INFORMATIQUE THÉORIQUE ET APPLICATIONS

J. HigGins D. CAMPBELL
 Prescribed ultrametrics

Informatique théorique et applications, tome 27, no 1 (1993), p. 1-5
http://www.numdam.org/item?id=ITA_1993__27_1_1_0
© AFCET, 1993, tous droits réservés.
L'accès aux archives de la revue «Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

PRESCRIBED ULTRAMETRICS (*)

by J. Higgins (${ }^{1}$) and D. Campbell (${ }^{1}$)
Communicated by G. Longo

Abstract

Let $G=(S, E)$ be a subgraph of $K_{n}=(S, F)$, the complete graph on n vertices. Let v be a function from E to R^{+}. We prove two theorems on the extensibility of v. Every function v extends to a metric on F iff G is a forest. The function v extends to an ultrametric on F if and only if for all non-trivial cycles p in G, mult $(p)>1$, where mult (p) depends on the values of v on paths.

Résumé. - Soit $G=(S, E)$ un sous-graphe de $K_{n}=(S, F)$, le graphe complet sur n sommets. Soit v une fonction de E dans R^{+}. Nous prouvons deux théorèmes sur le prolongement de v. Toute fonction v se prolonge en une métrique sur F si et seulement si G est une forêt. La fonction v se prolonge en une ultramétrique sur F si et seulement si pour tout cycle non trivial p dans G, on a mult (p) >1, où mult (p) dépend des valeurs de v sur les chemins.

INTRODUCTION

Let S be a set of points and u a non-negative real-valued function on $S \times S$. The function u is called a metric if

1. $u(x, y) \geqq 0$;
2. $u(x, y)=0$;
3. $u(x, y)=u(y, x)$;
4. $u(x, y) \leqq u(x, z)+u(z, y)$.

If for all z in S, u also satisfies
5. $u(x, y)) \leqq \max \{u(x, y), u(z, y)\}$,
then u is called an ultrametric.
Ultrametrics satisfy more than the triangle inequality; inequality (5) prevents scalene triangles; that is, for any three points x, y, z of S, it is

[^0]Informatique théorique et Applications/Theoretical Informatics and Applications 0988-3754/93/01 1 5/\$2.50 © AFCET-Gauthier-Villars
impossible that $u(x, y)<u(y, z)<u(x, z)$. To see why, note that (5) implies $u(x, z) \leqq \max \{u(x, y), u(y, z)\}=u(y, z)$, a contradiction. Thus, any three points in an ultrametric space determine either an isosceles triangle or an equilateral triangle.

Ultrametrics arise in the context of p-adic evaluations on infinite fields [5]. there is interest in creating arbitrary ultrametrics on finite sets, in particular, on K_{n}, the complete graph on n points [1 to 4]. Since many ultrametric extensions are known to be $N P$-complete [3], it is most interesting that one extension can be done in a polynomial number of steps.

Theorem 1: Let $G=(S, E)$ be a subgraph of the complete graph $K_{n}=(S, F)$ and let v be an arbitrary function from E to R^{+}. If G is a forest, then v extends to an ultrametric on F in at most $O\left(n^{2}\right)$ steps.

Proof: Extend G to a spanning tree Q for K_{n}. Extend v to the edges of $Q-G$ by assigning arbitrary positive number to each such edge. We use induction on n to extend v to an ultrametric u on all edges of K_{n} in at most $(n+1)(n-2) / 2$ additional steps.

Basis: There is nothing to prove for $n=1$ or $n=2$. The case of $n=3$ is the so called isosceles restriction of an ultrametric. Namely, we define the ultrametric u on the missing edge to be the maximum of v on the other two sides. This extension takes one additional step.

Assume the result for n and consider the case $n+1$. There exists an end x of the tree Q. Let $U=S-\{x\}$. Let T be the restriction of Q to U. By induction, in at most $(n+1)(n-2) / 2$ additional steps, we can find an ultrametric extension u to U of the restriction of v to T. As x is an end, there exists a unique y in U with (x, y) in Q. Let $w=v(x, y)$. For each z in $U-\{y\}$, set $u(x, z)=\max \{w, u(y, z)\}$. The number of steps to create this extension is at most $n+((n+1)(n+2) / 2)=(n+2)(n+1) / 2$ as claimed.

To check that our extension u is an ultrametric, we need only verify $u(a, b) \leqq \max \{u(a, c), u(b, c)\}$ for all choices of distinct a, b, c in S. There are two cases: (1) x is not in $\{a, b, c\}$. (2) x is in $\{a, b, c\}$. In case (1), the inequality holds as u is an ultrametric on U. In case (2), there are two subcases: (I) y is in $\{a, b, c\}$, (II) y is not in $\{a, b, c\}$. In case (I), the inequality holds by construction. In case (II), there are three subcases: (A) $x=a$, (B) $x=b$, (C) $x=c$. Since y is not in $\{a, b, c\}$, each of these three verifications is straightforward. This concludes the proof of theorem 1.

Theorem 2: Let $G=(S, E)$ be a subgraph of the complete graph $K_{n}=(S, F)$. Then the following are equivalent:
(a) Every function $v: E \rightarrow R^{+}$extends to a metric on F;
(b) G is a forest.

Proof: Theorem 1 proves that ($1 b$) implies (1 a). To show ($1 a$) implies ($1 b$) it suffices to prove that if G is not a forest, then there exists a function v from E to R^{+}that does not extend to a metric on F. If G is not a forest, then G contains a (simple) cycle $e_{1}, e_{2}, \ldots, e_{k}$, $k>2$. Define v on $e_{i}, 1 \leqq i<k$, to be arbitrary positive numbers. Define v on the edge e_{k} to be any number greater than the sum of $v\left(e_{i}\right)$, $1 \leqq i<k$. Since v fails to satisfy the triangle inequality on the edge e_{k}, no extension of v can be a metric on F. This concludes the proof of theorem 2.

We now extend theorem 2 to ultrametrics. We will see that whether a particular function $v: S \rightarrow R^{+}$has an ultrametric extension depends on the behaviour of v on non-trivial cycles of G. A cycle is any sequence of edge connected vertices $v_{0} \ldots v_{n}, v_{0}=v_{n}$, allowing repeated vertices and repeated edges. A cycle is trivial, by definition, if it is a cycle with only two edges.

Let p be a (not necessarily simple) path in G. Let $\max (p)$ denote the largest value of v on p. Let mult (p) denote the number of times v attains $\max (p)$ on p. Clearly, for all paths p, mult $(p) \geqq 1$.

We require two preliminary lemmas.
Lemma 3: A symmetric function $u: S \times S-\{(s, s): s$ is in $S\} \rightarrow R^{+}$is an ultrametric if and only if for each triple x, y, and z of distinct members of S, mult $(x y z x)>1$.

Proof: If u is an ultrametric, then as remarked at the start of the paper, every triangle is either isosceles or equilateral, that is, mult $(x y z x)>1$. Conversely, to show that u must be an ultrametric when mult $(x y z x)>1$ on all triangles, it suffices to observe that (5) always holds.

Lemma 4: Let $G=(S, E)$ be a subgraph of the complete graph $K_{n}=(S, F)$. Let x and y belong to S. Let v be an arbitrary function from E to R^{+}. Let Q be the set of all paths from x to y in G. Let P be the set of all paths p in Q such that mult $(p)=1$. If all non-trivial cycles p in G satisfy mult $(p)>1$, then
(1) For any p_{1} and p_{2} in $P, \max \left(p_{1}\right)=\max \left(p_{2}\right)$.
(2) For each q in Q and each p in $P, \max (q) \geqq \max (p)$.

Proof: We prove (1) by contradiction. Suppose there were elements p_{1} and p_{2} of P with $\max \left(p_{1}\right)<\max \left(p_{2}\right)$. Since $c=p_{1} p_{2}^{-1}$ is a non-trivial cycle in G, we have by hypothesis mult $(c)>1$. Thus, there are at least two places that p_{2} takes on its max, contrary to p_{2} belonging to P. This proves (1). Similar proof holds for (2).

Theorem 3: Let $G=(S, E)$ be a subgraph of the complete graph $K_{n}=(S, F)$. A function $v: E \rightarrow R^{+}$extends to an ultrametric on F if and only if
(\star) for all non-trivial cycles p in G, mult $(p)>1$.
Proof: First assume that v extends to an ultrametric on F, but that (\star) fails for some non-trivial cycle $p=x_{0} \ldots x_{n}$. Of all cycles p with mult $(p)=1$, choose one whose lengyh, n, is minimal. By lemma 3 , mult $(p)>1$ on all 3 -edged cycles. Therefore, n must be >3. Without loss of generality, let $w=\max (p)=v\left(x_{0}, x_{1}\right)$. Since mult $(p)=1, v\left(x_{1}, x_{2}\right)$ must be strictly less than w. Applying lemma 3 to $x_{0} x_{1} x_{2} x_{0}$, and knowing that $v\left(x_{0}, x_{1}\right)=w$ and $v\left(x_{1}, x_{2}\right)<w$, we conclude that $v\left(x_{0}, x_{2}\right)$ must also be w. Now form the cycle $q=x_{0} x_{2} \ldots x_{n}$ of length $n-1$. Since mult $(q)=1$ we have obtained a contradiction to the choice of n.

Conversely, suppose that (\star) holds. To prove that v extends to an ultrametric, we consider two cases: G is complete, G is not complete. If G is complete, and $(*)$ holds for all triangles of G, then by lemma $3, v$ must be an ultrametric on S. On the other hand, if G is not complete, then there are x and y in S for which (x, y) is not in E. Let J be the union of E and the edge (x, y) and let $H=(S, J)$. Proceeding by induction on the cardinality of E, it suffices to show that H satisfies ($*$).

Let Q be the set of paths p from x to y in G. Let P be the set of paths in Q such that mult $(p)=1$. By lemma 4 ,
(1) for any p_{1} and p_{2} in $P, \max \left(p_{1}\right)=\max \left(p_{2}\right)$;
(2) for all q in Q and all p in P, $\max (q) \geqq \max (p)$.

Define v on the edge (x, y) to be $\min \{\max (q): q$ in $Q\}$. We need only show that the extension v from J to R^{+}still satisfies (\star).

Let $s=x_{0} \ldots x_{n}$ be a non-trivial cycle in H. Since G satisfies (\star) there is nothing to prove unless the edge (x, y) belongs to the cycle s. Therefore, without loss of generality, we may take $y=x_{0}$ and $x=x_{1}$. Thus, $q=x_{1} \ldots x_{n}$, a path x to y, belongs to Q. By the definition of $v(x, y)$ and the choice of w, $v(x, y)=w \leqq \max (q)$. There are two possibilities: mult $(q)>1$, mult $(q)=1$. If
mult $(q)>1$, then mult $(s)>1$ and we are done. If mult $(q)=1$, then q belongs to P. By (2) and the construction, max (q) must itself be w. Since $v\left(x_{0}, x_{1}\right)$ is also w, we can conclude in this case also that mult $(s)>1$. This completes the proof of theorem 3 .

Theorem 2 and 3 differ significantly in computational requirements. Testing for a forest can be done in a polynomial number of steps; testing (\star) for all cycles may require a factorial number of steps. For example, consider the complete graph on n vertices with a few edges removed. Such a graph has more than n ! non-trivial cycles.

The authors wish to thank the referee for theorem 3 .

REFERENCES

1. M. Aschbacher, P. Baldi, E. Baum and R. Wilson, Embeddings of ultrametric Spaces in Finite Dimensional Structures, S.I.A.M. J. Algebra Disc. Math., 1987, 8, pp. 564-587.
2. V. Z. Fenderg, Finite Ultrametric Spaces, Dokl. Akad. Nauk S.S.S.R., 1972, 202, pp. 775-778.
3. M. Krv'anek, The Complexity of Ultrametric Partitions on Graphs, Inform. Process. Lett., 1988, 27, pp. 265-270.
4. N. Parga and M. Virasoro, The Ultrametric Organization of Memories in A Neural Network, J. Physique, 1986, 47, pp. 1857-1864.
5. A. C. M. Van Roui, Non Archimedean Functional Analysis, Marcel Dekker, New York, 1978.

[^0]: (*) Accepted April 21, 1992.
 AMS Classifications. Primary 54E35, 68R10; Secondary 05C05, 68Q25.
 $\left.{ }^{1}\right)$ Department of Computer Science, Brigham Young University, Provo, Utah 84602, U.S.A.

