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PCP-PRIME WORDS AND PRIMALITY TYPES (*)

by Alexandru MATEESCU (*) and Arto SALOMAA (2)

Communicated by J, BERSTEL

Abstract. - We investigate "simplest", "primitive" or "prime" solutions of instances of the Post
Correspondence Problem, PCP. We take also the opposite view point by studying words that can
describe such a prime solution, for some instance of PCP.

Résumé. — Nous étudions les solutions « les plus simples », « primitives » ou « premières »
d'instances du problème de correspondance de Post (PCP). Nous adoptons également le point de
vue opposé en étudiant les mots qui peuvent décrire une telle solution première.

1. INTRODUCTION AND PREVIOUS RESULTS

Post Correspondence Problem, [3], is one of the very basic undecidable
problems. Réduction to PCP is the most common one in language theory.
Whenever wx and w2 are solutions for an instance of PCP, then so is wx w2.
It is natural to consider w1 and w2 to be "simpler" or "more primitive"
solutions than wxw2. Such considérations have also turned out to be theoreti-
cally important in various contexts, see [4].

This paper continues the systematic study of "primitive" or "prime"
solutions initiated in [5]. We fîrst review the basic définitions.
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58 A. MATEESCU, A. SALOMAA

Let g and h be nonerasing morphisms of £* into A*, where S and À are
finite alphabets. The equality set between g and h is defined by

(Observe that the empty word X is not considered to be a member of the
equality set.) The pair (g, Zz) = PCP is also refered to as an instance of the
Post Correspondence Problem. Words in E (g, h), if any are called solutions
of PCP.

For a word w over S, we now consider the sets of words obtained from w
by remowing a final subword, a subword, or a scattered subword, respectively.
By définition,

fin (w) = { v11 w = vx v2, for some v2 £ £* },

sub(w) = [v1v2\w = v1 xv2, for some vly v2, x e l * ) ,

scatsub(w)= {vx . . . vk\ w — x1v1 . . . xkvkxk+u for some xiy ^ e ï * } .

Three further sets determined by the pair (g, h) are now defined as follows:

S(g,h)={weE(g,h)\sub(w)nE(gjh)={w}},

P(g,h)={weE(g,h)\sc&tsub(w)r)E(g,h)={w}}.

Words in the three sets are called F-prime, S-prime and prime solutions for
the instance PCP = (g, h), respectively.

It is a direct conséquence of the définitions that

P(g, h)^S(gi h)^F(g, h) = E(g, h).

One or both of the first two inclusions may be strict, whereas the third
inclusion is always strict, provided E (g, h) is nonempty. If E (g, h) is
nonempty then so are the three other sets. Clearly, each of the four sets is
recursive.

The triple (p, s,f), where p, s, and/are the cardinalities of the sets P(g, h),
S (g, h), and F (g, h), respéctively, is defined to be the primality type of the
instance PCP = (g, h). Thus3 p, s, and ƒ are non-negative integers oroo.

The foliowing three results were established in [5].

THEOREM 1: If E (g, h) is a regular language, then S (g, h) is finite.

LEMMA 1: Assume that the word xyz is in F (g, h), where x, y, z are
nonempty, and that xz is in E (g, h). Then xyn z is in F(g, h), for ail n^îO.
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PCP-PRIME WORDS AND PRIMALITY TYPES 59

THEOREM 2: A triple (p, s, ƒ) is a primality type iff either p = s =f— 0, or
else (i) l^pf^sf^f (ii) p is finite, and (iii) if s <ƒ then f'=oo. An example for
each possible type can be effectively constructed.

Also the following lemma, originally due to [2] and basic in the combinato-
rics of words, will be needed in sequel.

LEMMA 2: Ifuv — vz holdsfor some words u, v9 z, where u is nonempty, then

u = xy, v = (xyf x, z = yx,

for some words x, y and integer k^O. If uv~vu holds for some nonempty
words u and v, then u and v are powers of the some word.

2. A MORE GENERAL SETUP

For many purposes it is useful to view the languages P(g, h), S (g, h) and
F (g, h) introduced above as subsets of the equality set E (g, h), obtained from
E (g, h) by certain opérations.

Consider a partial order ^on E* and a language L<=Z*. Then MIN^ (L)
is the subset of L consisting of éléments minimal with respect to rg, in
symbols,

MIN < (L) = {x 6 L | whenever y e L satisfies y g x, then y = x }.

Consider, further, the following binary relations in X*:

yFw iff y is in fin (w),

ySw iff y is in sub(w),

yPw iff y is in scatsub(w),

yT> w iff w = xyz, for some x and z.

Observe that the notations F, S and P used in the relations are in accord-
ance with the notations F(jg, h), S (g, h) and P(g, h). The relations S and D
are dual in the sensé that D is the usual subword relation whereas S indicates
what is left over when a subword is removed. The relation P is self-dual in
the same sensé and, consequently,
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6 0 A. MATEESCU, A. SALOMAA

Clearly, F, P and D are partial orders and, thus, we have also

As regards S, the situation is trickier. The relation S is reflexive and
antisymmetric but not transitive and, consequently, not a partial order. For
instance, we have acSabc and abcSabcb but not acSabcb, However, the
following theorem holds —the proof is left to the reader.

THEOREM 3: The transitive closure S+ o f S is a partial order and, moreover,
S+=P.

The inclusions between the different families are depicted by the following
diagram.

E(g, h)
î

Ffe, A) = MINF

S{gfh) MSND(E(g9h))

Each of the inclusions may be strict. That the sets S (g, h) and MIND(E(g, h))
are incomparable is shown by the following examples. We use numerals as
letters of S to point out the customary définition of the Post Correspondence
Problem as two lists of words. The first example is also historically interesting,
a siight modification of the example given in [3].

Let g and h be defined by the table

g
h

1

bb
b

2

ab
ba

3

e
be

Now S (g, A)= {13 } but MÏND(E(g, h))= 12* 3.
Secondly, define g and h by

s
h

l

(ab)5 a (ba)2 b
ab aba ba b (ab)2

Now 1234 is in S(g9 h) but not in MIND(E(g, h))9 since 23 is in E(g, h).

Informatique théorique et Applications/Theoretical Informaties and Applications



PCP-PRIME WORDS AND PRIMALITY TYPES 61

Many closure properties can be obtained for the opérations MINP, MIND

and MINF in a fairly straightforward manner. Some of thc properties are
useful in the study of P-, S-and F-languages. The following theorem does
not intend to give an exhaustive list.

THEOREM 4: The families of regular, context-sensitive and recursive languages
are ail closed under the opération MINF. The families of context-free and
recursively enumerable languages are not closed under MINF. In gênerai, an
AFL is closed under MINF iffit is closed under complémentation.

Proof: By known closure properties (also the recently established closure
of the family of context-sensitive languages under complémentation), it suffl-
ces to prove the last sentence. Because of the équation

an AFL closed under complémentation is closed under MINF. (Clearly,
closure under complémentation implies closure under intersection is well.)
Conversely, let if be an AFL closed under MINF and let LgZ* be in if.
Moreover, choose two letters c and d not in E, and consider the morphism h
mapping letters of E into themselves and c and d to the empty word X.
Because ~L = h ( I J , where

Lx = (MINF (L c U £* cd)) n £* cd,

and h erases only two symbols from each word, we conclude that ££ is closed
under complémentation. Indeed, Lx is obtained by adding the suffix cd to
words belonging to the complement of L. D

Comment: Let's consider the languages: L1 = {ai bj c3'\ i, j ^ 1 },

Remark that a + b + c + n MINF (L) = { an bm cm | n > m ̂  1 } and hence
MINF(L) is not a context-free language, despite that Lx and L2 are deter-
ministic context-free languages.

In addition to theorem 1, many other results can be obtained concerning
the interrelations between the various languages associated with the PCP-
instance (g, h). The numbers s and/refer to the components of the primamity
type in the next theorem.

THEOREM 5: E (g, h) = (F(g, h))+ and, moreover, every word of E (g, h) has
a unique décomposition in terms of words in F (g, //). The language E (g, h) is
regular iff F{g, h) is regular. Iffisfinite then E (g, h) is regular. The language
S (g, h) is finite iff for some k, every word w in E (g, h) with length greater
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6 2 A. MATEESCU, A. SALOMAA

than k can be représentée as w — xyz, where y is not empty and xylz is in
E(g, h), foralli.

The rather straightforward proof of Theorem 5 is omitted. Lemma 1
(which, in fact, gives a stronger resuit) should be used in establishing the last
sentence of Theorem 5.

It is an open problem what can be concluded about E (g, h) if s is finite.
The fîniteness of s does not imply that E (g, h) is regular. This is seen from
the morphisms g(à) = h(b) = a, g(b)=:h(a) = a2. Does it imply, for instance,
that E (g, h) is context-free?

3. AN EXTENSION AND ITS INFLUENCE ON THE PRIMALITY TYPE

Consider an instance (g, h) of the PCP and a natural number q^2. We
assume that the instance is nontriviaî in the sensé that g(a) = h(a) holds for
no letter a of the alphabet E. We dénote

where the right side is understood as an alphabet whose letters are denoted
by

Finally, define two morphisms g\ h' : S*q -> À*, by

g'([b1b2,..bt])=g{b1)g(b2)...g(bt\

Then the pair (g', h') is also an instance of the PCP, referred to as the
q-extension of the instance (g, h).

The following lemma is an immédiate conséquence of the définitions.

LEMMA 3: Let (g', h') and (g", h") be q- and r-extensions, respectively, of
(g, h) with q<r. Then

P(g\ h')^P(g", h'% S(g', h')^S(g'\ h") and F{g\ h')^F(g", h"),

We note in passing that it is decidable whether or not an instance of the
PCP is a ^-extension of some other instance. The next theorem shows that
the component ƒ in the primality type is always 0 or oo if attention is
restricted to ^-extensions.

Informatique théorique et Applications/The oretïcal Informaties and Applications



PCP-PRIME WORDS AND PRÏMALITY TYPES 63

THEOREM 6: If E (g, h) is nonempty then F (g', h') is infinité for ever y
q-extensions (g', h') o f {g, h).

Proof: By Lemma 3, it suffices to consider the case q=2. Let ix i2 . . . ik be
an F-prime solution of the instance (g, h). Because we assume in this section
that the instances are nontrivial, we have k ̂ 2 . Starting from the given
F-prime solution, we construct an infinité set of F-prime solutions of the
^-extension.

If k>3, such a set is

Pi '2] P3 «4.1 • • • [h-2h-l]([hh][hh] ' • • Pfc-54-4][4-34-24-l])*

P*yp2y Pk-i*fc]
if k is odd, and

P \ y P3I4] . . • I4-5l*fc-4][4-3lk-2Ïfc-l](Pfcil]p2y • • • Pk-24-lD*

Ptïi]p2y{- • • Uk-ih-ih]
if k is even.

If k=3 or k=2, such a set is

or

Consider the following example. For the instance (g, h) deflned by

1 2

ab a
a ba

we have P(g, h) = S(g, h)^F(g, h) = { 12} and, hence, the primality type of
(g, h) is (1,1,1). For the 2-extension (g', h'), we have

and
S(g',h') = P(g', h') = {[12], [121] [212]}.

The primality type of (g', h') is (2,2, 00).

The equality sets F (g, h) and E {g', h') where (g', h') is the ̂ -extension of
(g, h) are gsm-equivalent in the sensé of the following theorem. The standard
gsm-construction, where states are provided with buffers, is left to the reader.
Observe that M is in gênerai nondeterministic and erasing.

vol 27, n* 1, 1993



6 4 A. MATEESCU, A. SALOMAA

THEOREM 7: Let (g, h) be an arbitrary instance of the PCP and (g', h') the
q-extension of (g, h), for some q^2. Then there are generalized sequential
machines M and M' with the property

E (g, h)^M'{E{g\ h')) andE(g\ h') = M(E(g, h)).

The following resuit is an immédiate conséquence of Theorems 1 and 7.

THEOREM 8: Assume that E(g, h) is regular. Then S(g', h') isfinite.for every
q-extension (g', h') o f {g, h).

In fact, Theorem 8 can be expressed more generally as foliows. Assume
that a certain property P of E (g, h) implies a certain other property Q of
S (g, h) and that, moreover, the former property P is preserved under gsm-
mappings. Then if E(g, h) possesses P, S(g\ h') possesses g, where (g', h') is
a ^-extension of (g, h).

According to theorem 6, the transition to a ^-extension always makes the
component in the primality type infinité (provided f>0 originally). According
to Theorem 8, there are instances such that no such transition makes the
component s infinité. However, in some cases the transition to the ^-extension
makes s indeed infinité, as seen below.

For the instance (g, h) defined by

g
h

1

a2

a

2

a
a2

F(g, h) is infinité but S(g, h)={ 12, 21 }. Since words of the form [111] [11]'
[122] [22]i+1 are in S{g\ h') we conclude that S (g', h') is infinité, for every
^-extension (g\ h').

4. PRIME WORDS AND LANGUAGES

We now take the opposite point of view. We consider arbitrary words and
languages and ask whether they can appear as some type of prime solutions,
for some instance (g, h) of the PCP. For example, the word abab cannot be
a prime solution (of any type) for any instance (g, h).

We say that a word w over S is P-prime if, for some (g, h), w is in P(g, h).
S-prime and F-prime words are defined similarly. In the sequel we speak,
briefly, of P-words, S-words and F-words,

Informatique théorique et Applications/Theoretical Informaties and Applications



PCP-PRIME WORDS AND PRIMALITY TYPES 65

Similarly, we may define P-languages, S-languages and F-languages. In fact,
these notions can be defined in two différent ways, depending on whether
we consider inclusion or equality. Thus, L is a P-language in the first
(respective second) sensé if, for some instance {g, h), L is included in (respec-
tive equals) P(g, /z). Clearly, if abab is a word in L, then L cannot be a
ZManguage in either sensé (and also not an S- or F-language). We restrict
our attention hère to words and hope to return to languages in another
paper.

Consider, thus, words over the alphabet E. If Z consists only of one letter
a, then only the word a is prime, no matter which of the three types we
consider. Therefore, we assume in the sequel that

£ = {Û!, . . -, an}, n^2.

We make the convention that when we speak of a word w over Z then ail
letters of E actually occur in w. The Parikh vector associated to w is denoted
by \|/(w).

Clearly, the set of P-words is included in the set of S-words which, in
turn, is included in the set of F-words. The following lemma gives a way of
constructing words that are not F-words.

LEMMA 4: If w1 is a nontrivial prefix of w satisfying ty(w1) = rty(w), for
some (rationa!) number r, then w is not an F-word.

Proof: Observe fîrst that, for any word x and pair (g, h)9 the "balance"

\g(x)\-\h(x)\

of x with respect to (g, h) dépends only in \|/(x). (In other words, xx and x2

have the same balance if ty(x1) = y\f(x2).)
If w were an F-word with (g, h) being the instance in question, then w

would be in E (g, h) and consequently, the balance of w would be 0. But
then also the balance of wx would be 0 and wx would be in E (g, h), SL
contradiction. •

If w is not an F-word, it cannot be an S- or P-word either. Lemma 4
gives, among others, the following examples:

w\ i>\; w=w^ . . . wfc, k>l9 if v|/(w1) = x|/(w2)= . . . =\|/(wfc);

ab2 a2 è4 ; ab6 a3 b2; abcab5 a2 c.

Following the terminology of [1], we say that a language L is rich if there
is no nontrivial instance (g, h) such that L^E(g, h).
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66 A. MATEESCU, A. SALOMAA

(Recall that the instance being trivial means that g (à)-h (à) holds for some
letter a.)

Clearly, no singleton L={w) is rich because we can easily construct a
nontrivial instance (g, h) with only one letter in the target alphabet A such
that g(w) = h(w).

A morphism h is periodic if ail values h (w) are powers of a single word,
that is, there is a word u, referred to as the period of h, such that for each
letter a there is an integer i with the property h (a) = u\ The period is unique
if we consider the word with the minimal length.

A language L is almost rich if, whenever L<^E(g, h) holds for a nontrivial
instance (g, h), then both g and h are periodic. A word w is almost rich if
L={w) is almost rich. The following lemma established in [5] shows that
almost richness implies that g and h are periodic with the same period.

LEMMA 5: Assume that g and h are periodic and E (g, h) is not empty. Then
g and h are periodic with the same period.

LEMMA 6: Assume that w~a2 bvab2 where v is a word over { a, b } containing
equally many as and b}s in such a way that no prefix of v contains more b's
than a's. Then w is an F-word but not an S-word.

Proof: The instance (g, h) defïned at the end of section 3 shows that w is
an F-word. The assumptions guarantee that the balance 0 is reached only at
the end. (In fact, the assumptions concerning v mean that v is in the Dyck
language.)

Assume now that w is an S-word and that (g, h) is the instance showing
it. Clearly, (g, h) must be nontrivial. We know that w is in E (g, h). Consider-
ing the beginning and the end of w, we see that we can assume without loss
of generality that g and h are defmed by

g
h

a

î
tx

b

yu
u

where t, u, x and y are nonempty and [ x \ = \ y |.
Since w is in E (g, h), we obtain

ttyug (v) tyuyu = txtxuh (v) txuu

Reading the words from the left and from the right, we obtain

ty = xt and uy=xu.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Consequently,

g (aabb) = ttuyu = txtuyu = txtxuu — h (aabb).

Thus, a2 b2 is in E(g, h). This contradiction shows that w is not an
S-word. D

LEMMA 7: Words of the form w — avava, where a is a letter and v is over the
alphabet {a, b], are almost rich.

Proof: We assume that g(w) = h(w), where (g, h) is nontrivial. We cannot
have g(av) = h(av) because we would then have also g(a)^h(a), by our
assumption g(w) = h(w). Without loss of generality, we assume that

g {ad) = a, h {av) = p = <xx, | x | ̂  1.

We dénote also

It follows that | x | < | P2 |
 a n c l moreover,

We now write the équation g{w) = h{w) in the new notation:

Consequently,

This implies that | y | = 2. | x . We write

y=yxy2 w

Our preceding équation reads now

Considering subwords of the same length, we obtain

where we have already used the second équation in the third équation.
We now apply Lemma 2, The first équation above yields the représentation
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68 A. MATEESCU, A. SALOMAA

Using this, we obtain from the last équation above

a2uv1 = vx ua2,

which yields another représentation

a2 — (rs)1 r, v1 u = rs, uv1=sr.

Writing, wi thout loss of generality, v1=rrl, we obtain s = rxu and urrx =r1 ur.

By Lemma 2,

for some z. Substituing everything in the équation g{w) — h{w) and dividing
from left and right, we are left with the équation uv1z

j^=zjuv1 which shows
that uvt and zJ are powers of the same word. Combining our knowledge, we
see that ail of al3 ot2, Pl5 (32 are powers of the same word, hence the lemma
follows. D

It is likely that the lemma holds also if v is over an arbitrary alphabet.
The lemmas gives a possibilitly of constructing (by using the three marked
occurrences of a as boundaries) S-words that are not P-words. Ho wever, we
have no explicit examples, and such a construction remains an open problem.

We now prove some results concerning P-words. We remind the reader of
the conventions concerning S, made at the begin of this section.

THEOREM 9: For every n-dimensional vector v with positive integer com-
ponents, there is a P-word w such that y\f(w) = v.

Proof: Dénote v = (iu i2, • • ., O- We'll prove that

w = a1!1, a . 2 2 - . - aL
n

n

is a P-word.

Let k be the least common multiple of the numbers iu i2, . . ., in. Dénote

jt = k/it, t = 1, . . ., n, and r=ix in.

Consider the instance (g, h) defined by

g
h

Informatique théorique et Applications/Theoretical Informaties and Applications



PCP-PRIME WORDS AND PRIMALITY TYPES 69

where À = {c, du . . ., dn_x }. We compute:

It is not difficult to see that if something is removed from w, the resulting
word is not any more in the equality set. Therefore, w is a P-word. D

There are many other P-words than those given in Theorem 9. We have
the following gênerai resuit.

THEOREM 10: Every word w over the alphabet [au a2}, such that the two
components ix and i2 in \|/ (w) are relatively prime, is a P-word. More generally\
let w be over Z={a l 9 . . ., an) and assume that X can be divided into two
disjoint nonempty parts 2,x and 2 2 such that the two numbers, obtained by
summing up the components of \|/(w) corresponding to the letters ofH11) as well
as those corresponding to the letters ofY*2, are relatively prime.

Proof: Consider the first sentence. Define the instance (g, h) by

g
h

b
blz + 1

a2

b

Read the word w from left to right and look at the balance. After reading
the prefix wl9 the balance

is observed, if \|/(w1) = (r, s). The équation

where r<ix or s<i29 would contradict ix and i2 being relatively prime. Thus,
no suffix can be removed from w and still stay in the equality set. The same
argument concerns the removal of scattered subwords because A contains
only one letter. This proves the first sentence.

The second sentence is an immédiate conséquence: just identify the letters
of Xl9 as well those of £2, in the définition of the instance (g, h). •
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7 0 A. MATEESCU, A. SALOMAA

Observe that the components of the Parikh vector can be pairwise mutually
prime, and the condition of the second sentence is still not satisfied. A
counter example is (3, 5, 22).

Our final lemma is a useful tool for constructing words that are not
P-words.

LEMMA 8: If w is not a P-word and cp is a nonerasing morphism, then cp(w)
is not a P-word,

Proof: Assume the contrary: for some instance (g, h), cp(w) is in P(g, h),
Consequently, w is in E(gq>, h<p). Since w is not in P(gq>, h<p), there is a
word y in E(g<p, hq>) satisfying yPw, where P is the relation defined in
Section 2. This implies that <p(j/)P<p(w) and y(y)€E(g, h). (Since cp is
nonerasing, q>(y) is not the empty word.) Thus, cp(w) is not in P(g, h), a
contradiction. D

By Lemmas 6 and 8 we may conclude, for example, that a4b3a2b6 is not
a P-word. Ho wever, we want to emphasize that our results do not give an
exhaustive characterization of P-words.

5. CONCLUSION

We have investigated some issues fondamental for the Post Correspondent
Problem and equality sets and, more generally, for the basic combinatorics
of words. Many of the problems remain open. We have not discussed at all
the area of prime languages (as defined in Section 4). It is also a challenging
problem to estimate the component p in the primality type, for example, in
terms of the cardinality of S.
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