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MATRIX VERSIONS OF APERIODIC
K-RATIOWAL IDEWTITIES (*)

by Daniel KROB (*)

Abstract. — We present the K-*-algebra of K-rational expressions on a semiring K. Then we
introducé the notion of formai star of a matrix. Finally^ we show that the two aperiodic identities
(S) and (M):

(S) (a + b)*x(a*b)*.a* and (M) (ab)*xl + a.(ba)* .b

imply together their matrix versions.

Résumé. - Nous présentons la K-*-algèbre des expressions K-rationnelles sur un semi-anneau K.
Nous introduisons ensuite la notion d'étoile formelle d'une matrice. Puis, nous montrons que les
deux identités apériodiques (S) et (M) ;

(S) (a + b)*x(a*b)*.a* et (M) (ab)*& 1 + a.{ba)* .b

entraînent ensemble leurs versions matricielles.

0. INTRODUCTION

Formai language theory has grown in several directions according to the
way a language is considered. First of ail and strictly speaking, a language is
a subset of the free monoid. But, a language can also be seen as a formai
series with coefficients in the boolean semiring M. These two viewpoints have
been widely investigated in the study of rational languages.

But there is an other and much less studied viewpoint which consists in
considering the formai expression that is used to write a rational language.
We call it a rational expression associated with this language. This concept
leads immediately to difficulties since the uniqueness of the représentation of
a language is lost. Thus this situation brings us naturally to the study of

(*) Received December 1989, revised July 1990.
C) CN.R.S. (L.I.T.P.), Laboratoire d'Informatique de Rouen, Université de Rouen, B.P.
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424 D. KROB

rational identities, i. e. of the pairs of rational expressions that dénote the
same language. The most important problem in this area, initiated by
Redko [12] and Conway [3], is to construct a system of rational identities
that would permit to obtain by a rewriting process every possible rational
identity; such a system will be called complete.

Several important results are known for a long time on this problem. Let
us recall the three following positive ones. First a theorem of Salomaa [15]
shows that there exists a complete system composed of an axiom scheme
which allows to solve formally linear Systems and of the two aperiodic
identities:

(S) (a + Z>)*^(a* £)*•#* and (M) (ab)*nl+a.(bd)* .b

Secondly two theorems of Redko [13, 12] (see also [3,10]) give respectively
complete identities Systems for commutative rational expressions (*) and for
rational expressions over a one letter alphabet. On the other hand, a négative
resuit was obtained independently by Redko [12] and Conway [3]. It shows
that every complete system of identities is necessarily infinité.

But the problem of constructing a complete system of rational identities
on an arbitrary alphabet was still open, though Conway proposed in [3] three
conjectures whose resolution would permit to obtain a complete system. We
recently solved two of these problems (cf. [8]), hence obtaining the first "well
described" complete system of rational identities. A fundamental step in our
proof obliges us to associate with every finite monoid M a rational identity
P(M) whose interprétation is:

ms M

where AM={am, meM) is an alphabet indexed by M and where cpM is the
monoid morphism from A^ into M which maps every letter ameAM on m.
Indeed it can be proved (see [8]) that the system composed of the identities
P(M) for all finite monoids and of the two aperiodic identities is complete.
We can now also explain why (M) and (S) are called aperiodic identities:
indeed, a monoid identity P(M) is a conséquence of (M) and (S) iff M is an
aperiodic monoid (see [8, 9]).

However the formai construction of the identity P (M) requires to compute
the star of a rational expression matrix. But it is not possible to define

(*) The first "good" proof of this result is from Pilling [10]
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intrinsically such a star. The miracle is that this définition can be given if
we accept to work modulo the two aperiodic identities. This explains the
fundamental place (see [7, 8, 9]) of the identities (M) and (S) in the theory
of rational identities. The present paper is completely devoted to the proof
of this result in a more gênerai framework.

Indeed we present here rational expressions with multiplicities in an arbi-
trary semiring K. This extends the usual rational expressions (appearing now
as ^-rational expressions) exactly as the non commutative series over K
generalize the-rational languages. In this framework, we prove that (M) and
(S) imply their matrix versions. This result though claimed obvious by
Conway [3] is very long and cumbrous to prove. It permits us in particular
to define modulo (Af), (S) the star of a matrix whose entries are rational
expressions. Note that it also has other important conséquences (cf [8]).

Let us finally end with the structure of this paper. First section II is
devoted to the présentation of the Z-*-algebra of A^-rational expressions in
the Kleene and the gênerai case. In section III, we present the notions of K-
rational identity and of déduction. Finally section IV is devoted to the proof
of our main result.

I. PRELIMINARIES

We shall refer to [1] and to [4] for the définitions of a semiring and of a
K-algebra. In the sequel, K will always dénote a commutative semiring. Let
us now recall some définitions from [4], [6] and [14]:

DÉFINITION 1.1: A semiring (K, + , .) is said to be countably complete (or
more simply c-complete) if and only if for each countable set /, there exists a
mapping Z, from K1 into K such that:

(i) For every finite set Iand for every famiïy (x^)islsKI
i we have:

iel

(ii) For every countable set /, for every partition (Jj)jeJ of I and for every
family (x^t e l in K1, we have:

^1 (Xi)i €Ï~^J P j j (Xi)i e Jjlj e J-
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426 D. KROB

(iii) For every countable sets / and J and for every families {xt)ieJ and
j respectively in K1 and KJ

9 we have:

x J (*i yj)(U j) e I x J

Remark: We shall equip every c-complete semiring J^with the star opération
defïned as follows:

, k*= X kn.

DÉFINITION 1.2: A semiring K is said to be a Kleene semiring if and only
if K is a *-stable subsemiring of a c-complete semiring JT. This means that:

Notes: 1. In fact these two définitions give just "good" generalizations of
the booiean semiring êS on which is based classical language theory. The
reader will refer to [6] in order to find examples of c-complete semirings.

2. Let us also recall that when K is a positive semiring {see [4, 6])5 it is
possible to embed Kin the c-complete semiring Jf = K\J { oo } obtained from
K by adding an absorbing element oo for addition and multiplication by non
zero éléments and whose summation is defined by:

I Yj^i if I is finite
tel

oo if ƒ is infinité

This technique permits us to embed natural and usual positive semirings (like
N, Q + or U+) in Kieene semirings.

DÉFINITION 1.3 [4, 7]: Let K be a semiring. Then, a K-*-algebra sé is just
a X-algebra equipped with a mapping * from s& into sé,

When an algebraic structure is defined, it is always important to look on
the corresponding morphisms. Here, if two üT-*-algebras ^ and ^ are given,
we shall say that a mapping 9 from # into 3 is a K-*-morphism if and only
if it is a morphism of X-algebras such that:

It is easy to see that the class of X-*-algebras equipped with X-*-morphisms
is a category.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Let us fmally recall that K«A* » is the algebra of non commutative
formai series over K on the alphabet A. A series SeK« A* » is denoted by:

(S\w)w where (S\w)eK.
W6A*

In particular, a series S will be called proper iff its constant term (S\l) is
equal to 0. We can defïne a star opération in K « A* » by the relation:

« = o

which makes sensé for every series S when K is a Kleene semiring and only
for the proper ones in the genera! semiring case (see [1, 7]).

n. -̂RATIONAL EXPRESSIONS

1. The K-*-algebra of ̂ -rational expressions over a Kleene semiring

In this section, K will always be a Kleene semiring. Let us now consider
an alphabet A. Let X be the union of the sets 2(0), 2(1) and Z(2) of 0-ary,
1-ary and 2-ary product symbols which are respectiveiy defïned by:

and

Then we can consider the free L-algebra ^ = F(L, A) constructed on A
(cf. [5]). Let us introducé now the smallest S-algebra congruence = of SF
that identifies every pair of éléments of !F corresponding to an axiom of the
structure of ̂ -algebra and that satisfies the relations:

(**) \fkeK, (^.A)*=fe*.A.

Then the K-*~algebra of K-rational expressions over A is defïned as the
quotient algebra: S)

K$&t(Ay = JF/=. In order to give the fundamental
property of SKMaX(A}, let us recall (cf. [7] for more details) that a
K-*~bound-algebra sé is a K~*-algebra satisfying the condition:

VkeK, (kAJ* = k*AJ,

which assures a compatibility between the star in K and the star in s$. The
class of K-*-bound-algebras equipped with X-*-morphisms forms a category
that admits êK 0LdX (^A^) as an uni versai object relatively to the set category
(see [5, 7]) as shows the following result:

vol. 25, n° 5, 1991



428 D. KROB

PROPOSITION II. 1 [7]: Let K be a Kleene semiring and let cp be a mapping
from an alphabet A into a K-*-bound-algebra s/. Then there is a unique
K-*-morphism 9 from <fx^at</l> in sé which extends cp, L e. such that the
following diagram is commutative (where i dénotes the natural injection):

Conséquences: 1. When K is a Kleene semiring, the i£-algebra K«A* »
has a natural structure of X-*-bound-algebra. Hence, according to prop. II. 1,
we can define the interprétation mapping e: it is the unique i£-*-morphism
from êK@%2X(Ay into K« A* » which satisfies the relations:

V aeA, z(a) = a (int)

2. In the same way, we can define the constant coefficient mapping c: it is
the unique ^-*-morphism from <fK^at { A ) into K such that we have:

VaeA, c(a) = 0

3. More generally, a substitution a will be any ^-*-morphism from
é>

K^eit<[Ay into <fK^at<^4>. By proposition II. 1, a can be defmed only
by its image on A.

2. The K-sdgebrsi of X-rational proper expressions

When K is a gênerai semiring, we must restrict the notion of X-rational
expression. Indeed the star of an expression whose constant coefficient is not
zero can not now have an interprétation in K« A* » . This leads us to the
construction of the ^-algebra of proper 7^-rational expressions.

Hence let us define a mapping denoted * from K into K by: fe* = l for
every keK. We can now give a formai existence to SK 0t%\ ( A ) which is
the K-* -algebra constructed by the same method than the one used in
section 1. Then we can define 0>êK 0l2X { A ): it is the smallest iT-subalgebra &
of SK MzX. < A ) containing A and satisfying the following property:

c(E) = 0 and Eeâ? => E*e0>.

This condition obliges to restrict the star in 3P£K3l2X{Ay to expressions
whose constant coefficient is zero. Then SPêj^MdXi^Ay will be called the K-
algebra of proper K-rational expressions over the alphabet A. Let us now

Informatique théorique et Applications/Theoretical Informaties and Applications
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recall (cf [7]) that a K-*-0-bound-algebra sé is a X-*-algebra sé such that:
0% = 1^. Then we can give the foliowing universal property of 0>êK MdX (A}:

PROPOSITION II.2 [7]: Let K be a semiring, Iet A be an alphabet and Iet 9
be a mapping from A into a K-*-0-bound-aIgebra sé, Then, there exists a
unique K-morphism q> from &$K ̂ a t ( A ) into sé satisfying the property:

VEe0>êK mat(A), c (E) = 0 =» 9 (£*) = [9 (£)]* (&Jt)

which extends 9, f. e. such that the following diagram commutes (where i is the
natura! injection):

Note: A ^-algebra morphism \|/ from ^ ^ K ^ a t ( ^ 4 ) into a
algebra sé which satisfies {££Jf) will be said to be a local K-*-morphism.

Conséquences: 1. Using proposition II. 2, it is easy to define the interprét-
ation mapping e: it is the unique .K-morphism from 0>êKMat(A} into
K« A* » which satisfies the relations (int) and the property:

= 0 and

2. We can equip ^<fK^at(^4> with a ^-*-0-bound-algebra structure by
extending formally the star with E* = 0 when c(£)#0. Then we say that a
^-morphism a from 0>êK at&t (A) into 0>êK âlaï < A > is a proper substitution
if and only if it is a local ^-*-morphism satisfying the condition:

VaeA,c(o(a)) = Q (0>Sf).

Thus c a and c are local 7^-*-endomorphisms of ^ < ^ ^ a t ( A ) which are
equal on A. It follows by prop. II.2 that they are equal on ^<fx^at( ,4 ) ,
L e. that:

VEeE, c(E) = Q => c(a(£)) = 0.

Thus, when the star of an expression Ee(?$K0tat {A} can be taken in the
usual sensé [Le. when c(E) = 0], a (E*) is equal to the usual star of o (E).
Hence the above star extension does not play any rôle for proper substitu-
tions.

vol. 25, n° 5, 1991



430 D. KROB

Remark: We can show that 0>êK@l2X(A > embeds in <fK^at (A > when K
is Kleene (.$££ [7]). This proves that the two théories are related when K is
Kleene.

Note: In the sequel, when we will speak of ^-rational expressions or of
substitutions, we will refer to section II. 1 or to section II. 2 according as K
is a Kleene or an arbitrary semiring.

in . ^-RATIONAL ÏDENTÏTIES

1. X-rational identities

DÉFINITION III. 1 : Let E, F be two ^-rational expressions on the
alphabet A. Then we shall say that (E, F) is a K-rational identity if and only
if we have in êK 0tdX < A > : e (£) = e (F). We shall dénote it by: Ezt F.

As proved in [7], all the identities that follow are i£-rational identities.
They were introduced by Conway [3] in the boolean semiring case:

Exemples: 1. [8, 9] Aperiodic identities:

(Af) {ab)*w\+a{bdfb and (S)

2. Cyclic identities:

3. "Star-definition" identities:

(At) a*^ l + aa* and (Ar) a*K

The family consisting of all the identities given in 1 and 2 was called
System of classical identities by Conway (see [3]).

Remark: In [3], Conway considered the ^-rational expressions as éléments
of the corresponding free S-algebra over A. His classical system was compo-
sed of the pairs of identities associated with the algebra mies, of (M), (S)
and of (P(ri))n>2. This is equivalent to the algebraic viewpoint we took here.

2. Déduction

DÉFINITION III.2: Let £f be a system of i^-rational identities on the
alphabets. Then we shall say that a séquence (Et, Ft)i=ltn of X-rational

Informatique théorique et Applications/Theoretical Informaties and Applications
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identities is a ^-déduction iff one of the following cases holds for every
k<n:

(i) (Ek,

(Ü) 3iJ<k, (Et + Ep Ft + Fj)HEk> FJ or li,j<k, (Et.Ep F^F^iE» Fh)
or 3i<k, (Ef, Ft) = (Ek9 Fk) or 3i<k, BkèK,(k.Eti k.F^(Ek9 Fk)

(iii) Ek = Fk or 3iJ<K 3U, {Ei9F^{Eki V) and (Ep F^(U, Fk) or

(iv) 3i<k, 3 a substitution, (Ek,\Fk) = (

A £-rational identity (E, F) is then said to be a £f-conséquence if and only
if there exists a ^-déduction ending with (E, F).

Notation: If E&Fi§ a conséquence of 5^, we wiil dénote it by:

&>\ -E&F or \-^— Ex F

Note: Définition III. 2 is consistent: indeed each pair of üT-rational expres-
sions that can appear in a déduction is necessarily an identity (cf. [7]).

Example [7]: When K is Kleene, we have the star-star identity:

The following proposition shows that the symmetrical version of (S) is a
(M)-(S) conséquence (see also [7]):

PROPOSITION III. 1 (Conway; [3]): For every semiring K, we have:

(M) A (S) I (a + Vf « a* (ôa*)*

Proof: — To prove this identity, it suffices to write:

- ^ - (a + 6)* » (1 + a* (6a*) 6). a* - a* (1 + (6a*)* i

(Ar)

(a + 6)* « a* (6a*)*

Since (̂ 4r) is a conséquence of (M), this ends our proof.

vol. 25, nû 5, 1991



432 D. KROB

IV. MATRIX IDENTITIES

1. Matrix identities

We can extend all définitions of the previous section to matrices. First we
may defïne the interprétation mapping £ from MnXm {SK3%%ï(Ay) (resp.
from Mn * m (&éK 0t2X < A » ) into Mn xm (K « A* » ) by:

We also use the same method to defme the constant coefficient matrix c (M)
of a matrix M. Then a matrix M will be said to be proper iff c (M) — 0.

We shall now say that a pair (M, N) of matrices in MnXm(S>
K&&t(A »

(resp. in Mn x m{&$K ffîtil <( A ))) forms a matrix identity iff we have:
8(M) = £(iV). We shall dénote it by: M&N. We can also extend the notion
of déduction: a matrix identity (M, N) will be said to be a conséquence of a
family ^ of X-rational identities iff we have:

As in the usual case, we shall dénote it by: Sf\ M&N.

The following propsition (left to the reader) shows that a matrix déduction
acts relatively to the 7^-algebra opérations as a usual déduction:

PROPOSITION IV. 1: Let £f be a system of K-rational identities and let M,
N, P, Q be matrices whose entries are K-rational expressions. When the
following relations make sense, we have:

2. The formai star of a matrix

The matrices of X-rational expressions have a natural X-algebra structure.
We are now going to see how to equip them with a star opération.

Recall [2]: Mg will dénote the free magma constructed on the one element
set {x}. Let us recall that Mg is the union of the séquence (Mgn)n€^ of sets
which are constructed inductively as foliows: we have J?g1 = {x}; then, for
every n^2, Jtgn is the sum of the sets Mgp x Jtgn_v for/?e[l, n~ 1]. Observe
that Mg is exactly the set of complete binary trees.

Informatique théorique et Applications/Theoretical Informaties and Applications
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DÉFINITION IV. 1: Let K be a Kleene (resp. a gênerai) semiring, let n^l
be an integer and let M be a matrix (resp. a proper matrix) in
•*n x n-(*K ^ a t < A » t r e s P - i n <#n x „ O ^ K # a t < ̂  » ] . Then, for every œ e ̂ g „ 5

we will dénote by M% the star o/ M relatively to OÙ that is inductively defmed
as follows:

(i) If n= 1, M* is just the usual star of the A^-rational expression Mlt x.

(ii) Tfn7>2, there exists a unique pair (p, q) in M * x M * with/? + # = H such

that © = (a, 3) with ae^#gp-and P e ^ g f l . Then we can eut M as follows:

Then M* is defined by:

(A + BD*Q* A*B(D+CA*

M* =

We recall without proof the following result. It shows that the previous
définition is consistent with the natural star in J?nXn(K((A* » ) which
comes froni its isomorphism with ^nxn(K)((A* ) ) :

PROPOSITION IV.2 [7]: Let IL be a Kleene (resp. a gênerai) semiring, let m=i
be an integer and let M be a matrix of Mn^n{ê^M2X < A ) ) (resp. a proper
matrix of Jin x „ (ëPSK 0tdX{A ))). Then, for every element co e Jign, we have:

(1) e(M*) = [£(M)]*.

Conséquence: For every (|i, v) e Jign x ̂ g n and for every square matrix
(possibly proper) M of order n, we have the following matrix identity:

which is not in gênerai an equality in Mn x n (SK M&t(A}) or in

The following result, that the reader will easily prove by induction on n, is
similar to proposition IV. 1:

PROPOSITION IV.3: Let K be a Kleene (resp. a gênerai) semiring, let 9* be a
System of K-rational identities and let M, N be two n^n matrices (resp. proper

vol. 25, n° 5, 1991



434 D. KROB

matrices) of K-rational expressions. Then,for every <àeJtgn, we have:

3. Matrix versions of aperiodic identities

We will prove in this section the main resuit of this paper: it shows that
the two aperiodic identities irnply their matrix versions. But we will first
prove the foHowing result:

PROPOSITION IV.4 [7]: Let K be a Kleene (resp. a genera!) seminng, let n^>l
be an integer and let M be a matrix {resp. a proper matrix) of
^n x « (^K ^ a t < A » [resp. of Jin x n (0>SK Maï(A ))]. Then, for every element
co of J?gn, we have:

{Ad\ M%*In + MM% and (Ar)\ M**In + MZM.

Proof: - We will only prove the first of these two identities in the Kleene
semiring case since the arguments are similar in the other cases. To show
our result, we will use an induction on the order n of M. For n = 1, the resuit
is clear. Hence let us suppose n^.2 and our result true at any order l<n.
Then let M be a matrix of ^nXn(S

f
KMat{A )) and let CU = (I/, V) be an

element of Jign with us M g veJiïg z,nàpJrq = n. Thus we can write:

M—

According to définition IV, 1, an easy computation shows that:

\

Therefore, by the induction hypothesis applied at orders p and q, by
proposition IV. 1 and by définition IV. 1, it is straightforward to conclude
that:

Hence our proposition is proved. •

Informatique théorique et Applications/Theoreticaî Informaties and Applications
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Let us now give our main resuit. Observe that the situation is here not the
same as in the previous proposition: indeed, the identitïes (M) and (S) do
not imply independently their matrix versions.

THEOREM IV.5 [7]: Let K be a Kleene (resp. a gênerai) semiring, let ny m ^ 1
be two integer s ̂  let M, N be two nx m and m x n matrices (resp. proper
matrices) of K-rational expressions and let P, Q be two n^n matrices (resp.
proper matrices) of K-rational expressions, Then the following déductions hold
fox ever y v&J?gn and \ieJégm:

(M)A(S)\

(Af)A(S)l

Proof, — Since the proof is similar in the genera! case, we will only do it
when K is Kleene. More precisely, we will show by induction on k that, for
every matrices Af, N of order (f, j) and (ƒ, ï) with /, jS k and for every square
matrices P, Q of order g k, we have:

(M)A(S)\

(M)A(S)\

This result is obvious for k = 1. Let us now suppose it being proved at
the order k—l with fc^2. According to proposition III.Ts proof and to
proposition IV. 1, it foUows obviously that the symmetrical version of (S):

(M) A (S) I (ƒ»+ 0 * «P* (fi/*)*

holds for every square matrices P, Q of order ̂  k — 1 :

Ist step: Computation of the matrix version of (M).

Let m, n^k and let M, N be two matrices respectively in
Mn%m(ê^m?X{Ay) and in . # m X M ( # K ^ a t < ^ » . Then iet v - ( a , §)sMgn

and \x — (y, S)e^gm with aeJ?gp, $eJfgq, yeJigr and heJïgs where
~n and r + s~m. Thus we can write:

and N=

vol. 25, n° 5, 1991
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Hence it follows that:

r /EA + FC EB + FD\ = f-W %\

s \GA + HC GB + HDf \<& 2EJ

Let us introducé:

5 y

According to définition IV. 1, we obtain:

M(NM)*N=

AA + B &* <%)$>* E+ (AiT* X + B)T* G (A + B %* ̂ )O* F+(AiT* 3£ + B)T*.

; Computation of the matrix version of(S).
Let P, g be two matrices of ^ fcxk(<fK^at<,4 » and let v = (w, t>) be in

with ueJïgp, veJigq and p+q = k. Then, we can write:
p q p q

P f A B\ A - P (E F\

P- l \ and Q= I y
q\C DJ q \G H/

According to définition IV. 1, we have:

/(E+ FD* Q(A + BD* Q* (EA* B + F)(D+ CA* B)*\

\(G + HD* Q(A + BD* Q* (GA* B + H)(D+ CA* B)*J

Let us introducé the following denotations:

*.C and T = D + C.A*.B

?*.®/ and â

Therefore, according to définition IV. 1, we can now write:

/(o* + A* B r* ar* 9) &* (*; nr* %+A*B r*) 5*\

)*= ( )
\(/)* c o* + r * ar* so ̂ * W c *• ir * ar+r*) ̂  */

Informatique théorique et Application s/Theoretical Informaties and Applications
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3rd step: Study of particular cases.

We shall prove here several lemmas: they show all that particular matrix
versions of (M) and (S) are still conséquences of (M) and (S). We shall first
study two particular cases of the identity (S):

LEMMA IV. 6: When C = D = 0 in the matrix P of the second step, we have:

(M) A (S) I (P + 0 * «Pv* (QP*)*.

Proof. — Indeed, it follows from our computations that we have here:

A*(B + iT*X)Q*\
)) (0)

2* GA* 9* 3* )

where we defined

AÏir*% and 9 = UT + %2£* GA*

We are now going to study each entry of (0). First let us look at J:

5 = H + G^*. {(Ip+{EA*)* EAt)B+ (EA*)* F)

Applying first propositions IV.4 and IV. 1, using then the induction hypothesis
with proposition IV. 1 and applying fïnally proposition IV.3, we obtain:

(M) | M&H+ G At (EA*)* (B + F)

(1)

But, we also have:

A* (B + iK* X) - A*. ((Ip + (EA*)* EA*) B+ (EA*)* F)

By propositions IV.4 and IV. 1 and by the induction hypothesis, we immed-
iately have:

(M) | A* (B + iT* X) « At (EA*)*

l^^- A* (B + iT* &)*(E+ A)* (B + F) (2)
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Let us now study £?• First we have:

9 = E At + (EA* B+F) (GA* fi+ H)t GA*

It follows from the induction hypothesis and from proposition IV.l that:

(M) A (S) 1 — 9 * E A* (Ip + B (H* GA* B)* H* GA*)

+ FH*(GA*BH*)*GA*

0>xEA* (BH* GA*)* + FH* (Ip + GA* (BH* GA*) BH*) GA*

- SP « E At (BH* G At)* + FH* G At (Ip + (BH* GA*) BH* GA*)

-&KEA*v (BH* GA*)t + FHt GA* (BHt GA*)

(a)

It follows from these relations that we have:

(M) A (S) I 2£* GA* 0>t = (GA* B+H)* GA* 0>t *H* (GA*U BH*)* GA*U 0>*.

According to an argument already used, we obtain by the induction hypo-
thesis and by proposition IV.l:

(M) A (S) \— 2£*v G At 0>t « H* G At (BH* G At)* &t

,(M), (S)
? G At 9* *H*G (BH* G + A)* &t (P)

According to (ex), to the induction hypothesis and to proposition IV.l, we
have:

(M) A (S) I—— 2?t G At 9* tv H* G (E+FH* G + BH* G + A)*

* G)* (3)

Let us end our study with;

At (Ip + B&* G At) &* = A* 9* + AtB &* G At 9*.

Then, according to relation (P), it follows from the induction hypothesis and
from proposition IV.1 that the following déductions hold;

(M)A(S)

\— A* 9* + A* B 2* GA* &t*A* (Ip + BHt G (BHt G + A)t) 9*
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- A* (ƒ„ + B JT* GA*) 0>* « Al (Ip + BH* GA* (BH* GA*)*) ^>*

- Au* (Ip + B %* GA*) 9* « A* (BH* GA*)* 9>%

- A* (Ip + B 2£* G Af) SP* x (BH* G + A)* 0>*

(M) (S) ~

[ —A*(Ip + B£ir*GA:)P**(E+A + (B+F)H*G); (4)

This last déduction follows from (a) and from the induction hypothesis. Then
observe that the identities (1), (2), (3) and (4) mean exactly that we have:

(Af) A (S) I (P + Ô)v* ~ v̂* (Ô̂ v*)v*

Therefore this ends the proof of our lemma. •

LEMMA IV.7: When A — B—O in the matrix P of the second step, we have:

(Ad) A (S) I — (P + Q)* « P* (QP*)*

Proof. — The proof is symmetrical to the proof of lemma IV.6. •

We shall now show two lemmas concerning (M). Let us give flrst:

LEMMA IV.8: When A^B = 0 in the matrix M of the f ir s t step, we have:

(M)A(S)\

Proof. — Let us take again the denotations of the first step. Since A = B = Q,
we have here the following identity:

where we set :

<% = (C + D2£* HQ ®* E+ (C W* FD + D) T* G

where & = HD, W = FC and:

® = FC+FD(HD)tHC and T = HD + HC(FQ* FD.
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According to the induction hypothesis and to proposition IV. 1, we obviously
have:

(M) A (5)| ®xF(DH)* C

(M)A(S)\ T

The induction hypothesis and proposition IV. 1 permit us also to write:

tG (a)

It follows now from the induction hypothesis, from propositions IV. 1 and
IV.4 that:

(Af) A (S) I (DH)* C <D* « (DH)* C [In + F((DH)* CF)* (DH)* C\

| {DH)t C *? ~ Un + {DH)Î CF{{DH)l CF)$] (DH)$ C

\-^(DH)* C®*K((DH)* CF)$ (DH)t C

| (/M*)* C O* « (Z)/T+ C*)ï - C (P)

A similar argument would prove that:

(M) A (S) I (CF)fDrî&(DH+ CF)*.D (y)

Hence relations (a), (P), (y) show with proposition IV. 1 that we have:

« {DH+ CF)l. (CE+ DG) (1)

In the same way, it follows from the two identities (P) and (y), from our
réduction work and from propositions IV.4 and IV. 1 that we have:

{M)A(S)\

+ (C iT* FD + D) r* HK Iq + {DH+ CF)*. (CF+ DH)

\^-Iq + (C + D%t HQ O* F
+ (C #"* FD + £>) T^ ̂ ^ {DH+ CF)* (2)

Then, according to relations (1) and (2), we have:

(Af) A (5) | (MAO* « /« + M (iVAO* ^

Thus this ends the proof of our lemma. •
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LEMMA IV.9: When C=D = 0 in the matrix M of the f ir s t step, we have:

(Af)A(S)|

Proof. — The proof is symmetrical to the proof of lemma IV.8. •

Ath step: Symmetrical version of(S) at rank k.

We can now obtain the symmetrical version of (S). Let us take again all
the denotations of the second step. Let us also introducé the matrices:

'f" '° and , , -

CD/

Then, according to lemma IV.7, we have:

(M) A (S) I (g + P)* =

I (g + F)* « (P0)v* (g (̂ o)v* + Pi OP0)Î)Î

Since the matrix PX(PO)* has the same structure as P l 5 lemma IV.6 can be
applied to it. Hence it follows from this lemma and from proposition IV. 1
that the following déduction holds:

(M) A (S) | (g + P)v* ~(P0)v* • (Pi (P0)*)v* • (6 (Po)v* (Pi (P0)v*)v*)v*

But we have by lemma IV.7:

(M) A (S) | (Po + PO* « (P0)v* - (Pi (P0)v*)v*

It follows now from propositions IV. 1 and IV.4 and from the two previous
identities that we have:

(M) A (S) | (g + P)* « (P, + Po)*. (g ( ^ + P0)v*)v*

I (g + P)v*«P*(ÔP*)v*

Hence we proved that we have for every matrices Q and P of order k:

(M) A (S) | — (p+ Q)v* « p ; (gpv*)v*

5*/Î «yfep: Matrix version of(M) at rank k.
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Let us use again the denotations of the first step. Then let us defirie:

M0= ' (° °\ et M,= ' (A *\
c \C D/ , \0 o/

According to the previous step, we have:

( M ) A ( 5 ) | (MN)^ = (.M0N+MlN)*^(M0N)*.(M1N.(M0N)*)t («)

But it folio ws ff Om lemma IV, 8 that we have:

(M)A(S)\-^(M0N)^In + M0(NM0)*)N (p)

Heiice, according to proposition IV. 1 and to proposition IV.4, we obtain:

(M) A (5) \~ M, N. (Mo AOv* « M, (ƒ„ + NM0 (NM0)*) N

\ M, N.(M0 N)*KM, (NMO)Ï N (y)

Since the matrix Ml (NM0)* has the sartle structure as M ls it follows from
lemma IV.9, from proposition IV. 3 and from relation (y) that we have:

(M) A (S) \— (Mi N. (Mo N)*)*^rn + Mt (NM0)* (NM, (NM0)*)* N

Thus, according to the fourth step, the foUowing déduction holds:

(M) A (S) \— (M, N. (Mo JV)*)*

x In + M1 (NMi + NM0)* N=in + M1 (NM)* N

It foliows now from relations (a) and (fi), from the fourth step and from
propositions IV.4 and IV. 1 that we have the following ïdentities:

(M) A (S) | — (MN)* &In + M1 (NM)* N

+ Mo (NM0)l [ƒ„ + NM ! {NM, + NM0)*} N

H (MiV)* ~ h + M, (NM)* N

+ Mo (NM0)* [ln + NM, (NM0)* (NM, (NM0)*)*] N

^ , (NM)ÏN+M0(NM0)*(NMi (NM0)*)*N

Hence the matrix version of (M) is proved at rank k. According to the steps
4 and 5 and to the symmetrical proöf of proposition U i l , it is iiow easily
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shown that the matrix version of (S) remains valid at order k. Thus this ends
our induction and our proof. •

COROLLARY IV. 10 [7]: Let K be a Kleene (resp. a genera!) semiring and let
M be a nxn matrix (resp. proper matrix) of K-rational expressions. Then, for
every v, \i in JÉgn the following déduction holds:

(M)A(S)\ M*KM*.

Proof. — It follows immediately from theorem IV.5„appliedjwith n = m
and N=In that the following déduction holds:

(M)A(S)\ M*^

Therefofe our corollary follows obviously from proposition IV.4 since the
identity (At) is a conséquence of (M). M

The previous resuit plays a main rôle. Indeed it asserts that the star of a
square matrix in Jtn x „ (<ƒK St at < A » or in JÉn x „ (0*êK M at < A » is indepen-
dent of the cutting chosen to compute it, when we work modulo (M) and
(S). Hence we can defme the star of a matrix of i^-rational expressions
modulo (M) and (S),

Remark: Theorem IV.5 permits also to prove that every (M), (S) déduction
gives another (M), (S) déduction when a matrix substitution is applied to it.
This is one of the basic tools in our proof of the completeness of the System
of semigroup identities (see [8]).
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