
j ^ w x . Trivlally, j^.F{X !) [otherwise H should be UEF{X^) in conttadiction
wit h the hypotheslsj and y is "unbordeied"; this ineans that any proper
prefix of y isn't a suFfix of ƒ itself. Moreover, y isn't eitlier prefix5 or suffix,
or factoi of any element of X [otherwise yeF(X*)].

The set X\J {y} JS not a z-code since X is a maximal z-code

Tlien there exists w e # haviüg two distinct z-factorizations, fL and /23

over l U J j ^ } . By the lemma 23 VYC can choose w such that the fiist steps of
the two z-fautorisations are different,

It is useful to remark that'

— both the îwo z-factorizations must incliide at least a step on y and this
step ïïiay be to the left

(w'y, wft)->{w\ywn)

or to the right

{w\ yw") —» (wf y, wny

In fact, if any of the previous two z-factorizations of w over X{j{y)
shouldîi't incluce at least one step on y, then there sbould exist two distinct
z-facîorizations of w over X and tins leads to a contradiction since X is a
z-code, Qtherwise, if only one of the two z-factorizations should contain a
stgp on y (do€SB9t matter if it is to the rght or to the left), it shoulo follow
yeFÇO) since w'yw" eX^; but this is in contradiction wiih the fact that y is
not cornpletable in Z1,

— the occurrences of îhe factor y in the two distinct z-factorizations
can't have "overlap", because y is unbordered. Indeed, if we consider the z-
factorizations of w over XU {y}, they contain a step on y and such a step
must be to the right: otherwise y should be completable inA^.

From the previous considérations it follows that for any step to the right
on y in one of the two z-factorizations of w [for instance, for the step
(w\ yw") -» (w'y, w")] there exists, in the same way, a step to the right on y
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in the other z-façtorîzaîion of w [for instance (v'9 yv") -> (v' y9 v') with v ~w'
andi/ ' —w"j.

In other words, the occurrences of y as a factor in fx and / 2 must be "to
the right" and "m the same position",

Consîder îbe firsi occurrences of the factor y in / ^and f2: since they must
be 4Sto the right" end "m the same position^ they don't correspond to the
first steps o f the iwo z-factorizations and we have that the step to the right

iy> h) (*)

with ixeA + and £2eA'% occurs inf{ and/ 2 .

Let us take into account the séquence of steps that précède the first step
on y 'm ft

( z j j z\) -»• ( z 2 s zz) - * . . . - * (zm5 z ^ ) ™> ( / l 3 yt2) —> (f L .y, ? 2 )

with Z|j z'isA* for /= i3 3 „ 05 m and the séquence of steps that précède the
first step on y inf2

{sl3 j ' x ) 2, s'2) sn sf
r) -~> (ti9 yï2) t2)

with sp sJj£Â* for7= 1, . . ., r.

Note that, since y^FiX1), z{ for f = l , . . ., m and Sj f o r 7 = 1 , . . ., r3 are
prefix of ^ ƒ.

Let Li = {zieA*/ï^i^m} and L2 = {1yJ.e^4*/l ̂ j ^ r } . Let zheL± be the
element of maximal length in Lt and let skeL2 be the element of maximal
length IB L2> Suppose | z h j ^ | s k | . Then zheX^ and it has two distinct
z-factorizations over X derived by a suitable combination of steps offx and
/ 2 (see /ig, 3),

Figure 3
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In figure 3, the two distinct z-factorizations of zh over X are denoted one
by the dotted line and the other one by the continuous line.

But this is in contradiction with the hypothesis that X is a z-code and the
theorem is proved.

Remark 9: Note that, in the theorem 5, to show that if X is a maximal
z-code then X is complete, the assumption that X is recognizable isn't
necessary, but this assumption is essential to show the converse.

Remark 10: Let X^A* be a z-code and let Y—G{X^), We have just seen
(lemma 1) that if F is a maximal code then X is a maximal z-code. The
converse follows from the theorem 5. Indeed, if X is a maximal z-code then
X is z-complete and therefore, from the remark 8, Y is a complete code.
From the theorem 4, it follows that Y is a maximal code.

5. SOME PROPERTEES OF THE MEASURE OF A Z CODE

Let A be a fmite alphabet with cardinality \A\ and let X^A* be a code.
It is well known that the inequality of Kraft-Mcmillan holds:

If X is finite with cardinality | ^ | = /7, the previous séries becomes a finite
sum of n terms.

The value a (X) is called measure of the set X.

Trivially if Xg 7 then a (X) ̂  a ( Y) [if X£ Y then a(X)<a(Y)].

In the theory of codes it is known that the inequality of Kraft-Mcmillan
gives a simple method for testing whether a code is maximal and then
complete; in fact, let X be a code; then a (X) = 1 if and only if X is maximal
(see [2]).

Remark 11 ; Trivially the inequality of Kraft-Mcmillan holds also if X is a
z-code. Moreover, if X is a non trivial z-code and Y"=G(X]), then Y is a
code and X^ Y; it follows that a non trivial z-code has always measure < 1.

Remark 12/ If X is a non trivial zcode, then a(X)< 1 and this inequality
holds also for X maximal z-code and therefore for X z-complete, It follows
that, for a non trivial z-code X, it is not possible to décide whether it is
z-complete or not with a simple check on the value of its measure.
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Example 9: Let X={a2, ab, ab2, Z?3, ba3, ba2b, baba, bab3}. X is a code.
The inequality a(X)< 1 holds, then X is not a complete code in A*, but it is
completable. It suffices to add the word w^ba2b2.

Xis 'also z-code and, since weX\ X is, z-complete.

It follows that X is a z-complete z-code and its measure is < 1.

SOME OPEN PROBLEMS

PROBLEM 1 (Chap. 2) In the proposition 3 it is stated that, for any
z-submonoid N of A*, ZG(N)<=G(N). It is easy to see that there exist
z-submonoids N of A* such that ZG(N) is fini te, although G (TV) is an infinité
set.

Example: Let 7V=XT with X={a, aba). Then

ZG (N) = X and G (N) = {a {ba)* }.

Characterize the z-submonoids N such that ZG(N) is fmite and G(N) is
infinité.

PROBLEM 2 (Chap. 3) :Referring to the définition of trivial z-code, we have
shown that there exist trivial z-codes which are neither prefix, nor suffix.
Characterize the family of trivial z-codes.

PROBLEM 3 (Chap. 3). — Let TV be a z-submonoid of A*, that is free with
respect to * opération. We have remarked that ZG(N) is not always a
z-code (see example 8).

Characterize those z-submonoids N of A* that are free with respect
to * opération and such that ZG(N) results a z-code.

PROBLEM 4 (Chap. 5) : In the theory of codes it is known that any complete
set X has measure a (X) ̂  1. This property does not hold for
z-complete sets (see example 9).

In the interval [O, 1] fmd, if it exists, a lower bound for the measure of a
z-complete set.
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