INFORMATIQUE THÉORIQUE ET APPLICATIONS

Didier Caucal

A fast algorithm to decide on the equivalence of stateless DPDA

Informatique théorique et applications, tome 27, $\mathrm{n}^{\circ} 1$ (1993), p. 23-48
http://www.numdam.org/item?id=ITA_1993__27_1_23_0
© AFCET, 1993, tous droits réservés.
L'accès aux archives de la revue « Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A FAST ALGORITHM TO DECIDE ON THE EQUIVALENCE OF STATELESS DPDA (*)

by Didier Caucal (${ }^{1}$)

Communicated by J. E. Pin

Abstract

We give an algorithm to decide the equivalence of stateless dpda with acceptance on stack letters. This algorithm is polynomial in time and space in the valuation and the length of description of the compared automata, and exponential in the length of description, instead of the double exponential complexity of Oyamaguchi and Honda's algorithm.

Résumé. - On présente un algorithme pour décider de l'équivalence des automates à pile déterministes sans état (ou un seul état) et avec acceptation sur des lettres de pile. La complexité en temps et en espace de cet algorithme est polynomiale selon la valuation et la longueur des automates comparés, et exponentielle selon la longueur de description, au lieu de la complexité double exponentielle de l'algorithme de Oyamaguchi et Honda.

INTRODUCTION

This paper is devoted to the equivalence of stateless dpda accepting by specific letters occuring on the top of stack. The problem is to decide whether two such automata recognize the same language. Oyamaguchi and Honda [9] solve it by an algorithm having double exponential complexity in time and space. Their algorithm uses Valiant's method [11, 12], i.e. given two automata, it builds a third one simulating their product, which recognizes the empty language if and only if they are equivalent.

To solve this problem efficiently, we begin (in Section 1) by reducing it linearly to the same one for two stateless dpda, having exactly one ε-transition of the form $E \xrightarrow{\varepsilon} \varepsilon$, and whose acceptance test is the presence of E on the top of the stack.

[^0]We then give (in Section 2) an efficient algorithm to decide the equivalence of two even more restricted automata: they are deterministic, stateless, without ε-transition and their acceptance test is the empty stack; they correspond to simple grammars [7]. This algorithm (already given in [2]) uses a branching method $[7,8,6,10]$, i.e. it builds a finite tree the nodes of which are labelled by two non-terminal words, and the root by the two axioms. We show that the complexity of this algorithm is $\mathrm{O}\left(n^{3} \cdot v\right)$ where n is the size of the compared grammars, and v is the greatest valuation of the nonterminals (the valuation of a non-terminal is the shortest length of the generated words). This valuation is bounded above by an exponential function in the size of the grammars.

Finally (in Section 3) we solve the initial problem by an algorithm using the former one, and building also a finite decision tree. Its complexity is $\mathrm{O}\left(n^{8} \cdot v^{2}\right)$ where n is the size of the compared automata, and v is the greatest finite valuation of the stack letters.

1. A REDUCTION OF STATELESS DPDA EQUIVALENCE

In this section, we recall the notion of stateless dpda and the associated equivalence problem; then we show that this problem can be restricted to a subset of the stateless dpda.

If a pda has only one state, then this state can be omitted; we say it is a stateless pda. With every stateless automaton is associated a subset of stack letters, called accepting letters, so that a word is accepted by the automaton, if after reading it, the latter on top of stack is of accepting. Two stateless pda are equivalent if they accept the same language. In this section, we translate the equivalence decision for the class C of stateless dpda into the equivalence decision for the class $C_{0} \subset C$ of stateless dpda with only one ε-transition $E \xrightarrow{\varepsilon} \varepsilon$ where E is the only accepting letter. To express formally this result, we recall the following definitions.

The class C of stateless $d p d a$ on the alphabet Σ is the set of quadruples (X, Δ, A_{0}, X_{0}) where
(a) X is the stack alphabet, disjoint of Σ
(b) Δ is the transition function of $X \times(\Sigma \cup\{\varepsilon\}) \rightarrow X^{*}$ such that

$$
(A, a) \in \operatorname{Dom}(\Delta) \wedge a \in \Sigma \quad \Rightarrow \quad(A, \varepsilon) \notin \operatorname{Dom}(\Delta)
$$

(c) $A_{0} \in X$ is the bottom stack letter
(d) $X_{0} \subseteq X$ is a subset of stack letters, called accepting letters.

To every automaton $M=\left(X, \Delta, A_{0}, X_{0}\right)$ of C, we associate the context-free grammar

$$
G_{M}=\{(A, a \alpha) \mid(A, a, \alpha) \in \Delta\}
$$

of all transitions of M , with axiom A_{0}, the set X of non-terminals and the set Σ of terminals. The language $L(M)$ accepted by M is defined as follows:

$$
L(M)=\left\{u \in \Sigma^{*} \mid \exists \alpha, A_{0} \underset{G_{M}}{*} u \alpha \wedge \alpha(1) \in X_{0}\right\} .
$$

Two automata M and N of C are called equivalent if $L(M)=L(N)$. The equivalence problem in a class $D \cong C$ is the decidability of the equivalence of two automata in D. To solve this problem in C, we can restrict to the subset C_{0} of the automata ($X, \Delta, A_{0},\{E\}$) with initial stack word A_{0}, with only one accepting letter E , and one ε-transition ($E, \varepsilon, \varepsilon$).

Proposition 1.1: We can transform in an effective and linear way, every automaton in C into an equivalent automaton in C_{0}.

Proof: Let $M=\left(X, \Delta, \alpha_{0}, X_{0}\right)$ be a dpda on Σ and E a symbol not in $\Sigma \cup X$. We note $u[v / A]$ the word constructed from the word u by replacing each letter A by the word v. The construction of an automaton N in C_{0} equivalent to M is carried out in the four following steps:
(i) Let N_{1} be the set of stack letters A such that ε is accepted by the automaton (X, Δ, A, X_{0}), i.e.

$$
N_{1}=\left\{A \in X \mid \exists \alpha, A \xrightarrow[G_{M}]{*} \alpha \wedge \alpha(1) \in X_{0}\right\} .
$$

Then $X_{0} \subseteq N_{1} \subseteq \mathrm{X}_{0} \cup\{A \in X \mid(A, \varepsilon) \in \operatorname{Dom}(\Delta)\}$ and N_{1} is linearly constructible in the number \# Δ of transitions. Let

$$
\Delta_{1}=\left\{\left(A, a, \alpha[E B / B]_{B \in N_{1}} \mid(A, a, \alpha) \in \Delta\right\}\right.
$$

be the set of transitions obtained from each transition (A, a, α) of Δ, by writing in α the letter E before every letter in N_{1}. In the same way, we put down $\alpha_{1}=\alpha_{0}[E B / B]_{B \in \mathbb{N}_{1}}$. The automaton

$$
M_{1}=\left(X, \Delta_{1} \cup\{(E, \varepsilon, \varepsilon)\}, \alpha_{1},\{E\}\right)
$$

is equivalent to M.
vol. $27, \mathrm{n}^{\circ} 1,1993$
(ii) Let N_{2} be the set of stack letters A such that the automaton (X, Δ, A) empties its stack, i.e.

$$
N_{2}=\left\{A \in X \mid A \underset{G_{M}}{*} \varepsilon\right\}
$$

So $N_{2} \subseteq\{A \in X \mid(A, \varepsilon) \in \operatorname{Dom}(\Delta)\}$ is linearly constructible in the size (length of description) of Δ. Let

$$
\Delta_{2}=\left\{\left(A, a, \alpha[\varepsilon / B]_{B \in N_{2}}\right) \mid(A, a, \alpha) \in \Delta_{1} \wedge A \notin N_{2}\right\}
$$

be the set of transitions obtained from each transition (A, a, α) of Δ_{1} for A not in N_{2}, by erasing in α all letters from N_{2}. Also, we put $\alpha_{2}=\alpha_{1}[\varepsilon / B]_{B \in N_{2}}$. The automaton $M_{2}=\left(X, \Delta_{2} \cup\{(E, \varepsilon, \varepsilon)\}, \alpha_{2},\{E\}\right)$ is equivalent to M_{1}.
(iii) Let N_{3} be the set of stack letters in $X-N_{2}$ for which only sequences of ε-moves can be performed, i.e.

$$
N_{3}=\left(X-N_{2}\right)-\{A \in X \mid \exists a \in \Sigma, \exists \alpha, A \xrightarrow[G_{M}]{*} a \alpha\} .
$$

So $N_{3} \subseteq\{A \in X \mid(A, \varepsilon) \in \operatorname{Dom}(\Delta)\}-N_{2}$ is constructible from Δ_{2} in $O\left(\# \Delta_{2}\right)$. For each word α, we write $[\alpha]$ the greatest prefix of α in $\left(X \cup\{E\}-N_{3}\right)^{*}$, and we put down

$$
\Delta_{3}=\left\{(A, a,[\alpha]) \mid(A, a, \alpha) \in \Delta_{2} \wedge A \notin N_{3}\right\} \quad \text { (here a can be equal to } \varepsilon \text {) }
$$

and $\alpha_{3}=\left[\alpha_{2}\right]$. The automaton $M_{3}=\left(X, \Delta_{3} \cup\{(E, \varepsilon, \varepsilon)\}, \alpha_{3},\{E\}\right)$ is equivalent to M_{2}.
(iv) Let Δ_{4} be the set of transitions of Δ_{3} in Greibach normal form, i.e.
$\Delta_{4}=\left\{(A, a, \alpha) \mid A \in N-\left(N_{2} \cup N_{3}\right)\right.$,

$$
\left.a \in \Sigma, \alpha \in N^{*}, \exists \beta \in N^{*}, A \xrightarrow[G_{M_{3}}]{*} \beta \underset{G_{M_{3}}}{*} \text { ie } a \alpha\right\},
$$

where $\xrightarrow[G_{M_{3}}]{*}$ ie is a step of left rewriting according to the grammar $G_{M_{3}}$.
Note that Δ_{4} is constructible from Δ_{3} in $O\left(\# \Delta_{3}\right)$ but subject to a suitable representation (any right hand side α is an address sequence of memorized factors). Furthermore, the automaton $N=\left(X, \Delta_{4} \cup\{(E, \varepsilon, \varepsilon)\}, \alpha_{3},\{E\}\right) \in C_{0}$ and is equivalent to M_{3}, therefore to M.

To decide equivalence in C_{0}, we begin by solving it in the subset S of all automata ($X, \Delta, A_{0},\{E\}$) in C_{0} such that $A_{0} \neq E$ and for every transition (A, a, α) of Δ, the axiom A_{0} does not occur in α, and E cannot appear in α except in its last position, and only if $A=A_{0}$, i.e.

$$
\begin{aligned}
& (A, a, \alpha) \in \Delta \wedge i \in\{1, \ldots,|\alpha|\} \\
& \quad \Rightarrow \quad \alpha(i) \neq A_{0} \wedge\left(\alpha(i)=E \quad \Rightarrow \quad A=A_{0} \wedge i=|\alpha|\right)
\end{aligned}
$$

To every automaton $M=\left(X, \Delta, A_{0},\{E\}\right)$ in S, we associate in a bi-univoque way, the real-time stateless dpda $f(M)=\left(X, f(\Delta), A_{0}\right)$ accepting $L(M)$ by empty stack, with

$$
f(\Delta)=\left\{(A, a, \alpha) \in \Delta \mid A \neq E \wedge A \neq A_{0}\right\} \cup\left\{\left(A_{0}, a, \alpha\right) \mid\left(A_{0}, a, \alpha E\right) \in \Delta\right\}
$$

The grammars associated with these automata are the simple grammars (they are redefined in the next section). In other term, the equivalence problem in S is nothing else than the equivalence problem for simple grammars. We solve it efficiently in the next section.

2. THE EQUIVALENCE OF SIMPLE GRAMMARS

In this section, we recall the notion of a simple grammar and the associated equivalence problem. Then we solve this problem efficiently.

A simple grammar is a grammar in Greibach normal form and $L L$ (1). Korenjak and Hopcroft [7], Harrison [5] (among others), have given algorithms to decide the equivalence of simple grammars. Their complexities are at least $O\left(n^{v}\right)$ where n is the global size of the compared grammars, and v is the greatest valuation of the non-terminals. Here, we decide the equivalence of simple grammars by an algorithm (given in [2]) of complexity $O\left(n^{3} v\right)$.

We consider here a context-free grammar as a finite relation $G \subseteq X \times X^{*}$ where X is an alphabet. The set $N_{G}=\{A \mid \exists \alpha, A G \alpha\}$ of left members of G is the alphabet of non-terminals of G; they will be denoted by upper-case letters. The set $T_{G}=\left\{\alpha(i) \in X-N_{G}|\exists A, A G \alpha \wedge 1 \leqq i \leqq|\alpha|\}\right.$ of letters of $X-N_{G}$ appearing in G is the alphabet of terminals of G; they will be denoted by lower-case letters. A rewriting step according to G is denoted by $\underset{G}{\vec{a}}$ or
\rightarrow. For instance, every rule $(A, \alpha) \in G$ can be written $A \rightarrow \alpha$, which will be our notation henceforth. The language $L(G, \alpha)$ of terminal words generated
by G from α is defined by

$$
L(G, \alpha)=\left\{u \in T_{G}^{*} \mid \alpha \underset{\mathrm{G}}{\stackrel{*}{\longrightarrow}} u\right\}
$$

The valuation $v_{G}(\alpha)$ of a word α according to G is the shortest length of the words in $L(G, \alpha)$, i.e.

$$
v_{G}(\alpha)=\min (\{\infty\} \cup\{|u| \mid u \in L(G, \alpha)\})
$$

We say that G has a finite valuation if every non-terminal A has a finite valuation, i.e. $L(G, A)$ is non-empty.

The equivalence problem in a class C of context-free grammars is to decide the equality $L(G, A)=L(H, B)$ for all grammars G and H in C and all nonterminals A and B in G and H respectively. Given a context-free grammar G of size n (length of description), we can construct in $O(n)$ the set $\left\{A \in N_{G} \mid L(G, A)=\varnothing\right\}$ of non-terminals with infinite valation. Then, the equivalence problem for every class is linearly reducible to the equivalence problem for the subclass of grammars of finite valuation.

To every grammar G, we associate the equivalence $\equiv{ }_{G}$ on $\mathrm{N}_{\mathrm{G}}^{*}$ such that $\alpha \equiv{ }_{G} \beta$ if $L(G, \alpha)=L(G, \beta)$. A context-free grammar G is called simple if
(i) G is in Greibach normal form: all rules have the form

$$
A \rightarrow a \alpha \text { where } a \in T \text { and } \alpha \in N^{*}
$$

(ii) G is $L L$ (1) : $\mathrm{A} \rightarrow a \alpha \wedge A \rightarrow a \beta \Rightarrow \alpha=\beta$.

The equivalence problem for the simple grammars of finite valuation reduces to deciding the equivalence of any two non-terminal words under the equivalence \equiv_{G} where G is an arbitrary simple grammar of finite valuation. Indeed, given two simple grammars G and H of finite valuation, and two non-terminals A of G and B of H, we suppose by renaming that the set N_{G} of non-terminals of G is disjoint from N_{H}; the grammar $K=G \cup H$ is then simple, has a finite valuation, and $L(G, A)=L(H, B)$ if and only if $A \equiv{ }_{K} B$.

From now on, G is a simple grammar of finite valuation, and all assertions and notations will be relative to G unless stated otherwise. To decide if $\alpha \equiv \beta$, we define a branching algorithm, that is to say we come down to decide (recursively) if a finite number of equivalences $\gamma_{i} \equiv \delta_{i}$ are all true. The latter ones are deduced from $\alpha \equiv \beta$ by two transformations T_{A} and T_{B} defined below. The operation T_{A}, called the left parallel derivation and introduced
by Harrison [5], is a mapping of $N^{*} \times N^{*}$ into its power set, and defined by:

$$
\begin{aligned}
& T_{A}(\alpha, \beta)=\{(\varepsilon, \varepsilon)\} \quad \text { if } \quad \alpha=\beta=\varepsilon \\
& T_{A}(\alpha, \beta)=\varnothing \quad \text { if } \neg(\forall a \in \mathrm{~T},(\exists \gamma, \alpha \rightarrow a \gamma) \Leftrightarrow(\exists \delta, a \delta)) \\
& T_{A}(\alpha, \beta)=\{(\gamma, \delta) \mid \exists a \in T, \alpha \rightarrow a \gamma \wedge \beta \rightarrow a \delta\} \quad \text { otherwise. }
\end{aligned}
$$

This transformation is applied if α or β is reduced to one letter; else we apply the transformation T_{B} below. To every non-terminal A, we associate a word $\operatorname{Val}(A)$ in $L(G, A)$ of minimal length, i.e. $\operatorname{Val}(A) \in L(G, A)$ and $|\operatorname{Val}(A)|=v(A)$. The T_{B} transformation, called the cutting transformation, is a mapping of $N^{+} \times N^{+}$into the powerset of $N^{*} \times N^{*}$ and defined by

$$
\begin{aligned}
& T_{B}(A \alpha, B \beta)=\left\{(\delta, \gamma) \mid(\gamma, \delta) \in T_{B}(B \beta, A \alpha)\right\} \quad \text { if } \quad v(A)<v(B) \\
& T_{B}(A \alpha, B \beta)=\{(A, B \gamma),(\gamma \alpha, \beta)\} \\
& \text { if } \quad(v(B) \leqq v(A)) \wedge(A \xrightarrow{*} \operatorname{Val}(B) \gamma) \wedge\left(\gamma \in N^{*}\right) \\
& T_{B}(A \alpha, B \beta)=\varnothing \quad \text { otherwise. }
\end{aligned}
$$

The set of the so-obtained equivalences is organized as a tree with root (α, β), where every node labelled by (γ, δ) has its successors labelled by the equivalences obtained from one of the two transformations above. The tree is expanded recursively in preorder (it is the lexicographic order on the nodes). The base cases on (γ, δ) are the following:

1) $\gamma=\delta$: the equivalence is true
2) $T_{A}(\gamma, \delta)=\varnothing$ or $T_{B}(\gamma, \delta)=\varnothing$: the equivalence is false
3) $v(\gamma) \neq v(\delta)$: the equivalence is false.

The algorithm is formally described below. Considering that all halting cases must succeed for the equivalence to be true, we stop the execution as soon as we meet a failure. Before developping a pair, we reduce it according to a canonical (each word has a unique irreducible form) relation R computed during the building of the tree.
procedure Decide $(\alpha, \beta)\{R$ is a global variable initially empty $\}$
(a) Two words having different valuations cannot be equivalent.
if $v(\alpha) \neq v(\beta)$ then Halt(failure) endif
(b) We compute normal forms of α and β according to R, then we remove the greatest common prefix.

```
if \(\alpha \neq \beta\) then
    \(\alpha \leftarrow\) the irreducible word reduced from \(\alpha\) according to \(R\)
    \(\beta \leftarrow\) the irreducible word reduced from \(\beta\) according to \(R\)
    if \(\alpha \neq \beta\) then \((\lambda \gamma, \lambda \delta) \leftarrow(\alpha, \beta)\) with \(|\lambda|\) max.; \((\alpha, \beta) \leftarrow(\gamma, \beta)\) endif
endif
```

(c) If α or β is a non-terminal then we add (α, β) or (β, α) to R and we apply T_{A}, else we simply apply T_{B}. If the application fails then the execution stops.

```
    if \alpha\not=\beta then
    if min}(|\alpha|,|\beta|)>1 then Q \leftarrowT TB (\alpha,\beta) els
        Q\leftarrowT
        if }|\alpha|>1\mathrm{ then }(\alpha,\beta)\leftarrow(\beta,\alpha)\mathrm{ endif
        R\leftarrow{(A,\gamma\downarrow{(\alpha,\beta)})|AR\gamma}\cup{(\alpha,\beta)}
    endif
    if Q=\varnothing then Halt(failure) else
        for every ( }\gamma,\delta)\inQ\mathrm{ do Decide ( }\gamma,\delta\mathrm{ ) endfor
    endif
    endif
endprocedure
```

Figures A and B describe the execution trees in which the nodes are labelled by the calling parameters. Furthermore, for clarity, if the reduction step modifies the pair (α, β) then the reduced pair is added to the tree. The operations T_{A}, T_{B} and the reduction are represented respectively by one line, two lines and an arrow.

Let the following simple grammar: $G=\{(A, a),(A, b A B B B A),(B, a A),(B, b B B B A B)\}$. The algorithm applied to $(A B, B A)$ builds the following tree:

Therefore $A B \equiv B A$ and $R=\{(B, A A)\}$.
Figure A. - An equivalence case.

Let the following simple grammar:

$$
G=\{(A, a),(A, b A C B),(A, c B C A B),(B, a),(B, b B C A),(B, c A D B),(C, a B),(D, a C)\}
$$

The algorithm applied to (A, B) builds the following tree:

Then A is not equivalent to B and $R=\{(A, B),(D, C D)\}$.
Figure B. - A non-equivalence case.
Let us show that this algorithm decide the equivalence \equiv.
Proposition 2.1: The algorithm Decide (α, β) is well defined, always stops, and returns failure if and if α is not equivalent to β.
To prove Proposition 2.1, we need some intermediate results. We begin to establish some basic properties of \equiv in relation to transformations. First, the mapping T_{A} is valid [5] in the following way:

$$
\alpha \equiv \beta \Leftrightarrow \varnothing \neq T_{A}(\alpha, \beta) \subset \equiv
$$

To iterate the mapping T_{A}, we extend it to every subset Q of $N^{*} \times N^{*}$ as follows:

$$
\begin{aligned}
& T_{A}(Q)=\varnothing \text { if there exists }(\alpha, \beta) \in Q, T_{A}(\alpha, \beta)=\varnothing \\
& T_{A}(Q)=\left\{(\lambda, \mu) \mid \exists(\alpha, \beta) \in Q,(\lambda, \mu) \in T_{A}(\alpha, \beta)\right\} \quad \text { in the other case. }
\end{aligned}
$$

The study of the equivalence of a couple by iterating T_{A} is expressed by the lemma below.

Lemma 2.2: $\alpha \equiv \beta \quad \Leftrightarrow \quad \forall n, T_{A}^{n}(\alpha, \beta) \neq \varnothing$.
Proof: \Rightarrow : By induction and the validity of T_{A}.
\Leftarrow : If α is not equivalent to β then there exists a word u of minimal length belonging to only one the languages $L(G, \alpha)$ and $L(G, \beta)$. By symmetry of α and β, we can suppose $u \in L(G, \alpha)-L(G, \beta)$. Let v be the greatest prefix of u such that there exists $\delta \in N^{*}$ with $\beta \xrightarrow{*}_{g} v \delta$. By definition of u, there exists
$(\gamma, \delta) \in T_{A}^{|v|}(\alpha, \beta)$ with $\alpha{ }_{\rightarrow}^{*} v \gamma$. By definition of $v, T_{A}(\gamma, \delta)=\varnothing$ hence $T_{A}^{|v|+1}(\alpha, \beta)=\varnothing$.

Lemma 2.2 gives a semi-decision procedure for the non equivalence.
We say that a binary relation R on N^{*} is closed by T_{A} if $\varnothing \neq T_{A}(R) \subseteq R$.
Corollary 2.3: Every relation closed by T_{A} transformation is included in \equiv.

Proof: If $\varnothing \neq T_{A}(R) \subseteq R$ then by induction on $n, \varnothing \neq T_{A}^{n}(R) \subseteq R$ and by Lemma 2.2, $R \subseteq$.

A more general condition than the closure by T_{A} was given by Courcelle [3]. A set R of couples of non-terminal words is self-proving if the set $T_{A}(R)$ of the couples obtained by T_{A} transformation is non empty, and is included in the smallest conguence contaning R, i.e.

$$
\varnothing \neq T_{A}(R) \subseteq \stackrel{*}{\leftrightarrow} .
$$

Before extending Corollary 2.3 to self-proving relations, we establish that every element of T_{A} applied to the derivation according to R is obtained by derivation according to $R \cup T_{A}(R)$.

Lemma 2.4: Given a relation R such that $T_{A}(R) \neq \varnothing$, we have

$$
\varnothing \neq T_{A}(\underset{R}{*}) \subseteq \underset{s}{*} \quad \text { where } \quad S=R \cup T_{A}(R)
$$

Proof: For $T_{A}(R) \neq \varnothing$ and $S=R \cup T_{A}(R)$, we verify by induction on n that

$$
\varnothing \neq T_{A}(\underset{R}{\stackrel{n}{\rightarrow}}) \subseteq \stackrel{*}{\vec{s}}
$$

It follows that the self-provability of a relation R corresponds to the closure by T_{A} of the smallest congruence containing R.

Proposition 2.5: A relation R is self-proving if and only if $\underset{R}{\stackrel{*}{\leftrightarrow}}$ is closed by transformation T_{A}.

Proof: \Rightarrow : Let R be a self-proving relation, i. e. $\varnothing \neq T_{A}(R) \subseteq \underset{R}{\stackrel{*}{\leftrightarrow}}$.

As $T_{A}\left(R^{-1}\right)=\left(T_{A}(R)\right)^{-1}$ and by Lemma 2.4, we have

$$
\varnothing \neq T_{A}(\underset{R}{\stackrel{*}{\leftrightarrow}}) \cong \stackrel{*}{\leftrightarrow} \quad \text { where } \quad S=R \cup T_{A}(R) .
$$

So $\underset{s}{\stackrel{*}{\leftrightarrow}}=\underset{R}{\stackrel{*}{*}}$ therefore $\underset{R}{\stackrel{*}{\leftrightarrow}}$ is closed by T_{A}.
\Leftarrow :Immediate.
From Corollary 2.3 and Proposition 2.5 follows the forthcoming corollary.

Corollary 2.6: Every self-proving relation is included in \equiv.
As transformation T_{A}, the mapping T_{B} is valid [5], that is to say for every non empty non-terminal words α and β, we have

$$
\alpha \equiv \beta \Leftrightarrow \varnothing \neq T_{B}(\alpha, \beta) \subset \equiv .
$$

The decision algorithm, constructs a fundamental relation R, that is to say a binary relation on N^{*} verifying the following conditions:
(a) $\operatorname{Dom}(R) \subseteq N$ and $\operatorname{Im}(R) \cong(N-\operatorname{Dom}(R))^{*}$
(b) R is functional: if $A R \alpha$ and $A R \beta$ then $\alpha=\beta$.

Lemma 2.7: Given a fundamental relation R, we have

$$
\# R \leqq \# N \quad \text { and } \xrightarrow[R]{\rightarrow} \text { is canonical. }
$$

Proof: Let R be a fundamental relation. From (b) and (a), $\# R \leqq \# \operatorname{Dom}(R) \leqq \# N$. By (a), every derivation according to R from $\alpha \in N^{*}$ is of length at most $|\alpha|$, so that $\underset{R}{ }$ is noetherian (of finite termination). As $\operatorname{Dom}(R) \cong N$ and R is functional, the relation $\overrightarrow{\boldsymbol{R}}$ is confluent. Finally $\overrightarrow{\boldsymbol{R}}$ is canonical.

Now, we are able to establish Proposition 2.1.
Proof of Proposition 2.1: Let us consider the sequence $\left(\alpha_{i}, \beta_{i}, R_{i}\right)_{i \geqq 0}$ of successive calling parameters of Decide with

$$
\left(\alpha_{0}, \beta_{0}\right)=(\alpha, \beta) \quad \text { and } \quad R_{0}=\varnothing,
$$

and such that if the step (b) (of reduction) of the algorithm applied to (α_{i}, β_{i}) gives a couple (λ, μ) distinct of $\left(\alpha_{i}, \beta_{i}\right)$, then $\left(\alpha_{i+1}, \beta_{i+1}, R_{i+1}\right)=\left(\lambda, \mu, R_{i}\right)$.
(i) One verifies by induction on i that the relation R_{i} is fundamental. By Lemma 2.7 and for every i, $\# R_{i} \leqq \# N$. So, the total number of nodes whose labels have been developped by T_{A} is finite, and it follows that the sequence $\left(\alpha_{i}, \beta_{i}, R_{i}\right)_{i \geqq 0}$ is finite. Hence, the algorithm is well defined and always stops.
(ii) If $\alpha \equiv \beta$ then by validity of T_{A} and T_{B}, we show by induction on $i \geqq 0$ that $\alpha_{i} \equiv \beta_{i}$. So the algorithm does not return a failure.
(iii) If the algorithm does not return a failure, we must prove that $\alpha \equiv \beta$. Let R be the set of $\left(\alpha_{i}, \beta_{i}\right)$ which has been expended by T_{A}. By induction on $i \geqq 0$, we have $R_{i} \subseteq \stackrel{*}{\leftrightarrow}$. Let p be the last index of the sequence ($\alpha_{i}, \beta_{i}, R_{i}$). As the algorithm does not return a failure, $\alpha_{p}=\beta_{p}$, and by inverse induction on $i \leqq p$, we have $\alpha_{i} \stackrel{*}{\leftrightarrow} \beta_{i}$. In particular $\alpha \stackrel{*}{\leftrightarrow} \beta$ and $\varnothing \neq T_{A}(R) \subseteq \stackrel{*}{\leftrightarrow}$, i.e. R is self-proving. By Corollary $2.6, R \subseteq \equiv$ then $\underset{R}{\stackrel{*}{\leftrightarrow}} \subseteq \equiv$, hence $\alpha \equiv \beta$.

Let us compute the complexity of the algorithm applied to a pair of non-terminals. Let n be the size of G, let $v=\max \{v(A) \mid A \in N\}$ be the valuation of G, and $\|G\|=\max \{\mid \gamma \| \exists A, A \rightarrow \gamma\}$ the maximal length of the right hand sides of G. Let us not that the maximal valuation of the calling parameters is in $O(\|G\| \cdot v)$.

The cost of transformation T_{A} is $O(\# T(\|G\|+v))$ and the number of pairs developped by T_{A} is at most $\# N$. Hence the cost of all T_{A} transformations is $O(\# N . \# T .\|G\|+\# N . \# T . v)$. Similarly, the cost of transformation T_{B} is $O(\|G\| \cdot v)$ and the number of pairs developped by T_{B} is at most $\# N$, hence the cost of all T_{B} transformations is $O(\# N .\|G\| \cdot v)$. The cost of a reduction is $O(\|G\| \cdot v)$ and the total number of calls is $O(\# N . \# T)$. Hence the total cost of the reductions is in $O(\# N . \# T \cdot\|G\| \cdot v)$. The construction of relation R is $O\left(\# N^{2} . v\right)$. Finally, the complexity of the algorithm when applied to non-terminals, is $O(\# N . \# T .\|G\| . v)$ or $O\left(n^{3} \cdot v\right)$. Since the valuation v is $O\left(\|G\|^{\# N}\right)$, hence in $O\left(n^{n}\right)$, we get the result.

ThEOREM 2.8: The equivalence problem of simple grammars is decidable by an algorithm of complexity $O\left(n^{3} v\right)$ or $O\left(n^{n}\right)$ where n is the size of the compared grammars, and v is the greatest finite valuation of the non-terminals.

This theorem is basic for building an efficient algorithm to decide on the equivalence of stateless dpda, described in the next section.

3. THE EQUIVALENCE OF STATELESS DPDA

In this section, we solve the equivalence problem of stateless dpda, by means of a branching algorithm using the former one. The complexity of the algorithm is polynomial in the size of the automata and in the greatest finite valuation of the stack letters.

In section 1, we have reduced the equivalence problem in the class of the stateless dpda to the one in the class C_{0} of the stateless dpda, with only one letter E of acceptance, and the only ε-transition $E \xrightarrow{\varepsilon} \varepsilon$. To every automaton M in C_{0}, we associate a grammar G_{M} satisfying:
(a) $\exists E, E \rightarrow \varepsilon$
(b) $G-\{(E, \varepsilon)\}$ is a simple grammar, i.e.

$$
\begin{gathered}
G-\{(E, \varepsilon)\} \subset(N-\{E\}) \times T . N^{*} \\
(A \rightarrow a \alpha \wedge A \rightarrow a \beta \wedge a \in T) \Rightarrow(\alpha=\beta)
\end{gathered}
$$

Such a grammar G will be called a simple extended grammar. We define

$$
T(G, \alpha)=\left\{u \in T_{G}^{*} \mid \exists \beta, \alpha \underset{G}{*} u E \beta\right\}
$$

the language of the terminal words u such that $u E$ is a left factor of a word generated by G from α. Hence, the language $L(M)$ accepted by an automaton $M=\left(X, \Delta, A_{0},\{E\}\right)$ in C_{0} is equal to $T\left(G_{M}, A_{0}\right)$. The equivalence problem for C_{0}, then for C, is directly reducible to the decidability of the equivalence \sim_{G} on N^{*} for every simple extended grammar G, with $\alpha \sim_{G} \beta$ iff $T(G, \alpha)=T(G, \beta)$. We must be careful to distinguish the equivalence \sim_{G} from the equivalence \equiv_{G} of the generated languages, defined in the above section. Furthermore, the previous algorithm can be used for deciding $\alpha \equiv{ }_{G} \beta$ for every simple extended grammar G, because $\alpha \equiv_{G} \beta$ iff $\alpha[\varepsilon / E] \equiv{ }_{G_{0}} \beta[\varepsilon / E]$ where $\alpha[\varepsilon / E]$ is the result of substituting ε for E in α, and $G_{0}=\{(A, \alpha[\varepsilon / E]) \mid A G \propto \wedge A \neq E\}$ is a simple grammar.

In the sequel, G is a simple extended grammar, and E is the non-terminal of G such that $E \rightarrow \varepsilon$. Before defining a decision procedure for $\alpha \sim_{G} \beta$, we need an operation of simplification on non-terminal words. We partition N :
$N_{\infty}=\{A \in N \mid L(G, A)=\varnothing\}$ the set of non-terminals of infinite valuation,
$N_{f}=N-N_{\infty}$ the set of non-terminals of finite valuation,
and define

$$
N_{\varnothing}=\{A \in N \mid T(G, A)=\varnothing\} .
$$

We simplify every non-terminal word α in the non-terminal word $[\alpha]$ in three steps: take the greatest prefix of α belonging to N_{f}^{*}. ($N_{\infty} \cup\{\varepsilon\}$), then suppress the greatest suffix in N_{\varnothing}^{*}, and finally replace the maximal factors of $E^{2} E^{*}$ by E. Then $\alpha \sim[\alpha]$ and we denote by $\left[N^{*}\right]=\left\{[\alpha] \mid \alpha \in N^{*}\right\}$ the set of simplified non-terminal words.

To decide whether $\alpha \sim \beta$, we define a branching algorithm as in Section 2, which develops a tree, with a root labelled by (α, β), by means of three transformations T_{A}, T_{B} and T_{C}. The operation T_{A} of left parallel derivation is the mapping of $N^{*} \times N^{*}$ in the power set of $N^{*} \times N^{*}$ defined by

$$
T_{A}(\alpha, \beta)=T_{A}([\alpha],[\beta])
$$

and for every α and β in $\left[N^{*}\right]$ by

$$
\begin{aligned}
& T_{A}(\alpha, \beta)=\{(\varepsilon, \varepsilon)\} \quad \text { if } \quad \alpha=\beta=\varepsilon \\
& T_{A}(\alpha, \beta)=T_{A}(\gamma, \delta) \quad \text { if } \alpha=\mathrm{E} \gamma \quad \text { and } \beta=E \delta \\
& T_{A}(\alpha, \beta)=\varnothing \quad \text { if } \neg((\alpha(1)=E \Leftrightarrow \beta(1)=E) \\
& \\
& \wedge \forall a \in T,(\exists \gamma, \alpha \rightarrow a \gamma \wedge[\gamma] \neq \varepsilon) \Leftrightarrow(\exists \delta, \beta \rightarrow a \delta \wedge[\delta] \neq \varepsilon)) \\
& T_{A}(\alpha, \beta)=\{(\gamma, \delta) \mid \exists a \in T, \alpha \rightarrow a \gamma \wedge \beta \rightarrow a \delta\} \quad \text { otherwise. }
\end{aligned}
$$

Let us define T_{B}. To every non-terminal A in N_{f}, we associate a word $\operatorname{Val}(A)$ in $L(G, A)$ of minimal length. To every pair (A, B) of non-terminals in $N_{f}-\{E\}$, we associate the following set:

$$
\begin{aligned}
& \operatorname{Dif}(A, B)=\left\{(\gamma, \varepsilon) \mid \gamma \in N_{f}^{*} \wedge A \underset{\mathrm{G}}{\stackrel{*}{\rightarrow}} \operatorname{Val}(B) \gamma \wedge A \equiv B \gamma\right\} \\
& \cup\left\{(\varepsilon, \gamma) \mid \gamma \in N_{f}^{*} \wedge B \underset{G}{*} l e \operatorname{Val}(A) \gamma \wedge B \equiv A \gamma\right\}
\end{aligned}
$$

where $\underset{G}{ } l e$ is the leftmost rewriting step according to G, i. e.

$$
u A \beta \underset{G}{l_{l}} u \alpha \beta \quad \text { for every } u \in T_{G}^{*},(A \rightarrow \alpha) \in G \text { and } \beta \in\left(T_{G} \cup N_{G}\right)^{*} .
$$

Given a non-terminal word α, we write $\langle\alpha\rangle$ for the greatest suffix of α whose first letter is not E, and set $E_{\alpha}=E$ if the first letter of α is E, else $E_{\alpha}=\varepsilon$. Then $\alpha \sim E_{\alpha}\langle\alpha\rangle$ and for every $(\gamma, \varepsilon),(\delta, \varepsilon) \in \operatorname{Dif}(A, B)$, we have
$\langle\gamma\rangle=\langle\delta\rangle$. The cutting operation T_{B} is defined if $\operatorname{Dif}(A, B) \neq \varnothing$ by

$$
\begin{aligned}
T_{B}(A \alpha, B \beta) & =\left\{\left(1,\left(A E_{\alpha}, B E_{\beta}<\gamma E_{\alpha}^{>}\right)\right),\right. \\
& (2,(\langle\gamma \alpha\rangle,\langle\beta\rangle))\} \text { if there exists }(\gamma, \varepsilon) \in \operatorname{Dif}(A, B) \\
T_{B}(A \alpha, B \beta) & =T_{B}(B \beta, A \alpha) \text { otherwise. }
\end{aligned}
$$

The operation T_{C} is another cutting operation, complementary to T_{B}. It is defined directly in the algorithm and depends on a relation S computed during the building of the tree. We apply T_{B}, T_{C}, T_{A} in this order, except for the first pair obtained by T_{B} which is developed by T_{A}. The tree is again expanded in preorder (by lexicographic order on the nodes). The base cases of the recursion on $\gamma \sim \delta$ are the following :

1) $\gamma=\delta$: the equivalence is true
2) $T_{A}(\gamma, \delta)=\varnothing$: the equivalence is false
3) $[\gamma](1) \neq[\delta](1) \wedge([\gamma]=\varepsilon \vee[\delta]=\varepsilon \vee \gamma(1)=E \vee \delta(1)=E)$: the equivalence is false.
The algorithm is formally described below. Considering that all halting cases must succeed for the equivalence to be true, we stop the execution as soon as we meet a failing case. Before developing a pair, we reduce it according to another relation R computed during the building of the tree.
procedure Decide $(\alpha, \beta)\{R$ and S are global variables initialized to the empty set $\}$
(a) We compute an irreducible pair of (α, β) occording to R then we suppress the greatest possible left common factor.
```
if \(\alpha \neq \beta\) then
    \(\alpha \leftarrow\) an irreducible word reduced from \(\alpha\) according to \(R\)
    \(\beta \leftarrow\) an irreducible word reduced from \(\beta\) according to \(R\)
    \((\alpha, \beta) \leftarrow([\alpha],[\beta])\)
    if \(\alpha \neq \beta \wedge \alpha(1)=\beta(1)\) then
        \((\lambda \gamma, \lambda \delta) \leftarrow(\alpha, \beta)\) with \(|\lambda|\) max. such that \(\gamma(1) \neq E\) and \(\delta(1) \neq E\)
        \((\alpha, \beta) \leftarrow(\gamma, \delta)\)
    endif
endif
```

(b) We test if (α, β) is trivially non equivalent
if $\alpha(1) \neq \beta(1) \wedge\{\alpha(1), \beta(1)\} \cap\{\varepsilon, E\} \neq \varnothing$ then Halt (failure) endif
(c) Transformation of the current node.

```
if }\alpha\not=\beta\mathrm{ then
    (A\rho,B\eta)\leftarrow(\alpha,\beta) with letters A and B
    if }A,B\in\mp@subsup{N}{f}{}\mathrm{ and }\operatorname{Dif}(A,B)\not=\varnothing\mathrm{ then
```

vol. $27, \mathrm{n}^{\circ} 1,1993$
by $\left.T_{A}\right\} \begin{aligned} & \left\{\text { we develop by } T_{B} \text { : the first pair obtained is stored in } R \text { and then developped }\right. \\ & Q \leftarrow T_{B}(\alpha, \beta)\end{aligned}$
$(\alpha, \beta) \leftarrow(\gamma, \delta)$ for $(1,(\gamma, \delta)) \in Q$
$Q^{\prime} \leftarrow T_{A}(\alpha, \beta)$
if $\alpha(1)=\beta(1)$ then $\alpha, \beta) \leftarrow(\alpha(1) E, \alpha(1))$ endif
$R \leftarrow R \cup\{(\alpha, \beta)\}$
Each right hand side α in R is replaced by one of its normal forms $\alpha \downarrow R$
if $Q^{\prime}=\varnothing$ then Halt (failure) else
for every $(\gamma, \delta) \in Q^{\prime}$ do Decide (γ, δ) endfor
endif
Decide (γ, δ) with $(2,(\gamma, \delta)) \in Q$

else

if there exists $(A \gamma, B \delta) \in S \cup S^{-1} \wedge E_{\gamma}=E_{\rho} \wedge E_{\delta}=E_{\eta}$ then
\{we update S then we develop by T_{c} \}
if $|\gamma|<|\rho|$ then $\lambda \leftarrow \gamma$ else $\lambda \leftarrow \rho$ endif
if $|\delta|<|\eta|$ then $\mu \leftarrow \delta$ else $\mu \leftarrow \eta$ endif
$S \leftarrow S-\{(A \gamma, B \delta),(B \delta, A \gamma)\}) \cup\{(A \lambda, B \mu)\}$
Decide (ρ, γ)
Decide (η, δ)
else
\{the current label is stored in S then developed by $\left.T_{A}\right\}$
$S \leftarrow S \cup\{(\alpha, \beta)\}$
$Q \leftarrow T_{A}(\alpha, \beta)$
if $Q=\varnothing$ then Halt (failure) else
for every $(\gamma, \delta) \in Q$ do Decide (γ, δ) endfor
endif
endif
endif
endif
endprocedure
Figures C and D describe the execution trees of the algorithm where the nodes are labelled by the calling parameters of the procedure Decide.

Let us consider the following grammar:

$$
G=\{(A, a),(A, b A),(B, a D),(B, b),(C, a B B A),(C, b C),(D, a E D),(D, b E D),(E, \varepsilon)\} .
$$

We have $N_{f}=\{A, B, C, E\} ; N_{\infty}=\{D\} ; N_{\varnothing}=\{A\}$.
The algorithm applied to ($A A D, C D$) builds the following tree:

Then $A A D \sim C D, R=\{(C, A B B A)\}$ and $S=\{(B A D, A D)\}$.
Figure C. - An equivalence case.

Let the following simple grammar:

$$
G=\{(A, a),(A, b A E A),(B, a E),(B, b B),(C, b B C),(E, \varepsilon)\} .
$$

We have $N_{f}=\{A, B, E\} ; N_{\infty}=\{C\} ; N_{\varnothing}=\varnothing$.
The algorithm applied to (A, C) builds the following tree:

Then A is not equivalent to $C, R=\{(A E, A)\}$ and $S=\{(A, C),(A E A, B C)\}$.
Figure D. - A non-equivalence case.

Furthermore, for clarity, the first pair obtained by a transformation T_{B}, which is not a calling parameter, is added to the tree. Finally, if the reduction step changes the pair (α, β) then the reduced pair is added to the tree. Operations T_{A}, T_{B}, T_{C} and the reduction are represented respectively by one, two, three lines, and an arrow.

Let us show that this algorithm decide the equivalence \sim.
Proposition 3.1: The algorithm Decide (α, β) is well defined, always stops, and returns failure if and only if we do not have $\alpha \sim \beta$.

To prove Proposition 3.1, we will establish basic properties of \sim in relation to transformations. First, let us notice that the mapping T_{A} is valid in the following sense:

$$
\alpha \sim \beta \Leftrightarrow \varnothing \neq T_{A}(\alpha, \beta) \subset \sim
$$

To iterate mapping T_{A}, we extend it to each subset Q of $N^{*} \times N^{*}$ as follows:

$$
\begin{aligned}
& T_{A}(Q)=\varnothing \quad \text { if it exists }(\alpha, \beta) \in Q, T_{A}(\alpha, \beta)=\varnothing \\
& T_{A}(Q)=\left\{(\lambda, \mu) \mid \exists(\alpha, \beta) \in Q,(\lambda, \mu) \in T_{A}(\alpha, \beta)\right\} \quad \text { in the other case. }
\end{aligned}
$$

The study of the equivalence of a couple by iteration of T_{A} is expressed by the lemma below.

Lemma 3. 2: $\alpha \sim \beta \Leftrightarrow \forall n, T_{A}^{n}(\alpha, \beta) \neq \varnothing$.
Proof: \Rightarrow : By induction on n and validity of T_{A}.
\Leftrightarrow : If α is not equivalent to β then there exists a word u of minimal length belonging to only one of the languages $T(G, \alpha)$ and $T(G, \beta)$. By symmetry of α and β, we can suppose that $u \in T(G, \alpha)-T(G, \beta)$. Let v be the greatest prefix of u such that there exists $\delta \in N^{*}$ with $\beta \rightarrow_{g}^{*} v \delta$. If $v=u$ then by definition of $u, T_{A}^{|u|+1}(\alpha, \beta)=\varnothing$ else $|v|<|u|$ and $T_{A}^{|v|+1}(\alpha, \beta)=\varnothing$.

Lemma 3.2 gives a semi-decision procedure for the non equivalence.
We say that a binary relation R on N^{*} is closed by T_{A} if $\varnothing \neq T_{A}(R) \subseteq R$.
Corollary 3.3: Every relation closed by T_{A} transformation, is included in \sim.

Proof: If $\varnothing \neq T_{A}(R) \subseteq R$ then by induction on $n, \varnothing \neq T_{A}^{n}(R) \subseteq R$ and by Lemma 3. 2, $R \subseteq \sim$.

Compared to the relation \equiv, the difficulty in studying \sim is that \sim is not a congruence and is not simplifiable (for the concatenation). For instance, with $\mathrm{G}=\{(A, a E),(B, a E C),(C, a),(E, \varepsilon)\}$, we have $A \sim B$ but not $A A \sim B A$. Nevertheless and taking \equiv into account, Lemma 3.4 gives for \sim some closure conditions and right simplification.

Lemma 3.4: Given non-terminal words α, β, γ, the following properties hold:
(i) if $\alpha \sim \beta$ then $\gamma \alpha \sim \gamma \beta$
(ii) if $\gamma \alpha \sim \gamma \beta$ and $\gamma \in N_{f}^{*}$ then $\langle\alpha\rangle \sim\langle\beta\rangle$
(iii) if $\alpha \sim \beta$ and $\alpha \equiv \beta$ then $\alpha \gamma \sim \beta \gamma$
(iv) if $\alpha \gamma \sim \beta \gamma$ and $\alpha \equiv \beta$ and $\gamma(1) \neq E$ then $\alpha \sim \beta$.

Proof: Let us show (iii). Let $\alpha \sim \beta$ such that $\alpha \equiv \beta$, and let us consider u in $T(G, \alpha \gamma)$. We distinguish the two following cases:

Case 1: $\quad u \in T(G, \alpha)$. As $T(G, \alpha)=T(G, \beta) \subseteq T(G, \beta \gamma)$, we have $u \in T(G, \beta \gamma)$.
Case 2: $u \notin T(G, \alpha)$. So it exists $u^{\prime} \in L(G, \alpha)$ and $u^{\prime \prime} \in T(G, \gamma)$ such that $u^{\prime} u^{\prime \prime}=u$. Consequently $u^{\prime} \in L(G, \beta)$, then $u=u^{\prime} u^{\prime \prime} \in T(G, \beta \gamma)$.
So $T(G, \alpha \gamma) \subseteq T(G, \beta \gamma)$ and in a symmetric way, we have $\alpha \gamma \sim \beta \gamma$.
The other proofs follow the same path.

So we restrict the rewriting according to a binary relation R on N^{*} to the relation $\underset{R}{\Rightarrow}$ defined for every non terminal words α and β by:
$\alpha \underset{R}{\Rightarrow} \beta$ if and only if there exist $\lambda, \mu \in N^{*}$ and $(\gamma, \delta) \in R$ such that $\alpha=\lambda \gamma \mu$ and $\beta=\lambda \delta \mu$ and (if $\mu \neq \varepsilon$ then $\gamma \equiv \delta$).

We write $\underset{R}{\Leftrightarrow}$ the symmetric closure of $\underset{R}{\Rightarrow}$, and $\underset{R}{\stackrel{*}{\gtrless}}$ the reflexive and transitive closure of $\underset{R}{\Leftrightarrow}$. The equivalence $\underset{R}{\stackrel{*}{\leftrightarrow}}$ is not closed by right concatenation, and therefore is not a congruence. Nevertheless, we can retake the notion of self-proving relation defined by Courcelle [3]: a binary relation R on [N^{*}] is self-proving if $\varnothing \neq T_{A}(R) \subseteq \stackrel{*}{\stackrel{*}{R}}$.

In the same way as Lemma 2.4, Proposition 2.5, and Corollary 2.6, we have the results below.

Lemma 3.5: Given a binary relation R on $\left[N^{*}\right]$ such that $T_{A}(R) \neq \varnothing$, we have

$$
\varnothing \neq T_{A}(\underset{R}{*}) \subseteq \stackrel{*}{\Rightarrow} \quad \text { with } \quad S=R \cup T_{A}(R)
$$

Proposition 3.6: A relation R is self-proving if and only if $\underset{R}{\stackrel{*}{\leftrightarrow}}$ is closed by transformation T_{A}.

Corollary 3.7: Every self-proving relation is included in \sim.
As transformation T_{A}, the mapping T_{B} restricted to the non-terminal words, is valid.

Proposition 3.8: For all non-terminal and non empty words α and β such that $\operatorname{Dif}(\alpha(1), \beta(1)) \neq \varnothing, \alpha \sim \beta$ if and only if $T_{B}(\alpha, \beta) \subset \sim$.

Proof: Let us consider the non terminal words $A \alpha$ and $B \beta$ such that $(\gamma, \varepsilon) \in \operatorname{Dif}(A, B)$. Let us show that

$$
T_{B}(A \alpha, B \beta)=\left\{\left(A E_{\alpha}, B E_{\beta}\left\langle\gamma E_{\alpha}\right\rangle\right),(\langle\gamma \alpha\rangle,\langle\beta\rangle)\right\}
$$

is included in \sim if and only if $A \alpha \sim B \beta$.
As $\alpha \sim E_{\alpha}\langle\alpha\rangle$, we have by Lemma 3.4 (i) $\gamma \alpha \sim \gamma E_{\alpha}\langle\alpha\rangle$.

Furthermore $\left\langle\gamma E_{\alpha}\langle\alpha\rangle\right\rangle=\left\langle\gamma E_{\alpha}\right\rangle\langle\alpha\rangle$, so we get the following property (1):

$$
\begin{equation*}
\langle\gamma \alpha\rangle \sim\left\langle\gamma E_{\alpha}\right\rangle\langle\alpha\rangle . \tag{1}
\end{equation*}
$$

(i) Suppose that $A \alpha \sim B \beta$. By Lemma 3.2, we get $\langle\gamma \alpha\rangle \sim\langle\beta\rangle$. By Lemma 3.4, we have $B E_{\beta}\langle\gamma \alpha\rangle \sim B E_{\beta}\langle\beta\rangle \sim B \beta \sim A \alpha \sim A E_{\alpha}\langle\alpha\rangle$ and with (1), we get $B E_{\beta}\left\langle\gamma E_{\alpha}\right\rangle\langle\alpha\rangle \sim \mathrm{AE}_{\alpha}\langle\alpha\rangle$. As $A \equiv B \gamma$, we get by Lemma $3.4 B E_{\beta}\left\langle\gamma E_{\alpha}\right\rangle \sim \mathrm{AE}_{\alpha}$. Finally $T_{B}(A \alpha, B \beta) \subset \sim$.
(ii) Suppose that $T_{B}(A \alpha, B \beta) \subset \sim$. So with (1) and Lemma 3.4, we get

$$
A \alpha \sim A E_{\alpha}\langle\alpha\rangle \sim B E_{\beta}\left\langle\gamma E_{\alpha}\right\rangle\langle\alpha\rangle \sim \mathrm{BE}_{\beta}\langle\gamma \alpha\rangle \sim B E_{\beta}\langle\beta\rangle \sim B \beta
$$

We are left with the study of the transformation T_{C}. For this, we need the following lemma.

Lemma 3.9: Given non terminal words α and β of N_{f}^{*} such that $\neg(\alpha \equiv \beta)$,

$$
\text { if } \alpha \gamma \sim \beta \gamma \text { and } \alpha \delta \sim \beta \delta \text { and } E_{\gamma}=E_{\delta} \text { then } \gamma \sim \delta
$$

Proof: (i) Suppose that $\alpha \sim \gamma \alpha, \beta \sim \gamma \beta$ and $\langle\gamma\rangle \neq \varepsilon$, we show that $\alpha \sim \beta$. From Lemma 3.4, the relation \sim is closed by left concatenation, then $\alpha \sim \gamma^{i} \alpha$ and $\beta \sim \gamma^{i} \beta$ for every integer i. Let $u \in T(G, \alpha)$. As $T(G, \alpha)=T\left(G, \gamma^{|u|+1} \alpha\right)$ and $\langle\gamma\rangle \neq \varepsilon$, we have $u \in T\left(G, \gamma^{|u|+1}\right) \subseteq T\left(G, \gamma^{|u|+1} \beta\right)=T(G, \beta)$. By symmetry of α and β, it follows that $\alpha \sim \beta$.
(ii) Suppose that $\alpha \gamma \sim \beta \gamma, \alpha \delta \sim \beta \delta$ and $E_{\gamma}=E_{\delta}$ with $\alpha, \beta \in N_{f}^{*}$ such that $L(G, \alpha) \neq L(G, \beta)$. We show that $\gamma \sim \delta$. There exists a minimal word u belonging to only one of the languages $L(G, \alpha)$ and $L(G, \beta)$. Without loss of generality, we can suppose $u \in L(G, \alpha)-L(G, \beta)$.

Either there exists $\lambda \in N^{*}$ such that $\beta \xrightarrow{*}_{g} u \lambda$ and $\langle\lambda\rangle \neq \varepsilon$. By hypothesis and by Lemma 3.2, we get $\langle\gamma\rangle \sim\langle\lambda \gamma\rangle$ and $\langle\delta\rangle \sim\langle\lambda \delta\rangle$. From property (1) in the proof of Proposition 3.8, it follows that $\langle\gamma\rangle \sim\left\langle\lambda E_{\gamma}\right\rangle\langle\gamma\rangle$ and $\langle\delta\rangle \sim\left\langle\lambda E_{\delta}\right\rangle\langle\delta\rangle$. As $E_{\gamma}=E_{\delta}$ and by (i), $\langle\gamma\rangle \sim\langle\delta\rangle$ then $\gamma \sim \delta$.

Or $\gamma, \delta \in N_{\varnothing}^{*}$ hence $\gamma \sim \delta$.
Let us show that the equivalence \sim is closed by T_{C}.
Proposition 3.10: Given $A \alpha, B \beta, A \gamma, B \delta \in\left[N^{*}\right]$ such that $A, B \in N-\{E\}$,

$$
\operatorname{Diff}(A, B)=\varnothing, \quad E_{\alpha}=E_{\gamma} \quad \text { and } \quad E_{\beta}=E_{\delta},
$$

if $A \alpha \sim B \beta$ and $A \gamma \sim B \delta$ then $\alpha \sim \gamma$ and $\beta \sim \delta$.

Proof: (i) If $A \in N_{\infty}$ or $B \in N_{\infty}$ then by symmetry, we can suppose that $A \in N_{\infty}$. As $A \alpha, A \gamma \in\left[N^{*}\right]$, we have $\alpha=\gamma=\varepsilon$, therefore $B \beta \sim A \sim B \delta$. If $B \in N_{\infty}$ then $\beta=\delta=\varepsilon$ else by Lemma 3.4, we have $\langle\beta\rangle \sim\langle\delta\rangle$, and $E_{\beta}=E_{\delta}$, we get $\beta \sim \delta$.
(ii) If $A \in N_{f}$ and $B \in N_{f}$ then we consider the two following cases:

Case 1: there exists $\lambda \in N^{*}$ such that $A{ }_{\rightarrow}^{*} \operatorname{Val}(B) \lambda$ or $B{ }_{\rightarrow}^{*} \operatorname{Val}(A) \lambda . \mathrm{By}$ symmetry of A and B, we can suppose that $A \xrightarrow{*} \operatorname{Val}(B) \lambda$. As $\operatorname{Dif}(A, B)=\varnothing$, we have $\neg(A \equiv B \lambda)$. From Lemma 3.2, we get $\langle\lambda \alpha\rangle \sim\langle\beta\rangle$ and $\langle\lambda \gamma\rangle \sim\langle\delta\rangle$. We have the two following subcases:

Either $\lambda \notin N_{f}^{*}$ then $\langle\beta\rangle \sim\langle\delta\rangle$, hence $\beta \sim \delta$, so $A \alpha \sim A \gamma$ and by Lemma 3.4, $\alpha \sim \gamma$.
Or $\lambda \in N_{f}^{*}$ then by property (1) in the proof of Proposition 3.8, we get
and

$$
\begin{aligned}
& \left\langle A E_{\alpha}\right\rangle\langle\alpha\rangle \sim\left\langle B E_{\beta}\right\rangle\left\langle\lambda E_{\alpha}\right\rangle\langle\alpha\rangle \\
& \left\langle A E_{\gamma}\right\rangle\langle\gamma\rangle \sim\left\langle B E_{\beta}\right\rangle\left\langle\lambda E_{\gamma}\right\rangle\langle\gamma\rangle .
\end{aligned}
$$

So by Lemma 3.9, we have $\langle\alpha\rangle \sim\langle\gamma\rangle$, hence $\alpha \sim \gamma$, so $B \beta \sim B \delta$ and by Lemma $3.4, \beta \sim \delta$.

Case 2: on the contrary of Case 1, we have $\alpha, \beta, \gamma, \delta \in N_{\varnothing}^{*}$ hence $\alpha=\beta=\gamma=\delta=\varepsilon$. In particular $\alpha \sim \gamma$ and $\beta \sim \delta$.

The decision algorithm constructs a fundamental relation R, that is to say a binary relation on N^{*} verifying the following conditions:
(a) $\operatorname{Dom}(R) \subseteq N \cup N .\{E\}$ and $\operatorname{Im}(R) \subseteq(N-\{E\}) . N^{*}$
(b) R is irreducible: $\operatorname{Im}(R) \cap N^{*} \cdot \operatorname{Dom}(R) \cdot N^{*}=\varnothing$
(c) R is functional: if $\alpha R \beta$ and $\alpha R \gamma$ then $\beta=\gamma$.

Lemma 3.11: Given a fundamental relation R,

$$
\# R \leqq 2 . \# N \text { and } \underset{R}{\rightarrow} \text { is of finite termination. }
$$

Proof: Let R be a fundamental relation. From conditions (a) and (b) of the definition, every derivation according to R from a non-terminal word α is of length at most $|\alpha|$, so \vec{R} is of finite termination. Moreover by (a) and (c), \#R $=\# \operatorname{Dom}(R) \leqq 2$. \#N.

Now, we can establish Proposition 3.1.

Proof of Proposition 3.1: Let us consider the sequence $\left(\alpha_{i}, \beta_{i}, R_{i}, S_{i}\right)_{i \geqq 0}$ of successive calling parameters of the procedure Decide applied to (α, β) where $\left(\alpha_{0}, \beta_{0}\right)=(\alpha, \beta)$ and $R_{0}=S_{0}=\varnothing$, and such that if step (a) (of reduction) of the algorithm applied to (α_{i}, β_{i}) gives a couple (λ, μ) distinct to $\left(\alpha_{i}, \beta_{i}\right)$, then $\left(\alpha_{i+1}, \beta_{i+1}, R_{i+1}, S_{i+1}\right)=\left(\lambda, \mu, R_{i}, S_{i}\right)$.
(i) By induction on i, we verify that R_{i} is fundamental, and that S_{i} is a binary relation on $(N-\{E\}) \cdot N^{*}$ such that

$$
\text { if } A \lambda S_{i} B \mu \text { and } A \rho S_{i} B \eta \text { and } E_{\lambda}=E_{\rho} \text { and } E_{\mu}=E_{\eta} \text { then } \lambda=\rho \text { and } \mu=\eta .
$$

So there is only a finite number of nodes $\left(\alpha_{i}, \beta_{i}\right)$ expanded by T_{A}. So much holds for T_{B}. Let i_{0} be the greatest integer i such that ($\alpha_{i}, \beta_{\mathrm{i}}$) has been expanded by T_{A}. For every $i>i_{0}$ such that (α_{i}, β_{i}) has been expanded by T_{C}, we have one of the two following cases:

$$
\text { «S } S_{i+1} »<« S_{i} » \text { where « } R \text { » is the sum of the }|\lambda|+|\mu| \text { for }(\lambda, \mu) \in R
$$

or

$$
S_{i+1}=S_{i} \text { and for every }(\lambda, \mu) \in T_{C}\left(\alpha_{i}, \beta_{i}\right), \max (|\lambda| \cdot|\mu|)<\max \left(\left|\alpha_{i}\right|,\left|\beta_{i}\right|\right)
$$

So the total number of nodes developed by T_{C} is finite, Finally, the sequence $\left(\alpha_{i}, \beta_{i}, R_{i}, S_{i}\right)_{i \geqq 0}$ is finite. Hence, the algorithm Decide is well defined and always stops.
(ii) if $\alpha \sim \beta$ then, using Lemma 3.2 and Propositions 3.8 and 3.10, we show by induction on $i \geqq 0$ that $\alpha_{i} \sim \beta_{i}$. Then the algorithm does not return a failure.
(iii) Let us suppose that the algorithm does not return a failure and we show that $\alpha \sim \beta$. So $\alpha_{p}=\beta_{p}$ where p is the last index of the sequence $\left(\alpha_{i}, \beta_{i}, R_{i} S_{i}\right)$. We add to N_{\varnothing} a new symbol $\$$, and we consider the canonical relation

$$
\left.S=\{(E E, E)\} \cup(A B, A) \mid A \in N_{\infty} \wedge B \in N\right\} \cup\left\{(A \$, \$) \mid A \in N_{\varnothing}\right\}
$$

So, for every non terminal word $\alpha,[\alpha] \$$ is the canonical form of $\alpha \$$ according to S. Given a binary relation. T on N^{*}, we write $\left.T \$=\{\gamma \$, \delta \$) \mid \gamma T \delta\right\}$. We want to show that the relation $R=S \cup R_{p} \cup S_{p} \$$ is self-proving. By induction on $i \leqq p$, we establich the following inclusion (1):

$$
\begin{equation*}
R_{i} \cup S_{i} \$ \cup\left\{\left(\alpha_{i} \phi, \beta_{i} \$\right)\right\} \subseteq \stackrel{*}{\mathbb{*}} \tag{1}
\end{equation*}
$$

Let Q be the set of pairs expanded by T_{A} obtained as the first pair of a T_{B} transformation. Then $R_{p} \subseteq \underset{R_{p}}{\stackrel{*}{\leftrightarrow}}=\stackrel{*}{\stackrel{*}{\otimes}}$. As the algorithm does not return a failure, $T_{A}(Q) \neq \varnothing$ and from (1), $P=Q \cup T_{A}(Q) \cong \stackrel{*}{\stackrel{*}{\leftrightarrow}}$. From Lemma 3.5, $\varnothing \neq T_{A}\left(R_{p}\right) \subseteq \stackrel{*}{\stackrel{*}{\otimes}} \subseteq \stackrel{*}{\stackrel{*}{R}}$.

Let us show that $\varnothing \neq T_{A}\left(S_{p} \$\right) \subset \underset{R}{\stackrel{*}{\leftrightarrow}}$. Let $A \lambda S_{p} B \mu$. Let us consider the following set I :

$$
I=\left\{i \geqq 0 \mid \exists \eta, \rho,(A \eta, B \rho) \in\left(S_{i+1} \cup S_{i+1}^{-1}\right)-\left(S_{i} \cup S_{i}^{-1}\right)\right\}
$$

By inverse induction on $i \in I$ and for $\left(A \lambda_{i}, B \mu_{i}\right)=\left(\alpha_{i}, \beta_{i}\right)$ or $\left(A \lambda_{i}, B \mu_{i}\right)=\left(\beta_{i}, \alpha_{i}\right)$, we have the following property (2):

$$
\begin{equation*}
\lambda \$ \stackrel{*}{\stackrel{*}{\Leftrightarrow}} \lambda_{i} \$ \quad \text { and } \quad \mu \$ \stackrel{*}{\stackrel{*}{\leftrightarrow}} \mu_{i} \$ \tag{2}
\end{equation*}
$$

Let i_{0} be the smallest integer in I. So $\left(\alpha_{i_{0}}, \beta_{i_{0}}\right)$ has been expanded by T_{A}, then

$$
T_{A}(A \lambda, B \mu) \neq \varnothing
$$

Let $(\gamma \lambda, \delta \mu) \in T_{A}(A \lambda, B \mu)$. Then $\left(\gamma \lambda_{i_{0}}, \delta \mu_{i_{0}}\right) \in T_{A}\left(A \lambda_{i_{0}}, B \mu_{i_{0}}\right)$ and with (1), $\gamma \lambda_{i_{0}} \$ \stackrel{*}{\stackrel{*}{\Leftrightarrow}} \delta \mu_{i_{0}} \$$. It follows with (2) that $\gamma \lambda \$ \underset{R}{\stackrel{*}{\leftrightarrows}} \delta \mu \$$. So

$$
\varnothing \neq T_{A}(A \lambda \$, \mathrm{~B} \mu \$) \subset \stackrel{*}{\stackrel{*}{\Leftrightarrow}},
$$

hence $\varnothing \neq T_{A}\left(S_{p} \$\right) \subset \stackrel{*}{\stackrel{*}{\Leftrightarrow}}$.
Furthermore

$$
\left.T_{A}(S)=\{(\varepsilon, \varepsilon)\} \cup T_{A}\left(\{A, A) \mid A \in N_{\infty}\right\}\right)
$$

hence $\varnothing \neq T_{A}(S) \subset \stackrel{*}{\stackrel{*}{R}}$.
Finally $\varnothing \neq T_{A}(R) \subset \stackrel{*}{\stackrel{*}{\otimes}}$, i.e. R is self-proving, and from Corollary 3.7, $\stackrel{*}{\stackrel{*}{R}} \subseteq \sim$.
vol. $27, \mathrm{n}^{\circ} 1,1993$

From this inclusion and Property (1), we infer in particular $\alpha_{0} \$ \sim \beta_{0} \$$, hence $\alpha \sim \beta$.

Let us evaluare the complexity of the algorithm applied to a pair of non-terminals. Denote by n the size of G, let $v=\max \left\{v(A) \mid A \in N_{f}\right\}$ be the finite valuation of G, and $\|G\|=\max \{|\gamma| \mid \exists A, A \rightarrow \gamma\}$ the maximum length of the right hand sides of G. The total numbers of pairs developed by T_{A} is at most $2(\# N)^{2}$, and the same holds for the number of pairs developed by T_{B}. So the maximum length of the calling parameters of the algorithm is in $O(m)$ where $m=(\# N)^{2} \cdot\|G\| \cdot v$. Hence the total number of pairs developped by T_{C} is $O\left(\# N^{2} . m\right)$, and the same bound holds for the number of pairs in the tree. The cost of transformation T_{A} is $O(\# T . m)$. From the complexity of the former algorithm, the cost of transformation T_{B} is $O(m+\# T . \# N .\|G\| \cdot v)$. The cost of transformation T_{C} is $O(m)$. The construction of relation S is $O\left(\# N^{2} . m^{2}\right)$. The construction of relation R is $O\left(\# N^{2} \cdot v\right)$. The cost of a reduction is $O(m)$, hence the total cost of a reduction is $O\left(\# N^{2} \cdot m^{2}\right)$ or $O\left(n^{8} \cdot v^{2}\right)$. Finally, the complexity of the algorithm applied to non-terminals, is $O\left(n^{8} \cdot v^{2}\right)$. As the valuation v is $O\left(\|G\|^{* N}\right)$ or $O\left(n^{n}\right)$, we finally get the following theorem.

Theorem 3.12: The equivalence problem of stateless dpda is decidable by an algorithm of complexity $O\left(n^{8} \cdot v^{2}\right)$ or $O\left(n^{n}\right)$ where n is the size of the compared automata, and v is the greatest finite valuation of the stack letters.
Probably, the complexity $O\left(n^{8} \cdot v^{2}\right)$ may be improved. But contrary to the way of thinking [3], the aim of this paper was to get a polynomial complexity in the size n and the finite valuation v to decide on the equivalence problem for stateless dpda.

APPLICATION

The algorithm in Section 3 allows also to decide efficiently the equivalence of monadic recursive program schemes. Recall that a recursive program scheme S, or simply a scheme, on a graded alphabet F and an enumerable set $V=\left\{v_{1}, \ldots, v_{n}, \ldots\right\}$ of variables is a finite set of rules $f\left(v_{1}, \ldots, v_{n}\right) \rightarrow t$, where f is a member of F of arity n and t is a term on $F \cup\left\{v_{1}, \ldots, v_{n}\right\}$, satisfying the following conditions:
(i) S is functional: $f\left(v_{1}, \ldots, v_{n}\right) \rightarrow t$ and $f\left(v_{1}, \ldots, v_{n}\right) \rightarrow t^{\prime}$ imply $t=t^{\prime}$
(ii) S is in Greibach form: $f\left(v_{1}, \ldots, v_{n}\right) \rightarrow t$ imply $t=g\left(t_{1}, \ldots, t_{m}\right)$ and $g\left(v_{1}, \ldots, v_{m}\right)$ is not a left member of S.

Denote by $N(S)=\left\{f \mid \exists n \exists t, f\left(v_{1}, \ldots, v_{n}\right) \rightarrow t\right\}$ the set of defined functions of S, and $T(S)$ the subset of $F-N(S)$ of base functions used by S. The solution of a scheme in a term t on $F \cup V$ is the unfolded tree $S^{\infty}(t)$ defined recursively as follows:

$$
\begin{aligned}
& S^{\infty}(t)=t \quad \text { if } \quad t \in V \quad \text { or } \quad t \in F \text { (with arity zero) } \\
& S^{\infty}(t)=f\left(S^{\infty}\left(t_{1}\right), \ldots, S^{\infty}\left(t_{n}\right)\right) \quad \text { if } t=f\left(t_{1}, \ldots, t_{n}\right) \text { and } f \notin N(S) \\
& S^{\infty}(t)=S^{\infty}\left(t^{\prime}\left[v_{1} \leftarrow t_{1}, \ldots, v_{n} \leftarrow t_{n}\right]\right) \\
& \quad \text { if } t=f\left(t_{1}, \ldots, t_{n}\right) \quad \text { and } \quad f\left(v_{1}, \ldots, v_{n}\right) \rightarrow t^{\prime} .
\end{aligned}
$$

We say that two terms t and t^{\prime} are equivalent according to a scheme S if they have the same solution, i.e. $S^{\infty}(t)=S^{\infty}\left(t^{\prime}\right)$. A scheme S is called monadic if it uses a unique variable v, i.e. all rules are of the form $f(v) \rightarrow t$. A scheme S is reduced if the solution $S^{\infty}\left(f\left(v_{1}, \ldots, v_{n}\right)\right)$ of every defined function f, has a finite branch.

The equivalence problem for the monadic reduced schemes without constant base function (of arity zero), is linearly reducible [4] to the equivalence problem for the simple grammars, which can be decide efficiently by the algorithm of Section 2. Similarly, we will reduce linearly the decidability of the equivalence for monadic schemes to the equivalence problem for stateless dpda.

We take two terms s and t with v as unique variable, but not equal to v. They are equivalent according to a monadic scheme S if and only if A and B are equivalent in the new system $S^{\prime}=S \cup\{A(v) \rightarrow s, B(v) \rightarrow t\}$ where A and B are two new symbols. The new system $S^{\prime \prime}$ is monadic and functional. Even if it entails the rewriting of s and t according to S, we can suppose that S^{\prime} is also in Greibach form. Then it is a monadic scheme. We want to put S^{\prime} in Greibach normal form, i.e. if $f(v) \rightarrow g\left(t_{1}, \ldots, t_{m}\right)$ then the t_{i} 's are terms on $N\left(S^{\prime}\right) \cup\{v\}$, and such that $A(v)$ and $B(v)$ are equivalent according to S^{\prime} if and only if they are equivalent according to S. We replace each constant a by a filiform infinite tree $\left(a^{\prime}\right)^{\infty}$ by substituting $a^{\prime \prime}(v)$ to a in all the rules of S, and adding a rule $a^{\prime \prime}(v) \rightarrow a^{\prime}\left(a^{\prime \prime}(v)\right)$. Then we rename some subterms and add new rules to transform the scheme into a scheme $S^{\prime \prime}$ monadic and in Greibach normal form, such that $S^{\prime \prime \infty}(A(v))=S^{\prime \prime \infty}(B(v))$ if and only if $S^{\infty}(A(v))=S^{\infty}(B(v))$.

Finally, to every monadic scheme S in Greibach normal form, and to every function A defined by S, we associate the stateless dpda defined below:
(a) the input alphabet is $\{(g, i) \mid g \in T(S) \wedge 1 \leqq i \leqq \operatorname{arity}(g)\}$,
(b) the stack alphabet is $N(S) \cup\{E\}$ where E is the bottom stack letter,
(c) the transitions are all the rules of the form $f \stackrel{(g \cdot i)}{\vdash} t_{i}(1 \leqq i \leqq m)$ when

$$
f(v) \rightarrow g\left(t_{1} v, \ldots, t_{m} v\right)
$$

(d) the axiom is A
(e) the acceptance test is the presence of any letter on the top of the stack.

This automaton recognizes all partial branches of the unfolded tree $S^{\infty}(A)$. Now such a tree is characterized without ambiguity by the set of its partial branches. To compare $S^{\infty}(A)$ with $S^{\infty}(B)$, we are brought back to test the equivalence of two stateless dpda. As a result, we can decide the equivalence of monadic schemes by the help of an algorithm of polynomial complexity in the length of description and the finite valuation, where the finite valuation of a scheme S is the greatest finite valuation of the defined functions (the valuation of a defined function is the shortest length of the branches of its solution tree).

REFERENCES

1. D. Caucal, Décidabilité de l'égalité des langages algébriques infinitaires simples, L.N.C.S., Vol. 210, 1986, pp. 37-48.
2. D. Caucal, A Fast Algorithm to Decide on Simple Grammars Equivalence, L.N.C.S., Vol. 401, 1989, pp. 66-85.
3. B. Courcelle, An Axiomatic Approach to the KH Algorithms, Math. Systems Theory, Vol. 16, 1983, pp. 191-231.
4. B. Courcelle and J. Vuilemin, Completeness Result for the Equivalence of Recursive Schemes, J.C.S.S., Vol. 12, 1976, pp. 179-197.
5. M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, 1978.
6. M. Harrison, I. Havel and A. Yeduhaï, On Equivalence of Grammars Through Transformation Trees, T.C.S., Vol. 9, 1979, pp. 191-231.
7. A. Korenjak and J. Hopcroft, Simple Deterministic Languages, Seventh annual I.E.E.E. switching and automata theory conference, 1966, pp. 36-46.
8. T. Olshansky and A. Pnueli, A Direct Algorithm for Checking Equivalence of LL(k) Grammars, T.C.S., Vol. 4, 1977, pp. 321-349.
9. M. Oyamaguchi and N. Honda, The Decidability of Equivalence for Deterministic Stateless Pushdown Automata, Information and Control, Vol. 38, 1978, pp. 367 376.
10. E. Tomita, An Extended Direct Branching Algorithm for Checking Equivalence of Deterministic Pushdown Automata, T.C.S., Vol. 32, 1984, pp. 87-120.
11. L. Valiant, The Equivalence Problem for Deterministic Finite-Turn Pushdown Automata, Information and Control, Vol. 25, 1974, pp. 123-153.
12. L. Valiant and M. Paterson, Deterministic One-Counter Automata, J.C.S.S., Vol. 10, 1975, pp. 340-350.

[^0]: (*) Submitted November 1990, final version June 1992.
 ${ }^{(1)}$ I.R.I.S.A., Campus de Beaulieu, 35042 Rennes, France, E-mail: caucal@irisa.fr

