Sur le produit avec compteur modulo un nombre premier
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 26 (1992) no. 6, pp. 553-564.
@article{ITA_1992__26_6_553_0,
     author = {P\'eladeau, Pierre},
     title = {Sur le produit avec compteur modulo un nombre premier},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {553--564},
     publisher = {EDP-Sciences},
     volume = {26},
     number = {6},
     year = {1992},
     mrnumber = {1195745},
     zbl = {0766.68082},
     language = {fr},
     url = {http://archive.numdam.org/item/ITA_1992__26_6_553_0/}
}
TY  - JOUR
AU  - Péladeau, Pierre
TI  - Sur le produit avec compteur modulo un nombre premier
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1992
SP  - 553
EP  - 564
VL  - 26
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/ITA_1992__26_6_553_0/
LA  - fr
ID  - ITA_1992__26_6_553_0
ER  - 
%0 Journal Article
%A Péladeau, Pierre
%T Sur le produit avec compteur modulo un nombre premier
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1992
%P 553-564
%V 26
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/item/ITA_1992__26_6_553_0/
%G fr
%F ITA_1992__26_6_553_0
Péladeau, Pierre. Sur le produit avec compteur modulo un nombre premier. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 26 (1992) no. 6, pp. 553-564. http://archive.numdam.org/item/ITA_1992__26_6_553_0/

1. J. A. Brzozowski et R. Knast, The Dot-Depth Hierarchy of Star-Free Languages is Infinite, J. Computer and System Sci., 1978, 16, p. 35-55. | MR | Zbl

2. S. Eilenberg, Automata, Languages and Machines, Academic Press, 1976, B. | Zbl

3. E. Luca, La Théorie des nombres, tome 1, 1961.

4. P. Péladeau, Classes de circuits booléens et variétés de langages, Thèse de Doctorat, Université Paris-VI, 1990.

5. J. E. Pin, Variétés de langage formels, Masson, Paris, 1984. | MR | Zbl

6. J.-E. Pin, Topologies for the Free Monoid, Rapport LITP 88.17, J. of Algebra (à paraître). | Zbl

7. M. P. Schützenberger, On Finite Monoids Having Only Trivial Subgroups, Inform. and Control, 1965, 8, p. 190-194. | MR | Zbl

8. R. Smolensky, Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity, Proc. 19th ACM STOC, 1987, p. 77-82.

9. H. Straubing, Families of Recognizable Sets Corresponding to Certain Varieties of Finite Monoids, J. Pure Appl. Algebra, 1979, 15, p. 319-327. | MR | Zbl

10. H. Straubing, A Generalization of the Schützenberger Product of Finite Monoids, Theoret. Comput. Sci., 1981, 13, p. 137-150. | MR | Zbl

11. H. Straubing, D. Thérien and W. Thomas, Regular Languages Defined with Generalized Quantifiers, Automata, Languages and Programming; Proc. 15th ICALP, Springer, Lectures Notes in Comput. Sci., 1988. | MR | Zbl

12. D. Thérien, Classification of Regular Languages by Congruences, Ph. D. Thesis, Univ. of Waterloo, 1980.

13. D. Thérien, Classification of Finite Monoids: the Language Approach, Theoret. Comput. Sci., 1981, 14, p. 195-208. | MR | Zbl

14. P. Weil, Products of Languages with Counter, Theoret. Comput. Sci., 1990, 76, p. 251-260. | MR | Zbl

15. P. Weil, Closure of Varieties of Languages Under Products with Counter, Rapport LITP, p. 89-129. | Zbl