INFORMATIQUE THÉORIQUE ET APPLICATIONS

M. Madonia
 S.SALEMI
 T. Sportelli
 On z-submonoids and z-codes

Informatique théorique et applications, tome 25, no 4 (1991), p. 305-322

http://www.numdam.org/item?id=ITA_1991__25_4_305_0
© AFCET, 1991, tous droits réservés.
L'accès aux archives de la revue «Informatique théorique et applications» implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON Z-SUBMONOIDS AND Z-CODES (*)

by M. Madonia (${ }^{1}$), S. Salemi (${ }^{1}$) and T. Sportelli (${ }^{1}$)

Communicated by J.-E. PIN

Abstract

This paper deals with z-submonoids and z-codes. It is shown that the z-submonoid generated by a z-code is free. Moreover, a generalization to the z-codes of the Schützenberger's theorem regarding maximal and complete codes is given: a recognizable z-code is a z-code maximal if it is z-complete.

Résumé. - On montre que le z-sousmonoïde engendré par un z-code est libre. En outre, on prouve une généralisation du théorème de Schützenberger sur les codes maximaux et complets : un z-code reconnaissable est un z-code maximal si il est z-complet.

1. INTRODUCTION

In the framework of automata theory, recent studies [1, 3, 4, 5], have examined the relationship between the languages that are recognized by a two-way automaton and the languages that it is possible to obtain by the closure of a new "zigzag product" on words.

Indeed, in [1], the notions of "zigzag factorization" and "zigzag code" have been introduced and an algorithm to verify if a set of words is a z-code has been given.

In this paper, we have preferred to change the terminology and, for short, the previous terms have been modified in " z-factorization" and " z-code" respectively.

Based on these concepts the paper is organized as follows.
First the point of view is very close to that used in [1].

[^0]In section 2, given a subset X of A^{*}, we define the set X^{\dagger} and we introduce some basic notations.

Afterwards, we define a ternary partial operation in A^{*}, which we denote by \uparrow, and, based on this operation, we define the z-submonoids of A^{*}, as the subsets of A^{*} which are stable with respect to \uparrow operation.

Then we show that X^{\uparrow} is a z-submonoid of A^{*} and, in particular, that it is the smallest z-submonoid of A^{*} that contains X.

Moreover we characterize the class of the z-submonoids of A^{*} and we show that this class is properly included in the class of the submonoids of A^{*}.

It is also stated that any z-submonoid N of A^{*} has only one minimal generating system with respect to the \uparrow operation and such a system is denoted by $Z G(N)$. This approach leads to discover that $Z G(N)$ is always included or equal to the minimal generating system of N with respect to the well known * operation.

By using results previously developed in [1], the section 3 deals with the concept of z-code and introduces the definition of trivial z-code.

It is shown that not always $Z G(N)$ is a z-code also when N is a free submonoid of A^{*}; conversely, it is proved that if $Z G(N)$ is a z-code, then N results also free with respect to * operation.

In the section 4 the definitions of maximal z-code and of z-complete set are given. Using these notions, we obtain a generalization of the well known Shützenberger's theorem regarding maximal and complete codes.

At last, the measure of a z-code is considered in the section 5 , and it is shown that there exist some z-complete (or maximal) z-codes which have measure less than 1.

To conclude some open problems are given.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let A be a finite alphabet and A^{*} the free monoid generated by A. As usual, the elements of A^{*} are called words and the empty word is denoted by 1 . Let $X \subseteq A^{*}$.

It is possible to define in $A^{*} \times A^{*}$ an equivalence relation generated by the set $T=\left\{((u x, v),(u, x v)): u, v \in A^{*}, x \in X\right\}$.

If $\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right) \in T$ or $\left(\left(u^{\prime}, v^{\prime}\right),(u, v)\right) \in T$, then we say that (u, v) produces in only one step $\left(u^{\prime}, v^{\prime}\right)$, and we denote this fact by $(u, v) \rightarrow\left(u^{\prime}, v^{\prime}\right)$.

We call "step to the right on x " a step as follows: $(u, x v) \rightarrow(u x, v)$; in the same way $(u x, v) \rightarrow(u, x v)$ is called a "step to the left on x ". A path is a sequence of steps.

With $u ® v$ we denote the equivalence class of the pair (u, v).
Definition 1: Given a set $X \subseteq A^{*}, X^{\uparrow}$ denotes the set:

$$
X^{\uparrow}=\left\{w \in A^{*}: 1 ® w=w ® 1\right\} .
$$

This means that a word $w \in A^{*}$ belongs to X^{\uparrow} if there exists at least one finite path between the pairs $(1, w)$ and $(w, 1)$. Clearly the first and the last step in the path must be "steps to the right".

The following theorem has been proved in [1]:
Theorem 1: For any recognizable $X \subseteq A^{*}$ there exists an effectively computable deterministic automaton that recognizes X^{\dagger}.

Thus we obtain from the previous theorem that $X^{\dagger} \in \operatorname{Rec}\left(A^{*}\right)$ and therefore that X^{\dagger} is a rational set.

Example 1: Let $A=\{a, b\}$ and let $X=\left\{a^{3} b a^{4}, a^{2} b, b, b a\right\}$.
The word $w=a a b a \notin X^{*}$ but $w \in X^{\dagger}$. Indeed, it suffices to consider the path:

$$
(1, w)=(1, a a b a) \rightarrow(a a b, a) \rightarrow(a a, b a) \rightarrow(a a b a, 1)=(w, 1)
$$

This path can be visualized as follows:

Remark 1: For any $X \subseteq A^{*}$ we have $X^{*} \subseteq X^{\dagger}$. In fact, if $w \in X^{*}$, then $w=x_{1} x_{2} \ldots x_{n}$ with $x_{i} \in X$ for $i=1,2, \ldots, n$. Therefore, there exists a path (given by a sequence of steps to the right), as follows:

$$
\begin{aligned}
(1, w)=\left(1, x_{1} \ldots x_{n}\right) \rightarrow\left(x_{1}, x_{2} \ldots x_{n}\right) & \rightarrow \ldots \\
& \rightarrow\left(x_{1} \ldots x_{n-1}, x_{n}\right) \rightarrow\left(x_{1} \ldots x_{n}, 1\right)=(w, 1) .
\end{aligned}
$$

The converse is not always true, as it has been shown in the example 1.
Definition 2: Given a word $w \in X^{\uparrow}$, a z-factorization of w over X, of length m, is a sequence of steps $\left(u_{i}, v_{i}\right) \rightarrow\left(u_{i+1}, v_{i+1}\right)$ for $i=1,2, \ldots, m$ which verifies the following conditions:

1. $u_{1}=v_{m+1}=1$;
2. $v_{1}=u_{m+1}=w$;
3. $\left(u_{h}, v_{h}\right) \neq\left(u_{k}, v_{k}\right)$ for $h \neq k$.

The condition 3 is necessary to exclude the presence of "cycles" in the z-factorization. In fact, since these cycles should be repeated an arbitrary number of times, they should generate an infinity of different paths from $(1, w)$ to ($w, 1$), corresponding, indeed, to the same z-factorization of w over X.

Definition 3: Given $w \in X^{\uparrow}, l(w, X)$ denotes the minimal length of a z-factorization of w over X.

Definition 4: A z-factorization of $w \in A^{*}$ is trivial iff its length is equal to 1 .

Let us recall the following classical definitions (see [2]):
Definition 5: A submonoid of A^{*} is a subset M which is stable under the concatenation and which contains the neutral element of A^{*}.

Definition 6: Let M be a submonoid of A^{*} and let $Y \subseteq A^{*} . Y$ is a minimal generating system of M (with respect to the * operation) if:
$-\quad Y^{*}=M$

- for any $Z \cong A^{*}$ such that $Z^{*}=M$ it holds $Y \subseteq Z$.

It is well known that any submonoid M of A^{*} admits an unique minimal generating system (see [2]), which, from now on, we denote by $G(M)$. In particular: $G(M)=(M-1)-(M-1)^{2}$.

Let us define a new ternary partial operation " \uparrow " in A^{*}.
Given $u, v, w \in A^{*}$ we define:

$$
\uparrow(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{\begin{array}{c}
\underline{u^{\prime}} v w^{\prime} \text { if } u=u^{\prime} v \text { and } w=v w^{\prime} \text { with } u^{\prime}, w^{\prime} \in A^{*} \\
\text { undefined otherwise }
\end{array}\right.
$$

Definition 7: A z-submonoid of A^{*} is a subset N which is stable under the \uparrow operation and which contains the neutral element of A^{*}.

Remark 2: Any z-submonoid of A^{*} is a submonoid of A^{*}. In fact it suffices to remark that for any $u, w \in A^{*}, u w=\uparrow(u, 1, w)$. Therefore the \uparrow operation coincides to the concatenation whenever we set $v=1$.

The converse is not always true: there exist submonoids of A^{*} that are not z-submonoids of A^{*}. For example let $M=\{a, a b a\}^{*}$. Of course M is a submonoid of A^{*}, but it is not a z-submonoid of A^{*}. In fact if we consider $\uparrow(a b a, a, a b a)=a b a b a \notin M$ and thus M is not stable under \uparrow operation.

Remark 3: For any $X \subseteq A^{*}, X^{\dagger}$ is trivially a z-submonoid of A^{*}.
Moreover:
Proposition 1: For any $X \subseteq A^{*}, X^{\uparrow}$ is the smallest z-submonoid of A^{*} that contains X.

Proof: We have just remarked that X^{\dagger} is a z-submonoid of A^{*} and that $X^{*} \subseteq X^{\dagger}$, so $X \subseteq X^{\uparrow}$; in order to complete the proof, it suffices to show that, if N is a z-submonoid of A^{*} that contains X, then $X^{\dagger} \subseteq N$.

We set $C_{h}\left(X^{\dagger}\right)=\left\{w \in X^{\dagger}\right.$, such that $\left.l(w, X)=h\right\}$.
So we have to prove that $C_{h}\left(X^{\uparrow}\right) \subseteq N$ for every positive integer h. We proceed by induction on h.

For $h=1 C_{1}\left(X^{\uparrow}\right)=X \subseteq N$ and the proposition is trivially true.
Now we suppose that $C_{k}\left(X^{\dagger}\right) \subseteq N$ for every $k<h$ and we show that $C_{h}\left(X^{\dagger}\right) \subseteq N$.

In fact, let $w \in X^{\dagger}$ such that $l(w, X)=h$. Then there exists a z-factorization of w over X of length h, as follows:

$$
\begin{aligned}
(1, w)=\left(1, w_{1} w^{\prime \prime} w_{m}\right) \rightarrow\left(w_{1}, w^{\prime \prime} w_{m}\right) \rightarrow & \ldots \\
& \rightarrow\left(w_{1} w^{\prime \prime}, w_{m}\right) \rightarrow\left(w_{1} w^{\prime \prime} w_{m}, 1\right)=(w, 1)
\end{aligned}
$$

with $w_{1}, w^{\prime \prime}, w_{m} \in A^{*}$.
We set
$L_{w}=\left\{x_{1} \in A^{*}\right.$, such that the pair $\left(x_{i}, y_{2}\right)$ appears in the z-factorization of $\left.w\right\}$ and
$R_{w}=\left\{y_{t} \in A^{*}\right.$, such that the pair $\left(x_{t}, y_{t}\right)$ appears in the z-factorization of $\left.w\right\}$.
Then let x be the shortest element of L_{w} that is prefix of w_{1} and let y be the shortest element of R_{w} that is suffix of w_{m}. With these notations we have:

$$
w=\uparrow\left(x w_{t}, w_{\imath}, w_{\imath} y\right) \quad \text { with } \quad w_{\imath} \in A^{*},
$$

such that $w=x w_{\imath} y$ (see fig. 1).

Figure 1
vol. $25, n^{\circ} 4,1991$

But $w_{i} \in X^{\dagger}$. In fact, in the z-factorization of w over X, there is the subpath

$$
\ldots \rightarrow\left(x, w_{i} y\right) \rightarrow\left(x_{1}, y_{1}\right) \rightarrow \ldots \rightarrow\left(x_{t}, y_{t}\right) \rightarrow\left(x w_{i}, y\right) \rightarrow \ldots
$$

such that:
$-\left(x, w_{i} y\right) \rightarrow\left(x_{1}, y_{1}\right)$ and $\left(x_{t}, y_{t}\right) \rightarrow\left(x w_{i}, y\right)$ are steps to the right

- x is prefix of any x_{i} for $i=1, \ldots, t$
- y is suffix of any y_{i} for $i=1, \ldots, t$.

From analogous considerations we have that $x w_{i}, w_{i} y \in X^{\dagger}$.
Since $l\left(x w_{i}, X\right)<h, l\left(w_{i}, X\right)<h$ and $l\left(w_{i} y, X\right)<h$, we have that $x w_{i}, w_{i}$, $w_{i} y \in N$, by inductive hypothesis. Therefore, since N is stable under the \uparrow operation, $w \in N$ and this completes the proof.

The following proposition 2 characterizes the submonoids of A^{*} that are also z-submonoids of A^{*} :

Proposition 2: Let M be a submonoid of A^{*} and let $Y=G(M)$. Then M is a z-submonoid of A^{*} iff $Y^{*}=Y^{\dagger}$.

Proof: We first show that if $Y^{*}=Y^{\dagger}$, then M is a z-submonoid of A^{*}.
From $Y=G(M)$ we have $Y^{*}=M$. But $Y^{*}=Y^{\uparrow}$ thus it follows that $M=Y^{\dagger}$ and trivially M is a z-submonoid of A^{*}.

Conversely, let M be a z-submonoid of $A^{*}, M=Y^{*}$. Since $Y \subseteq Y^{*}=M$, we have that M is a z-submonoid of A^{*} that contains Y. From the proposition 1, we know that Y^{\uparrow} is the smallest z-submonoid of A^{*} that contains Y and so $Y^{\dagger} \subseteq M=Y^{*}$. The inclusion $Y^{*} \subseteq Y^{\dagger}$ is trivially true and therefore we have $Y^{*}=Y^{\uparrow}$.

Example 2: Let $Y=\{a a b, a b, a b b, a a b b\}$ and let us consider the submonoid of $A^{*}, M=Y^{*}$. It is possible to verify that $Y=G(M)$ and that $Y^{*}=Y^{\uparrow}$. Therefore M is a z-submonoid of A^{*}.

Given a z-submonoid N of A^{*}, let us now define a minimal generating system of N, with respect to the \uparrow operation; from now on, it is called a minimal z-generating system.

Definition 8: Let N be a z-submonoid of A^{*} and let $X \subseteq A^{*} . X$ is a minimal z-generating system of N if:
$-X^{\dagger}=\mathrm{N}$

- for any $Z \subseteq A^{*}$ such that $Z^{\dagger}=N$ it holds $X \subseteq Z$.

Therefore, let X be a subset of A^{*}; if we consider the z-submonoid X^{\dagger} of A^{*}, not always X is a minimal z-generating system of X^{\dagger}.

Example 3 Let
$X=\left\{a^{4}, a b, a b a^{6}, a b a^{3} b, a b a^{3} b a^{2}, a b a^{2} b a, a b a^{2} b a^{3}, a b a^{2} b^{2}, a b a^{2} b^{2} a^{2}, b, b a^{2}\right\}$.
X isn't a minimal z-generating system of the z-submonoid X^{\dagger} of A^{*}. In fact there exists

$$
\mathbb{Z}=\left\{a^{4}, a b, a b a^{2} b a, a b a^{2} b a^{3}, b, b a^{2}\right\}
$$

such that: $\mathbb{Z}_{\mathbb{E}} \mathbb{X}$ and $\mathbb{Z}^{\uparrow}=X^{\uparrow}$.
The following proposition 3 shows the relationship between a minimal z-generating system of a z-submonoid N and $G(N)$.

Proposition 3: Let N be a z-submonoid of A^{*} and suppose that X is a minimal z-generating system of N. Let $Y=G(N)$, it follows that $X \subseteq Y$.

Proof: Since $Y=G(N)$ and X is a minimal z-generating system of N, we have $\mathbb{Z}^{*}=N=K^{\uparrow}$. Let $w \in X$. Since $X \subseteq X^{\dagger}=Y^{*}, w$ admits a factorization over Y, let it be $w=y_{1} \ldots y_{n}$ with $y_{i} \in Y i=1, \ldots, n$ and suppose $n>1$. On the other hand, $Y \subseteq Y^{*}=X^{\dagger}$ and, therefore, any word belonging to Y admits a z-factorization over X. This implies that w should admit a non trivial z-factorization over X contradicting the hypothesis that X is a minimal z-generating system. Thus $n=1$ and $w \in Y$.

We now show that any z-submonoid N of A^{*} has a minimal z-generating system; indeed, we prove that such a system is unique and it is effectively deduced from $G(N)$.

Proposition 4: Let N be a z-submonoid of A^{*} and let $Y \subseteq A^{*}, Y=G(N)$. Then the minimal z-generating system of N is unique and it is $\left(Y-T_{Y}\right)$ with $T_{Y}=\{y \in Y: l(y, Y-y)>1\}$.

Proof: First we show that $\left(Y-T_{Y}\right)$ is a z-generating system of N, namely that $N=\left(Y-T_{Y}\right)^{\dagger}$. First we show that $N \subseteq\left(Y-T_{Y}\right)^{\dagger}$. It suffices to verify that any $w \in N$ has a z-factorization over $\left(Y-T_{Y}\right)$. In fact, since $Y=G(N)$ then $Y^{*}=N$. Thus if $w \in N$ then $w \in Y^{*}$, i. e. $w=y_{1} y_{2} \ldots y_{n}$ with $y_{i} \in Y, i=1, \ldots, n$. Suppose that at least one among y_{i} belongs to T_{Y}, let it be y_{t}. Therefore, it should exist a non trivial z-factorization of y_{t} over Y, i. e. it should exist a path:

$$
\left(1, y_{t}\right) \rightarrow\left(y_{t}^{\prime}, y_{t}^{\prime \prime}\right) \rightarrow \ldots \rightarrow\left(y_{t}, 1\right)
$$

with

$$
y_{t}=y_{t}^{\prime} y_{t}^{\prime \prime} \quad \text { and } \quad y_{t}^{\prime}, y_{t}^{\prime \prime} \in A^{*}
$$

vol. $25, n^{\circ} 4,1991$

Therefore, it is possible to derive the z-factorization of w over $\left(Y-T_{Y}\right)$ as follows:

$$
\begin{aligned}
& (1, w)=\left(1, y_{1} y_{2} \ldots y_{n}\right) \rightarrow \ldots \rightarrow\left(y_{1}, y_{2} \ldots y_{n}\right) \rightarrow \ldots \\
& \rightarrow\left(y_{1} y_{2} \ldots y_{t-1}, y_{t} y_{t+1} \ldots y_{n}\right) \rightarrow\left(y_{1} y_{2} \ldots y_{t-1} y_{t}^{\prime}, y_{t}^{\prime \prime} y_{t+1} \ldots y_{n}\right) \rightarrow \ldots \\
& \\
& \quad \rightarrow\left(y_{1} y_{2} \ldots y_{t}, y_{t+1} \ldots y_{n}\right) \rightarrow \ldots \rightarrow\left(y_{1} y_{2} \ldots y_{n}, 1\right)=(w, 1) .
\end{aligned}
$$

On the other hand $\left(Y-T_{Y}\right)^{\dagger} \subseteq N$. In fact $\left(Y-T_{Y}\right) \subseteq Y \subseteq Y^{*}=N$. Therefore N is a z-submonoid that contains $\left(Y-T_{Y}\right)$ and, since $\left(Y-T_{Y}\right)^{\dagger}$ is the smallest z-submonoid that contains $\left(Y-T_{Y}\right)$, we have that $\left(Y-T_{Y}\right)^{\dagger} \subseteq N=\left(Y-T_{Y}\right)^{\dagger}$.

Now we can prove that $\left(Y-T_{Y}\right)$ is a minimal z-generating system. Suppose that there exists $Z \subseteq A^{*}$ such that $Z^{\dagger}=N$. We show that $\left(Y-T_{Y}\right)$ is contained in Z.

Let $y \in\left(Y-T_{Y}\right)$ then $y \in\left(Y-T_{Y}\right)^{\dagger}=N=Z^{\dagger}$; therefore there exists a z-factorization of y over Z. But $Z \subseteq Z^{\dagger}=\left(Y-T_{Y}\right)^{\dagger}$ and this implies that exists also a z-factorization of y over $\left(Y-T_{Y}\right)$. Since $y \notin T_{Y}$, such a z-factorization has only one step and this step is to the right; it follows that also the z-factorization over Z has only one step and this step is to the right; according to the previous observations it follows that there exists $z \in Z$ such that $y=z$ and $y \in Z$.

From now on, $Z G(N)$ denotes the minimal z-generating system of N, where N is a z-submonoid of A^{*}.

Remark 4: Given $N z$-submonoid of A^{*}, the proposition 4 shows that $Z G(N) \subseteq G(N)$. This points out that the \uparrow operation is more powerful than the $*$ operation in the class of the z-submonoids of A^{*}.

Example 4: Let $Y=\{a a b, a b, a b b, a a b b\}$, as in the example 2, and consider $M=Y^{*}$. We have seen that $G(M)=Y$ and $M=Y^{*}=Y^{\dagger}$ is a z-submonoid of A^{*}. Then it is possible to find the minimal z-generating system of M; in particular $Z G(M)=\{a a b, a b, a b b\}$. In fact $T_{Y}=\{a a b b\}$, since:
(i) $l(a a b b, Y-a a b b)>1$; in fact, it suffices to consider the following z-factorization:

$$
(1, a a b b) \rightarrow(a a b, b) \rightarrow(a, a b b) \rightarrow(a a b b, 1)
$$

(ii) any other word of Y belongs to T_{Y}.

In this case $Z G(M) \nsubseteq G(M)$.

3. z-CODES AND FREE SUBMONOIDS

An algorithm for testing if a set X is a z-code or not is given in [1]. This test is based on some properties that must be verified by the non-deterministic automaton which recognizes X^{\dagger}.

This section concerns the relationships between z-codes and minimal z-generating systems. Some examples and new results on z-codes and trivial z-codes are presented.

Moreover, it is shown that the minimal z-generating system of a z-submonoid of A^{*}, free with respect to $*$ operation, is not always a z-code.

Nevertheless, the theorem 3 states that any z-submonoid, which admits as minimal z-generating system a z-code, is free and therefore it has also a minimal generating system that is a code.

Definition 9: A set $X \subseteq A^{*}$ is a z-code iff any word $w \in A^{*}$ has at most one z-factorization over X.

Remark 5: If $X \subseteq A^{*}$ is a z-code, trivially it must be also a code.
Remark 6: If X is prefix or suffix it is easy to see that X is also a z-code; in fact, any word $w \in A^{*}$ admits at most one z-factorization and this z-factorization is equal to the factorization of w over X. In this case $X^{*}=X^{\dagger}$.

Example 5: Let $X=\{a, a b a\}$ be a code.
It is easy to see that X is also a z-code. In fact, if we consider the words of A^{*} which admit a z-factorization with at least one step to the left, they must be as follows:
u

On the other hand, the word $w=a b a b a$ hasn't any other z-factorization.
Example 6: Let $X=\left\{a^{3} b a^{4}, a^{2} b, b a\right\} . X$ is a code and it is also a z-code. A formal proof that X is a z-code is based on some properties regarding the non-deterministic automaton which recognizes X^{\dagger} (see [1]).

On the other hand, it is not easy to verify, as we have done in the previous example, that X is a z-code, by simple considerations on the words of X.

Example 7: Let $X=\{a b b, a b b a, b a, b a b b\} . X$ is a code, but it isn't a z-code. In fact, the word $w=a b b a b b$ has two different z-factorizations:

$$
\begin{gathered}
(1, a b b a b b) \rightarrow(a b b, a b b) \rightarrow(a b b a b b, 1) \\
(1, a b b a b b) \rightarrow(a b b a, b b) \rightarrow(a b, b a b b) \rightarrow(a b b a b b, 1)
\end{gathered}
$$

Remark 7: Let X be a z-code. Then $X=Z G\left(X^{\uparrow}\right)$. In fact, suppose that X isn't the minimal z-generating system of X^{\uparrow}; then there exists $Z \subseteq A^{*}$ such that $Z^{\uparrow}-X^{\dagger}$ and $Z \nsubseteq X$. This implies that there exists $x \in X$ such that $x \notin Z$. Since $X \subseteq X^{\dagger}=Z^{\dagger}, x$ admits a non trivial z-factorization over Z (this z-factorization is not trivial because $x \notin Z$). But $Z \subseteq Z^{\dagger}=X^{\dagger}$, therefore such a z-factorization over Z gives a non trivial z-factorization of x over X and this is a contradiction being X a z-code.

Definition 10: Let X be a z-code. X is a trivial z-code iff $X^{\dagger}=X^{*}$.
Prefix or suffix codes give some examples of trivial z-codes. The code $X=\{a, a a b b b, b b\}$, although it is neither prefix nor suffix, is a trivial z-code.

Corollary 1: Let X be a z-code and let $Y=G\left(X^{\uparrow}\right)$. Then $X \subseteq Y$. Moreover X is a non trivial z-code iff $X \nsubseteq Y$.

Proof: It immediately follows from remark 7 and from proposition 3.
In the theory of codes the following theorem is well known (see [2]):
THEOREM 2: If M is a free submonoid of A^{*}, then $G(M)$ is a code. Conversely if $Y \subseteq A^{*}$ is a code, then the submonoid Y^{*} of A^{*} is free and Y is its minimal generating system.

As regards to z-codes, the following problem rises:
Problem: Let $Y \subseteq A^{*}$ be a code. By the theorem 2 we have that Y^{*} is a free submonoid of A^{*} and $G\left(Y^{*}\right)=Y$. Suppose that Y^{*} is also a z-submonoid of A^{*}. By the proposition $4, Z G\left(Y^{*}\right)=Y-T_{Y}$. A question obviously rises: such a $Z G\left(Y^{*}\right)$ is always a z-code?

The answer is negative. In fact, it suffices to consider the following example.
Example 8: Let $Y=\{a a, a a b, a b, a b b, b b\} . Y$ is a code then Y^{*} is free. It is possible to verify that $Y^{*}=Y^{\dagger}$ and therefore Y^{*} is a z-submonoid of A^{*}. Moreover $Y=Z G\left(Y^{*}\right)$ since $T_{Y}=\varnothing$. But Y isn't a z-code (for instance, $w=a a b b$ is a word which has two distinct z-factorizations over Y).

Nevertheless, the following theorem holds:
Theorem 3: Let N be a z-submonoid of A^{*}. Let $Y=G(N)$ and $X=Z G(N)$. If X is a z-code then Y is a code.

Proof: Trivially $Y^{*}=N=X^{\dagger}$.
In order to prove that Y is a code, it suffices to prove that $u, v w, u v, x \in N$ imply $v \in N$.

Since $Y^{*}=N=X^{\uparrow}$, there exist f_{1}, f_{2}, f_{3} and $f_{4} z$-factorizations over X of u, $v w, u v, w$ respectively.

Let us suppose

$$
\begin{aligned}
& f_{1}:(1, u) \rightarrow\left(u_{1}, u_{1}^{\prime}\right) \rightarrow \ldots \rightarrow\left(u_{n}, u_{n}^{\prime}\right) \rightarrow\left(u_{n+1}, u_{n+1}^{\prime}\right)=(u, 1) \\
& f_{2}:(1, v w) \rightarrow\left(z_{1}, z_{1}^{\prime}\right) \rightarrow \ldots \rightarrow\left(z_{r}, z_{r}^{\prime}\right) \rightarrow\left(z_{r+1}, z_{r+1}^{\prime}\right)=(v w, 1) \\
& f_{3}:(1, u v) \rightarrow\left(t_{1}, t_{1}^{\prime}\right) \rightarrow \ldots \rightarrow\left(t_{s}, t_{s}^{\prime}\right) \rightarrow\left(t_{s+1}, t_{s+1}^{\prime}\right)=(u v, 1) \\
& f_{4}:(1, w) \rightarrow\left(w_{1}, w_{1}^{\prime}\right) \rightarrow \ldots \rightarrow\left(w_{m}, w_{m}^{\prime}\right) \rightarrow\left(w_{m+1}, w_{m+1}^{\prime}\right)=(w, 1)
\end{aligned}
$$

and let us consider the word $u v w \in N$.
If we opportunely combine the z-factorization f_{1} with f_{2}, and f_{3} with f_{4}, we can obtain two z-factorizations over X, f_{1}^{\prime} and f_{2}^{\prime}, of the word $u v w$

$$
\begin{aligned}
& f_{1}^{\prime}:(1, u v w) \rightarrow\left(u_{1}, u_{1}^{\prime} v w\right) \rightarrow \ldots \rightarrow\left(u_{n}, u_{n}^{\prime}, v w\right) \rightarrow\left(u_{n+1}, u_{n+1}^{\prime} v w\right) \\
& \quad=(u, v w) \rightarrow\left(u z_{1}, z_{1}^{\prime}\right) \rightarrow \ldots \rightarrow\left(u z_{r}, z_{r}^{\prime}\right) \rightarrow\left(u z_{r+1}, z_{r+1}^{\prime}\right)=(u v w, 1) \\
& f_{2}^{\prime}:(1, u v w) \rightarrow\left(t_{1}, t_{1}^{\prime} w\right) \rightarrow \ldots \rightarrow\left(t_{s}, t_{s}^{\prime} w\right) \rightarrow\left(t_{s+1}, t_{s+1}^{\prime} w\right) \\
&=(u v, w) \rightarrow\left(u v w_{1}, w_{1}^{\prime}\right) \rightarrow \ldots \rightarrow\left(u v w_{m}, w_{m}^{\prime}\right) \rightarrow\left(u v w_{m+1}, w_{m+1}^{\prime}\right)=(u v w, 1) .
\end{aligned}
$$

Since X is a z-code, f_{1}^{\prime} must be equal to f_{2}^{\prime}. Then, suppose $(u, v w)=\left(t_{h}, t_{h}^{\prime} w\right)$ with $1<h<s+1$, and, therefore, $\left(u z_{1}, z_{1}^{\prime}\right)=\left(t_{h+1}, t_{h+1}^{\prime} w\right)$.

Let us consider in f_{2}^{\prime} the sequence of steps

$$
\left(t_{h}, t_{h}^{\prime} w\right) \rightarrow\left(t_{h+1}, t_{h+1}^{\prime} w\right) \rightarrow \ldots \rightarrow\left(t_{s}, t_{s}^{\prime} w\right) \rightarrow\left(t_{s+1}, t_{s+1}^{\prime} w\right)=(u v, w)
$$

We have that u is prefix of t_{i} and that t_{i} is a prefix of $u v$ for $i=h, \ldots, s+1$. Thus we can conclude that

$$
\begin{aligned}
(1, v)=\left(u^{-1} t_{h}, v\right) \rightarrow\left(u^{-1} t_{h+1}, t_{h+1}^{\prime}\right) \rightarrow \ldots \rightarrow\left(u^{-1} t_{s}\right. & \left., t_{s}^{\prime}\right) \\
& \rightarrow\left(u^{-1} t_{s+1}, t_{s+1}^{\prime}\right)=(v, 1)
\end{aligned}
$$

is a z-factorization of v over X.
Therefore, $v \in X^{\uparrow}=N$ and the theorem is proved.

4. MAXIMAL Z-CODES AND Z-COMPLETE SETS

The definitions of maximal z-code and of z-complete set are introduced in this section. An interesting result is given in the theorem 5, which establishes the relationship between maximal z-codes and z-complete z-codes. Indeed,
this theorem is analogous to the well known Schützenberger's theorem regarding the codes in.

For a more clear exposition, the theorem 5 is preceded by a lemma stating that if X is a z-code such that $G\left(X^{\dagger}\right)$ is a maximal code, then X is surely a maximal z-code.

Definition 11: Let $X \subseteq A^{*}$ be a z-code. X is a maximal z-code over A if it is not properly contained in any other z-code over A. In other words X is a maximal z-code iff $X \subseteq Z$ and $Z z$-code imply $X=Z$.

Definition 12: Let $X \subseteq A^{*}$ and $w \in A^{*}$. The word w is completable in X^{\uparrow} if there exist two words $u, v \in A^{*}$ such that $u w v \in X^{\dagger}$.

The set of the words of A^{*} that are completable in X^{\dagger} is denoted by $F\left(X^{\dagger}\right)$.
Definition 13: Let $X \subseteq A^{*} . X$ is z-complete in A^{*} if any word $w \in A^{*}$ is completable in X^{\dagger}.

In other words, X is z-complete in A^{*} iff $F\left(X^{\dagger}\right)=A^{*}$.
Remark 8: Let X be a z-complete set and let $Y=G\left(X^{\dagger}\right)$. Then Y is complete. In fact, since X is z-complete, $F\left(X^{\uparrow}\right)=A^{*}$. But $X^{\uparrow}=Y^{*}$, therefore $A^{*}=F\left(X^{\dagger}\right)=F\left(Y^{*}\right)$ and then the thesis.

Lemma 1: Let X be a z-code and let $Y=G\left(X^{\dagger}\right)$. If Y is a maximal code, then X is a maximal z-code.

Proof: Since $Y=G\left(X^{\dagger}\right), Y^{*}=X^{\uparrow}$. Suppose that X isn't a maximal z-code. Therefore there exists $x \in A^{*}$ such that $x \notin X$ and $X^{\prime}=X \cup\{x\}$ is a z-code. Note that $x \notin Y$. Indeed, if x should belong to Y, from $Y \subseteq Y^{*}$, it follows that $x \in Y^{*}=X^{\dagger}$; in other words this means that there exists a z-factorization of x over X and such a z-factorization isn't trivial since $x \notin X$. Then x has two distinct z-factorizations over $X \cup\{x\}$ (one is the non trivial z-factorization over X and the other is trivial and it consists of a single step to the right on x) and this is in contradiction with the hypothesis that $X \cup\{x\}$ is a z-code.

Let $N=\left(X^{\prime}\right)^{\dagger}$ be the z-submonoid generated by X^{\prime}. From the remark 7, we have that $Z G(N)=X^{\prime}$. Let us show that $Y \cup\{x\} \subseteq G(N)$.

The contradiction will follow: by theorem $3, G(N)$ is a code and, therefore $Y \cup\{x\}$ is a code which is impossible.

First, $x \in G(N)$ since, from proposition 4, $X^{\prime}=Z G(N) \subseteq G(N)$. Then let $y \in Y$ and suppose $y \notin G(N)$. Then $y=u v$ where $u, v \in N-1$. The words u and v have exactly one z-factorization over X^{\prime} and in one of them a step on x must occur, otherwise $y \notin G\left(X^{\dagger}\right)=G\left(Y^{*}\right)=Y$. On the other hand, as
$y \in Y \subseteq Y^{*}=X^{\dagger}, y$ has another z-factorization over X^{\prime} but without steps on x. This is impossible since X^{\prime} is a z-code. It follows that $Y \subseteq G(N)$ and the lemma has been proved.

Let $Y \in \operatorname{Rec}\left(A^{*}\right)$ and suppose that Y is a code. The following theorem is well know in the theory of codes (see [2]):

Theorem 4: Y is a complete code iff Y is a maximal code.
We can prove a theorem analogous to the previous one, holding for the family of the recognizable z-codes:

Theorem 5: Let $X \subseteq A^{*}$ be a recognizable z-code. X is z-complete iff X is a maximal z-code.

In order to prove the theorem we give a lemma.
Lemma 2: Let $X \subseteq A^{*}$. Suppose that X isn't a z-code and that $w \in A^{*}$ has two distinct z-factorizations over X. Then, there exists a suffix of w which has two distinct z-factorizations over X, f_{1} and f_{2}, such that the first step of f_{1} is different from the first step of f_{2}.

Proof: Consider f_{1} and f_{2} and suppose that the first steps of the two z-factorizations of w are both steps on $x \in X$. We can suppose that there exists, in f_{1} or f_{2}, a step (u, v) such that u is a proper prefix of x.

Let $L_{1}=\left\{u_{i} \in A^{+}\right.$, such that the pair $\left(u_{i}, v_{i}\right)$ appears in $\left.f_{1}\right\}$ and $L_{2}=\left\{u_{i}^{\prime} \in A^{+}\right.$, such that the pair ($u_{i}^{\prime}, v_{i}^{\prime}$) appears in $\left.f_{2}\right\}$. Then, let u_{h} be the shortest element of L_{1} that is prefix of x and let u_{k}^{\prime} be the shortest element of L_{2} that is prefix of x. Suppose $\left|u_{k}^{\prime}\right| \leqq\left|u_{h}\right|$, then v_{k}^{\prime} is a suffix of w which has two z-factorizations over X with distint first steps (see fig. 2).

Figure 2

In figure 2 , the two distinct z-factorizations of v_{k}^{\prime} over X are denoted one by the dotted line and the other one by continuous line.

Proof of the theorem 5. - First we prove that if X is z-complete, then X is a maximal z-code.

Let us consicler X^{1} and let $Y=G\left(X^{1}\right)$. From remark 8 it follows that Y is complete and from theorem 3 we know that Y is a code. Moreover, since $X^{\dagger} \in \operatorname{Rec}\left(A^{3+}\right)$, aiso $Z^{+t} \in \operatorname{Rec}\left(A^{*}\right)$. From previous remarks on \bar{F}. and from theorem 4 it follows that Z is a maximal code Therefore by lemma $1, K$ is a maximal z-code.

We now show the converse: if X as a maximal z-code; then X is 7 -complete.
If $\operatorname{Card}(A)=1$ this s hividity true. Suppose $\operatorname{Card}(A)>1$ and suppose that \mathbb{Z} isn't Z-complete. Thus there exists $u \in A^{*}$ such that $\ddagger \ddagger\left(X^{\dagger}\right)$ Ler a be the finst letter of the word u and $\mid c t b \in A-a$. Let as consider $x=a b^{1 a \mid}$ and
 with the hypothesis) and y is "unbordered"; this means that any proper prefix of y isn't a suftix of y itself. Moreover, y isn't either prefix, or suffix, or factor of any element of X [otherwise $\left.y \in F\left(X^{\top}\right)\right]$.

The set $X \cup\{y\}$ is not z-code since X is maximal z-code
Then there exists $w \in A^{*}$ having two distinct z-factorizations, f_{1} and f_{2}, over $X \cup\{y\}$. By the lemma 2, we can choose w such that the finst steps of the two z efestorizanions are different.

It is useful to remark that

- both the two z factorizations must include at least a step on y and this step may be to the left

$$
\left(w^{\prime} y, w^{\prime \prime}\right) \rightarrow\left(w^{\prime}, y w^{\prime \prime}\right)
$$

or to the right

$$
\left(w^{\prime}, y w^{\prime \prime}\right) \rightarrow\left(w^{\prime} y, w^{\prime \prime}\right)
$$

In fact, if any of the previous two z-factorizations of w over $K \cup\{y\}$ shouldn't incluce at least one step on y, then there should exist two distinct z-factoraztions of w over K and this leads to a contradiction since X is a z-code. Otherwise, if only one of the two z-factorizations should contain a siep on y (doesn't matter if it is to the right or to the left), it should follow $y \in F\left(X^{\uparrow}\right)$ since $w^{\prime} y w^{\prime \prime} \in X^{\prime}$; but this is in contradiction with the fact that y is not completable in X^{\dagger}.

- the occurrences of the factor y in the two distinct z-factorizations can't have "overlap", because y is unbordered. Indeed, if we consider the z factorizations of w over $X \cup\{y\}$, they contain a step on y and such a step must be to the right: otherwise y should be completable in X^{\dagger}.

From the previous considerations it follows that for any step to the right on y in one of the two z-factorizations of w [for instance, for the step $\left.\left(w^{\prime}, y w^{\prime \prime}\right) \rightarrow\left(w^{\prime} y, w^{\prime \prime}\right)\right]$ there exists, in the same way, a step to the right on y
in the other z factoxization of $w\left[\right.$ for instance $\left(v^{\prime}, y v^{\prime \prime}\right) \rightarrow\left(v^{\prime} y, v^{\prime \prime}\right)$ with $v^{\prime}=w^{\prime}$ and $v^{\prime \prime}=w^{\prime \prime}$.
In other words, the occurrences of y as a factor in f_{1} and f_{2} must be "to the right" and "in the same position".

Consider the first occurrences of the factor y in f_{1} and f_{2} : since they must be "to the right" and "in the same position", they don't correspond to the first steps of the two z-factorizations and we have that the step to the right

$$
\begin{equation*}
\left(t_{1}, y t_{2}\right) \rightarrow\left(t_{1} y, t_{2}\right) \tag{涼}
\end{equation*}
$$

with $t_{1} \in A^{+}$and $t_{2} \in A^{*}$, occurs in f_{1} and f_{2}.
Let us take into account the sequence of steps that precede the first step on y in f_{1}

$$
\left(z_{1}, z_{1}^{\prime}\right) \rightarrow\left(z_{2}, z_{2}^{\prime}\right) \rightarrow \ldots \rightarrow\left(z_{m}, z_{m}^{\prime}\right) \rightarrow\left(t_{1}, y t_{2}\right) \rightarrow\left(t_{1} y, t_{2}\right)
$$

with $z_{i}, z_{i}^{\prime} \in A^{*}$ for $i=1, \ldots, m$ and the sequence of steps that precede the first step on y in f_{2}

$$
\left(s_{1}, s_{1}^{\prime}\right) \rightarrow\left(s_{2}, s_{2}^{\prime}\right) \rightarrow \ldots \rightarrow\left(s_{r}, s_{r}^{\prime}\right) \rightarrow\left(t_{1}, y t_{2}\right) \rightarrow\left(t_{1} y, t_{2}\right)
$$

with $s_{j s} s_{j}^{\prime} \in A^{*}$ for $j=1, \ldots, r$.
Note that, since $y \notin F\left(X^{\top}\right), z_{i}$ for $i=1, \ldots, m$ and s_{j} for $j=1, \ldots, r$, are prefix of $t_{1} y$.

Let $L_{1}=\left\{z_{i} \in A^{*} / 1 \leqq i \leqq m\right\}$ and $L_{2}=\left\{s_{j} \in A^{*} / 1 \leqq j \leqq r\right\}$. Let $z_{h} \in L_{1}$ be the elemeni of maximal length in L_{1} and let $s_{k} \in L_{2}$ be the element of maximal length in L_{2}. Suppose $\left|z_{h}\right| \geqq\left|s_{k}\right|$. Then $z_{h} \in X^{\dagger}$ and it has two distinct z-factorizations over $X X$ derived by a suitable combination of steps of f_{1} and f_{2} (see fig. 3).

Figure 3
vol. $25, n^{\circ} 4,1991$

In figure 3, the two distinct z-factorizations of z_{h} over X are denoted one by the dotted line and the other one by the continuous line.

But this is in contradiction with the hypothesis that X is a z-code and the theorem is proved.

Remark 9: Note that, in the theorem 5, to show that if X is a maximal z-code then X is complete, the assumption that X is recognizable isn't necessary, but this assumption is essential to show the converse.

Remark 10: Let $X \subseteq A^{*}$ be a z-code and let $Y=G\left(X^{\dagger}\right)$. We have just seen (lemma 1) that if Y is a maximal code then X is a maximal z-code. The converse follows from the theorem 5. Indeed, if X is a maximal z-code then X is z-complete and therefore, from the remark $8, Y$ is a complete code. From the theorem 4, it follows that Y is a maximal code.

5. SOME PROPERTEES OF THE MEASURE OF A Z-CODE

Let A be a finite alphabet with cardinality $|A|$ and let $X \subseteq A^{*}$ be a code. It is well known that the inequality of Kraft-Mcmillan holds:

$$
\alpha(X)=\sum_{x \in X}|A|^{-|x|} \leqq 1
$$

If X is finite with cardinality $|X|=n$, the previous series becomes a finite sum of n terms.

The value $\alpha(X)$ is called measure of the set X.
Trivially if $X \subseteq Y$ then $\alpha(X) \leqq \alpha(Y)$ [if $X \nsubseteq Y$ then $\alpha(X)<\alpha(Y)$].
In the theory of codes it is known that the inequality of Kraft-Mcmillan gives a simple method for testing whether a code is maximal and then complete; in fact, let X be a code; then $\alpha(X)=1$ if and only if X is maximal (see [2]).

Remark 11: Trivially the inequality of Kraft-Mcmillan holds also if X is a z-code. Moreover, if X is a non trivial z-code and $Y=G\left(X^{\dagger}\right)$, then Y is a code and $X \varsubsetneqq Y$; it follows that a non trivial z-code has always measure <1.

Remark 12: If X is a non trivial z code, then $\alpha(X)<1$ and this inequality holds also for X maximal z-code and therefore for $X z$-complete. It follows that, for a non trivial z-code X, it is not possible to decide whether it is z-complete or not with a simple check on the value of its measure.

Example 9: Let $X=\left\{a^{2}, a b, a b^{2}, b^{3}, b a^{3}, b a^{2} b, b a b a, b a b^{3}\right\} . X$ is a code. The inequality $\alpha(X)<1$ holds, then X is not a complete code in A^{*}, but it is completable. It suffices to add the word $w=b a^{2} b^{2}$.
X is also z-code and, since $w \in X^{\dagger}, X$ is z-complete.
It follows that X is a z-complete z-code and its measure is <1.

SOME OPEN PROBLEMS

Problem 1 (Chap. 2) In the proposition 3 it is stated that, for any z-submonoid N of $A^{*}, Z G(N) \subseteq G(N)$. It is easy to see that there exist z-submonoids N of A^{*} such that $Z G(N)$ is finite, although $G(N)$ is an infinite set.

Example: Let $N=X^{\dagger}$ with $X=\{a, a b a\}$. Then

$$
Z G(N)=X \quad \text { and } \quad G(N)=\left\{a(b a)^{*}\right\} .
$$

Characterize the z-submonoids N such that $Z G(N)$ is finite and $G(N)$ is infinite.

Problem 2 (Chap. 3) :Referring to the definition of trivial z-code, we have shown that there exist trivial z-codes which are neither prefix, nor suffix. Characterize the family of trivial z-codes.

Problem 3 (Chap. 3). - Let N be a z-submonoid of A^{*}, that is free with respect to * operation. We have remarked that $Z G(N)$ is not always a z-code (see example 8).

Characterize those z-submonoids N of A^{*} that are free with respect to * operation and such that $Z G(N)$ results a z-code.

Problem 4 (Chap. 5) : In the theory of codes it is known that any complete set X has measure $\alpha(X) \geqq 1$. This property does not hold for z-complete sets (see example 9).

In the interval $[0,1]$ find, if it exists, a lower bound for the measure of a z-complete set.

ACKNOWLEDGEMENTS

[^1]vol. $25, \mathrm{n}^{\circ} 4,1991$

REFERENCES

1. M. Anselmo, Automates et codes zigzag, R.A.I.R.O. Inform. Théor. Appl., 1991, 25, 1, pp. 49-66.
2. J. Berstel and D. Perrin, Theory of codes, Academic Press, 1985.
3. J. C. Birget, Two-way automaton computations, R.A.I.R.O. Inform. Théor. Appl., 1990, 24, 1, pp. 47-66.
4. J. P. Pécucher, Automates boustrophédons, langages reconnaissables de mots infinis et variétés de semi-groupes, Thèse d'État, L.I.T.P., mai 1986.
5. J. P. Pécuchet, Automates boustrophédons, semi-groupe de Birget et monoïde inversif libre, R.A.I.R.O. Inform. Théor. Appl., 1985, 19, 1, pp. 71-100.

[^0]: (*) Received September 1989, revised February 1990.
 $\left(^{1}\right)$ Università di Palermo, Dipartimento di Matematica ed Applicazioni, via Archirafi, 34, 90123 Palermo, Italy.

 Informatique théorique et Applications/Theoretical Informatics and Applications 0988-3754/91/04 305 18/\$3.80/© AFCET-Gauthier-Villars

[^1]: The authors wish to thank the anonymous referees for their helpful recommendations and suggestions.

