Congestion optimale du plongement de l’hypercube H(n) dans la chaîne P(2 n )
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 27 (1993) no. 5, pp. 465-481.
@article{ITA_1993__27_5_465_0,
     author = {Bel Hala, A.},
     title = {Congestion optimale du plongement de l{\textquoteright}hypercube $H (n)$ dans la cha{\^\i}ne $P(2^n)$},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {465--481},
     publisher = {EDP-Sciences},
     volume = {27},
     number = {5},
     year = {1993},
     mrnumber = {1252607},
     zbl = {0803.68091},
     language = {fr},
     url = {http://archive.numdam.org/item/ITA_1993__27_5_465_0/}
}
TY  - JOUR
AU  - Bel Hala, A.
TI  - Congestion optimale du plongement de l’hypercube $H (n)$ dans la chaîne $P(2^n)$
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1993
SP  - 465
EP  - 481
VL  - 27
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/ITA_1993__27_5_465_0/
LA  - fr
ID  - ITA_1993__27_5_465_0
ER  - 
%0 Journal Article
%A Bel Hala, A.
%T Congestion optimale du plongement de l’hypercube $H (n)$ dans la chaîne $P(2^n)$
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1993
%P 465-481
%V 27
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/item/ITA_1993__27_5_465_0/
%G fr
%F ITA_1993__27_5_465_0
Bel Hala, A. Congestion optimale du plongement de l’hypercube $H (n)$ dans la chaîne $P(2^n)$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 27 (1993) no. 5, pp. 465-481. http://archive.numdam.org/item/ITA_1993__27_5_465_0/

1. S. N. Bhatt et F. T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. System Sci., 28, 1984, p. 300-343. | MR | Zbl

2. P. Z. Chinn, J. Chvátalová, A. K. Dewdney et N. E. Gibbs, The bandwidth problem for graphs and matrices-A survey, J. Graph Theory, 6, 1982, p. 223-254. | MR | Zbl

3. F. R. K. Chung, Labelings of graphs, in Selected Topics in Graph Theory, III (L. Beineke and R. Wilson, Eds.), Academic Press, 1988, p. 151-168. | MR | Zbl

4. F. R. K. Chung et P. D. Seymour, manuscript, Bell Communication Research, Some results on the bandwith and the cutwidth of a graph, 1987.

5.L. H. Harper, Optimal assignments of numbers to vertices, J. Soc. Indust. Appl. Math. 9 12, 1964, p. 131-135. | MR | Zbl

6. L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. of Combinatorial Theory, 1, 1966, p. 385-393. | MR | Zbl

7. J. Hromkovic, V. Muller, O. Sykora et I. Vrto, On embedding in cycles (to appear). | MR | Zbl

8. Ten-Hwang Lai et Alan P. Sprague, Placement of the Processors of a Hypercube, IEEE-Trans.-Comput. 40, 6, 1991, p. 714-722. | MR

9. Leighton, Maggo, Rao, Universal packet routing algorithms, 29th FOCS, 1988, p. 256-271.

10. F. Makedon, C. H. Papadimitriou et I. H. Sudborough, Topological bandwidth, SIAM J. Algebraic Discrete Methods, 6, 1985, p. 418-444. | MR | Zbl

11. B. Monien et I. H. Sudbrough, Comparing Interconnection Networks, Proceedings of the 13th Symposium on mathematical Foundations of Computer Science, 1988.

12. B. Monien et I. H. Sudbrough, Embedding one Interconnection Network in Another, Computing Suppl., 7, 1990, p. 257-282. | MR | Zbl