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AN ALGORITHM TO COMPUTE THE MÖBIUS FUNCTION
OF THE ROTATION LATTICE OF BINARY TREES (*)

by J. M. PALLO O

Communicated by A. ARNOLD

Abstract. - Though the rotation lattice of binary trees is not a modular lattice^ we show that its
Möbius fonction jx can be computed as f or distributive lattices. If T and T' are binary trees with n
internai nodes, a O(n3/2) time and O{n) space algorithm is developedfor Computing \i(T, 7").

Résumé. - Bien que le treillis de rotation des arbres binaires ne soit pas modulaire, on montre
que sa fonction de Möbius \i se calcule de la même manière que pour les treillis distributifs. Si T
et T' sont deux arbres binaires à n nœuds internes, on exhibe un algorithme de complexité O (n3/2)
en temps et O(n) en espace pour calculer u ( r , T'\

1. INTRODUCTION

A rotation in a binary tree is a simple, local, restructuring technique that
changes the tree into another tree. Rotation is a very useful opération because
in constant time it alters the depths of some of the nodes in the tree while
maintaining the symmetrie order of the items. Therefore it is used to rebalance
binary trees in all search algorithms.

The combinatorial System of binary trees and their rotations is a funda-
mental one that is isomorphic to other natural combinatorial Systems. Results
eoncerning this System are of interest both from mathematical and practical
points of view.

A system that is isomorphic to binary trees related by rotations is that of
binary bracketings related by the semi-associative law shifting brackets, say,
to the left. This system has been proved to be a lattice in [5] and [9]. Grâtzer
thinks that this result can dispel the false impression that the proof that a
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poset is a lattice is always trivial {see [6], p. 14). The graph of this lattice is
neither bipartite nor homogeneous [1], This lattice is meet-pseudocompie-
mented [13] and also complemented [3], Recently it has been characterized
via its ordered subsets of join and meet irreducible éléments [1]. This result
is based on the f act that any fini te lattice can be recovered from its M ar ko w-
sky poset of irreducibles defined above [10],

Another system that is isomorphic to binary trees related by rotations is
that of triangulations of a polygon related by the diagonal flip opération.
This is the opération that converts one triangulation of a polygon into
another by removing a diagonal in the triangulation and adding the diagonal
that subdivides the resulting quadrilatéral in the opposite way. This system
is studied in [17] using hyperbolic geometry.

Another combinatorial proof that the system of binary trees related by
rotations is a lattice can be found in [2] and [11]. We call this system the
rotation lattice of binary trees. A Hamilton path in the graph of this lattice
has been exhibited in [15]. Unfortunately the rotation lattice is not modular.
We hope that the study of its Möbius function as a combinatorial invariant
will give useful informations about the structure of this lattice.

In this paper, we show that the Möbius function \i of the rotation lattice
can be computed as for distributive lattices. This leads to a O (n3/2) time and
O{n) space algorithm for Computing \i(T9 T') where Tand T' are trees with
n internai nodes.

2. THE ROTATION LATTICE Bn

In a (rooted, ordered, unlabeled) binary tree, every node except the root
has a parent. Every internai node O has a left and a right child (the order
is significant) and each of these children is also a tree called subtree of this
internai node. External nodes or leaves • have no children.

The leaves of a (binary) tree T are numbered by a preorder traversai of T
{i. e. visit the root and then the left and right sub trees recursively). The weight
\T\ of a tree T is the number of leaves of T. Let Bn dénote the set of binary
trees with n internai nodes (and thus «+1 leaves). The cardinality of Bn is

( 2n\

Given TeBn, the weight séquence of T is the integer séquence
wT = (wT(l), wT(2), . . ., wT(n)) where wT(i) is the weight of the largest
subtree of T whose last leaf is i {see [11]).
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Rotation is a transformation -> on Bn such that a sub tree (fig. 1)

of a tree of Bn is replaced by the subtree

Figure 1

See some rotations and weight séquences of trees of B6 illustrated in
figure 2.

113112 123416

The following theorem characterizes the reflexive transitive closure -> of -• :

THEOREM 2.1. [11]: Given T and Tf€Bn, we have T^T' iff wT(i)^wT,
(ï) for ail ze[l, n] or in short wT^wT,.

COROLLARY 2 . 2 . [11, 12]: For ail n, (Bn, ->) is a lattice with 0 and 1 whose

weight séquences are wo = ( l , 1, . . . } 1) and wx = (l, 2, 3, . . . , n). The weight

séquence wT A T, of the meet of T and T's Bn is obtained by

wT A T ' (0 = min O r (0, wT ' (0)

for ail is [1, n] or in short wT A T , = wf« (vi;r, w r . ) . The weight séquence wT v r ,
of the join of T and T' can be computed as in [14].

Remark: The rotation lattice i?w is not modular since it contains at least
the following pentagon {fig. 3):

vol. 27, n° 4, 1993



344 J. M. PALLO

Figure 3

3. THE MÖBIUS FUNCTION OF A POSET

The Möbius function |j. of a partially ordered set can be viewed as an
enumerative tooi, defined implicitly by the relations:

ƒ(*)= Z ë(y) a n d g(x)=l

where ƒ and g are arbitrary real valued functions on a poset P. ji is the
unique integer valued function on P * P, depending only on P (not on ƒ or g),
defined recursively by the formulas:

for x e P
if x$y
i f

\x (x, x) = 1

\i(x,y) = 0

\L(x,y)=- E p-(z> y)
x<z^y

Impîementing the above recursive formula needs to use an algorithm which
lists all the weight séquences w of trees in an interval [7", T'] of Bn, i.e.
weight séquences w such that wT<w<wT.. It is easy to exhibit such an
algorithm. But Computing \x with this recursive formula is highly impractical
for n large enough since bnœ4n/((n+ \)/nri). In order to compute
efficiently \i, we use in the sequel two results of the theory of Möbius
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functions: the principle of inclusion-exclusion ([6], p. 191, ex. 34) and the
closure theorem ([16], p. 349, prop. 2). Proofs can be found in [7] and [16].

4. THE MÖBIUS FUNCTION OF Bn

LEMMA 4.1: Let [T, T'] be an interval of the lattice Bn. Let Tl9 T2, . . ., Tk

be the k distinct dual atoms of the lattice [T, T1], i.e. the k trees T{ which are
covered by T'' :T'-• 7̂  -> 71''. The sub-meet-semilattice S generated^ by
Tl9 T2, . . ., Tk and including T' is a Boolean lattice.

Proof: Since T{^»T\ the weight séquences of Tt and T' differ only by
one integer. Since wT A T, = min(wT, vtv), the lattice S made up of T' and of
meets of subsets of {Tu T2i . . ., Tk) has cardinality 2k. lts zero is
T"=T1 A T2 A . . . A Tk. lts unit is T'. If xeS, then wT(m) is either equal
to wT„(m) or equal to wT,(m). Therefore wx v t, = max(wT, wT,). Every xeS
has a unique complement x* whose weight séquence is obtained by: if
wx (m) = wT,, (m) then wT* (m) = wT. (m) and if wT (m) = wT, (m) then
wT*(m) = wr-(m). Indeed we have x A X*= T" and x v x*= T'. Let us prove
now distributivity, i.e. (x A X') V (X A X") = T A (X' V X") for all x, x', x"e£.
Using weight séquences, this is equivalent to

max (min (w>T, wx),mm(wx, wT-)) = niin(wT,max(wT,, wT-)).

Since {wx(m), >vT,(m), wT»(m)} = {wr-(m), wr,(m)} for all me[l, «], the
study of eight distinct cases shows that the equality holds.

THEOREM 4.2: For two trees T and T'eBn such that T^T'9 we have
|i(T, 7") = 0 if T is not the meet of some of the trees which are covered by T'
and [i(T, T') = (-\)k if T is the meet of k distinct trees which are covered
by T'. In particular we have [i(0, 1) = (— l)""1 in Bn.

Proof In the lattice [T, T'] which is a sublattice of Bn, defme x to be the
meet of all trees which are covered by T' and which dominate x. Then it is
easy to see that x ->x is a closure relation with the property that x=T' only
if T—T'. Furthermore, the set of closed éléments is the Boolean lattice S
defined in lemma 4.1. Applying the closure theorem, then \x(T, T')^0 if
T> T, i. e. if T is not the meet of trees which are covered by T' (see also [8])
and \L(T, T') = \I8(T9 T') if T=T9 i.e. if T is the meet of trees which are
covered by T'. Applying the principle of inclusion-exclusion, we have
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\iM(T, T') = (-l)h{T)-hiTt) where h(T) is the height .of.Tin S. In S we have
h (7) = Ö and h(T') = k if there are & distinct trees which are covered by T'.

Remark: The dual of theorem 4.2 using joins is also t ruc We choosed
meets rather than joins because wT A T> is more easy to compute that wT v r , .

5. COMPUTING THE MÖBIUS FUNCTION OF Bn

Given T and T'eBH and applying theorem 2.1, T ^ 7" does not bold if
there exists an i6[l,-«]-such that wr(i)>wT,(i). In this case n(r , r ' ) = 0. If

T'-* T' holds, L e. if wT^wT*, the number of trees which are covered by T'
is the number of integers wT.(i) which are different from 1. For such an
integer wT, (i) / l w e can compute the weight séquence w of the corresponding
tree which is covered by T' in the following way:

VT'

We only retain the *: trees Tj such that T^Tp Le. wT^wTj. If
r = T1 A T2 A . . . A Tk, L e. wT = min(wriï wTl, . . ., wTk), then

6. COMPLEXITY OF THE ALGORITHM

The work done for computmg \i(T, T') is proportional to the number of
integer comparisons. In the average case, there are n/2 integers i such that
wT,(ï)^\. In the worst case where 7 l f=l, there are n—l integers / such
that w r / (z)#l . For each integer i such that wT,(i).^l.y we need wT>(i) — 2
comparisons to compute w^(i) = wT.(i) — q+j—l where x is covered by T'
since

Compute the average value an of wT.{i)i^\ for T'eBn. The bn weight
séquences of length n have (n-\-l)bn/2 éléments equal to 1 and (n—l)bn/2
éléments different from 1. Let us define cn (k) be the number of éléments
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equal tofc (2^/c^n) in all these séquences. Then we have an=pj((n— l)bJ2)
where

i = 2

Let Tx be a tree of Bn whose weight séquence has its A>th element equal
to i(2^i^k^n). If we delete in Tx the subtree of weight i whose last leaf
is k, we obtain a tree T2 of Bn_i+1 such that wT2(k— i+ 1)= 1. There are
è;_! trees of weight /. In the è„_ i+1 weight séquences of length n—i+l,
there are (n — i+2)bn^i+1/2 éléments equal to 1. Therefore we get

The equality £ f2 J | " " 2 ï ) = 2 2 B holds ([14], p. 86). Thus
i=0 \ i ) \ i )

2nan = (22n-2(n+l)bj/((n-l)bny Since ôB«4"/((n+l) Acn), an asymptoti-
cally behaves as /nn. Computing wT(i) requires O(rr^2) comparisons in
average and w —2 comparisons in the worst case. For each x among Ô(ri)
trees which are covered by T\ one must verify if the equality wT^wx holds.
For this, n comparisons are required in gênerai. However hère, only one

comparison is needed since T'-» 7" and wT is known to differ wT> in exactly
one known place, which is one of the integers / such that w r , ( / ) # l . It
suffices to check this index to make the necessary comparison. Therefore the
average time complexity for Computing \i(T, T') is O(n3^2) and O(n2) in the
worst case. The space complexity is clearly O {ri).

7. CONCLUSION

We have presented an efficient algorithm for Computing the Möbius func-
tion of the rotation lattice Bn with values in [— 1, 0, +1], Though Bn is not
a modular lattice, it is a surprising fact that its Möbius function can be
evaluated as if Bn was distributive.

Rotation has been generalized to regular fc-ary trees [2]. But for k ^ 3 , the
poset obtained is not a lattice. It seems very difficult to compute its Möbius
function.
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