Finitary codes for biinfinite words
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 26 (1992) no. 4, pp. 363-386.
Devolder, J. 1 ; Timmerman, E. 

1 C.N.R.S.-U.R.A. 369, L.I.F.L., Université de Lille-I, U.F.R. M.P.A., bât. M2, 59655 Villeneuve-d'Ascq Cedex, France
@article{ITA_1992__26_4_363_0,
     author = {Devolder, J. and Timmerman, E.},
     title = {Finitary codes for biinfinite words},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {363--386},
     publisher = {EDP-Sciences},
     volume = {26},
     number = {4},
     year = {1992},
     mrnumber = {1173175},
     zbl = {0754.68066},
     language = {en},
     url = {http://archive.numdam.org/item/ITA_1992__26_4_363_0/}
}
TY  - JOUR
AU  - Devolder, J.
AU  - Timmerman, E.
TI  - Finitary codes for biinfinite words
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1992
SP  - 363
EP  - 386
VL  - 26
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/ITA_1992__26_4_363_0/
LA  - en
ID  - ITA_1992__26_4_363_0
ER  - 
%0 Journal Article
%A Devolder, J.
%A Timmerman, E.
%T Finitary codes for biinfinite words
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1992
%P 363-386
%V 26
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/item/ITA_1992__26_4_363_0/
%G en
%F ITA_1992__26_4_363_0
Devolder, J.; Timmerman, E. Finitary codes for biinfinite words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 26 (1992) no. 4, pp. 363-386. http://archive.numdam.org/item/ITA_1992__26_4_363_0/

1. E. Barbin-Le Rest and M. Le Rest, Sur la combinatoire des codes à deux mots, Theor. Comp. Sc., 1985, 41, pp. 61-80. | MR | Zbl

2. M. P. Beal, Codages, automates locaux et entropie, Thèse, Publications du L.I.T.P., 38, Université de Paris-VII, 1988.

3. D. Beauquier, Automates sur les mots biinfinis, Thèse d'état, Université Paris-VII, 1986.

4. J. Berstel and D. Perrin, Theory of Codes, Academic Press, Orlando, 1985. | MR | Zbl

5. F. Blanchard, Codes engendrant certains systèmes sofiques, Theoret. Comput. Sci., 1989, 68, pp. 253-265. | MR | Zbl

6. J. Devolder, Precircular Codes and Periodic Biinfinite Words, Publications du L.I.F.L., I.T. 175, 1989, Inform. and Comput. (to appear). | MR | Zbl

7. J. Devolder, M. Latteux, I. Litovsky and L. Staiger, Codes and Infinite Words, Publications du L.I.F.L., I.T. 220, 1991.

8. J. Devolder and E. Timmerman, Codes for Biinfinite Words, Publications du L.I.F.L., I.T. 194, 1990.

9. Do Long Van, Codes avec des mots infinis, R.A.I.R.O. Inform. Theor. Appl., 1982, 16, pp. 371-386. | Numdam | Zbl

10. Do Long Van, D. G. Thomas, K. G. Subramanian and R. Siromoney, Bi-Infinitary Codes, RAIRO Inform. Theor. Appl. , 1990, 24, 1, pp. 67-87. | Numdam | Zbl

11. S. Eilenberg, Automata, Languages, and Machines, Academic Press, New York, 1974.

12. J. Karhumaki, On Three-Element Codes, Theoret. Comput.Sci., 1985, 40, pp. 3-11. | Zbl

13. J. L. Lassez, Circular codes and synchronisation, Internat. J. Comput. Syst. Sci., 1976, 5, pp. 201-208. | Zbl

14. M. Leconte, K-th Power-Free Codes, Automata on infinite words, Lecture notes in Comput. Sci., 1984, 192, pp. 172-187. | Zbl

15. A. Lentin and M. P. Schutzenberger, A Combinatorial Problem in the Theory of Free Monoids, Proc. Univ. of North Carolina, 1967, pp. 128-144. | Zbl

16. I. Litovsky, Générateurs des langages rationnels de mots infinis, Thèse, Université de Lille-I, 1988.

17. A. De Luca and A. Restivo, On Some Properties of Very Pure Codes, Theoret. Comput. Sci., 1980, pp. 157-170. | MR | Zbl

18. M. Nivat and D. Perrin, Ensembles reconnaissables de mots biinfinis, Proc. 14e Symp. on Theory of Computing, 1982, pp.47-59.

19. A. Restivo, Codes and automata, Lecture notes in Comput. Sci., 1989, 386, pp. 186-198. | MR

20. L. Staiger, On Infinitary Finite Length Codes, R.A.I.R.O., Inform. Théor. Appl., 1986, 20, 4, pp. 483-494. | Numdam | MR | Zbl