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A UNIFIED APPROACH TO CONTROL PROBLEMS
IN DISCRETE EVENT PROCESSES (*)

by A. BERGERON (*)

Communicated by A. ARNOLD

Abstract. - Control theory of discrete event processes has been developped in recent years by
Ramadge and Woriham. Their framework is based on formai language theory and control theoretic
ideas such as controllability and observability. In this paper, we focus on the automata modeling
the processes and the spécifications, rather thon on the sets of possible or acceptable séquences.
By adopting this slightly différent point of view, we show that the main results of control theory
can be obtained in a simple, uniform way.

Centralized control problem, observation problems and distributed control problems are stated
as particular cases of what we call design problems. With the help of two basic constructions on
automata, we show that necessary and sufficient conditions for the existence of solutions are ail
particular cases o f a gênerai lemma on the solutions of design problems. All the results are effective,
in the sensé that they yield immédiate algorithms for the design of controllers.

Résumé. - Un processus discret est un système qui change abruptement d'état selon l'occurrence
de suites d'événements. La théorie du contrôle de tels processus a été développée dans les dernières
années par Ramadge et Wonham. Fondée à la fois sur la théorie des langages formels et sur des
idées provenant de la théorie du contrôle, cette théorie explore l'existence et la construction de
solutions à des problèmes de contrôle centralisé — ou réparti — dans un contexte d'observation
partielle.

Dans cet article, nous adoptons un point de vue légèrement différent en centrant l'attention sur
les automates qui modélisent les processus et leur spécification. Ce nouveau point de vue permet
d'obtenir l'ensemble des résultats de la théorie d'une manière simple et uniforme. Nous exposons
d'abord un cadre général qui permet d'exprimer les problèmes de contrôle ou d'observation avec un
formalisme identique. Nous montrons ensuite que deux constructions de base sur les automates
permettent d'obtenir des conditions nécessaires et suffisantes pour la solution de ces problèmes.
Tous les résultats obtenus sont constructifs, au sens où les énoncés fournissent immédiatement des
algorithmes pour la construction de contrôleurs ou d'observateurs lorsqu'ils existent.
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556 A. BERGERON

1. INTRODUCTION

A discrete event process is a System that changes state according to the
occurrence of a séquence of events. The focus is on the order and the nature
of the events affecting the System rather than their time of occurrence or
their duration. The central problems can be described as:

1) Given a discrete process and a spécification of its acceptable behaviors,
is it possible to construct a new process, called a controller, that will imple-
ment the spécification by prohibiting or allowing certain events?

2) How is the solution affected if the controller does not have complete
information about the occurrence of events in the original process?

3) When is it possible to distribute the controlling task among several
controllers?

Various solutions to these design problems have been found in the recent
years within the framework developed by Ramadge and Wonham. Necessary
and sufficient conditions for the existence of solutions are expressed in terms
of formai language theory and control theoretic ideas such as controllability
and observability [3; 4], [6], [5], Controllability and observability are defined,
in these works, as properties of the acceptable séquences of events (in the
spécification) with respect to possible séquences of events (in the original
process).

In this paper, we focus on the automata modeling the processes and the
spécifications rather than on the sets of possible or acceptable séquences. By
adopting this slightly different point of view, we will show that the main
results of control theory can be obtained in a simple, uniform way. This
approach also provides an interesting bridge to the theory of transition
Systems and concurrent processes developed around the Arnold-Nivat
model [1], [2].

Section 2 reviews the basic tools used in modelling discrete processes with
deterministic automata. In Section 3, we present a gênerai setting for design
problems as solutions of équations of the form Z = D x X where Z is a
spécification of a process D and X belongs to a restricted class of automata.
We apply these tools in Section 4 and 5 to obtain constructive solutions of
control and observation problems. Section 6 discusses control under partial
observation and distributed control.

Informatique théorique et Applications/Theoretical Informaties and Applications



CONTROL PROBLEMS IN DISCRETE EVENT PROCESSES 5 5 7

2. MODELEVG DISCRETE EVENT PROCESS WITH AUTOMATA

Let S be a finite set whose éléments are called events. The set of all fïnite
séquences of events is denoted by E*, and the empty séquence is denoted
by X. The concaténation of two séquence x and y is denoted by xy.

Let S be a set whose éléments are called states. An automaton V on the
set E of events is given by an arbitrary partial function — multiplicatively
denoted by a dot "• "-called a transition function:

which, when defined, associâtes to a pair (s, a) the state s* a. Among the
states S, we distinguish an initial state \ and of a subset M <= S of marked
states.

It will be useful to consider the extension of a transition function to the
set E* of all séquences of events. Every transition function can be uniquely
extended to a partial function:

that has the following properties:
(i) s*A, = s.
(ii) (s*x)*a = s*(xa) whenever the left hand side is defined.
The language L(\) recognized by the automaton V is the subset of E*

defined by:

L(V)={x | i -xeM}.

Finally, we will dénote by V the automaton obtained by marking all the
states of an automaton V. We have:

L(V)={x|i-;c is defined}.

An automaton is often described by a directed graph whose vertices are
labeled by the states S and whose arrows are labeled by the symbols a of E.
For each defined transition s*a = s', we have the corresponding arrow:

If x is a séquence of events, then xeL(V) or x is defined in V if there is a
path labeled by x beginning at the initial state i. If the state reached by the
path is marked, then xeL(V).

vol. 27, n° 6, 1993



558 A. BERGERON

DÉFINITION 2.1: Non-blocking automata.

(i) If L is a subset of Z* then PrefL = { x e E* | jcy G L } is the set of préfixes
of séquences in L. Since j can be the empty séquence, we always have

(ii) An automaton V is said to be non-blocking if

M

Consider, for example, the foliowing au tomaton on Z = { a , b}:

b ^/7\

where only r is marked. This automaton is blocking since the séquence ab
belongs to L(V) but is not a prefix of any séquence in L(V).

In the following sections, we will be mainly concerned with the design and
analysis of special classes of automata. For that purpose, we need ways to
compare them, and the usual équivalences defined in automata theory (mostly
based on the language recognized by an automaton) are not powerful enough.
In design problems, we will need the non-blocking property to be preserved
under équivalence.

DÉFINITION 2.2: Partial order between automata.

The relation V^W holds whenever
(i) L(V)£L(W)and
(ii) L(V)iL(W).

When V^W and W^V, we simply write V = W. •
An immédiate conséquence of this définition is:

PROPOSITION 2.3: 7fV = W, then V is non-blocking if and only if W is non-
blocking. •

Given two automata V and W, with states Sv and SWî initial states iv and
iw, and marked states Mv and Mw. The product V x W has states S = Sv x Sw

with the transition function:

• : S x 2* —>• S where(v, w)*x = (v*x, w x ) whenever both are defined.

The initial state of the product is i = (iv, iw) and the marked states

M={(v, w)|veMv and WGM W } .

Informatique théorique et AppUcations/Theoretical Informaties and Applications



CONTROL PROBLEMS IN DISCRETE EVENT PROCESSES 559

We can think of the two processes as simultaneously functioning: they
synchronize on the occurrence of every event. Of course, in many examples,
one of the process will 'generate' the events and the other will 'react' to
them, but the modelling is the same in both cases. The following theorem
expresses a basic relation between products and inequalities:

THEOREM 2.4: V^W if andonly i/V = Wx V.

/ ' I f V^Wthen,

since a state is marked in the product if and only if it is marked by both
automata. We also have

since those last automata are identical. On the other hand, if V = Wx V, we
have easily

and

Further properties of these opérations are easily verified:

PROPOSITION 2.5: Let Y, Z, V and W be automata, Then
(i) IfY^Y andZ^W then YxZ^VxW.
(ii) Z^V xW if and only i/Z^V and Z^W. •

3. A GENERAL FRAME FOR DESIGN PROBLEMS

Let D be an 'existing' discrete process and suppose we want to restrict,
observe, or modify the behavior of this process. Such design problems can
be solved by constructing one or more new processes that will function
simultaneously with D, and that will be able to prevent, authorize, observe
or report the occurrence of events in D.

In order to state the problem formally, we flrst suppose that the process
D is modeled by an automaton such that any undefïned transition for a
pair (s, a) corresponds to the fact that the event a is impossible in state s.
All the possible séquences of events are taken into account in the model. If
the behavior of D is to be restricted or observed, we need a spécification of
what are the acceptable behaviors or what are the properties to observe.

vol. 27, n° 6, 1993



560 A. BERGERON

Such a spécification will again be modeled by an automaton Z, and we
assume that ZrgD. This restriction is natural since if there was a séquence
of events defîned in Z but not in D, it would correspond to an impossible
séquence by our assumption on D.

Finally, in order to solve design problems, we want to construct automata
that will be able to perform specialized tasks. For a given task (such as
controlling, observing, reporting, etc.) the identification of these specialized
automata wiil correspond to a particular class se of automata.

In this framework, we can state the gênerai design problem as:
Let se be a class of automata. Given a process D, and a spécification Z such

that Z<D, does there exist an automaton Xesé such that

Z = DxX?

If the class se is unrestricted, Theorem 2.4 gives immediately the trivial
solution X = Z. By restricting the solutions to have certain additional proper-
ties on their states or transition fonctions, we will solve many variants of
control and analysis problems. These solutions wili be constructive in the
sensé that the existence theorems will give explicit construction for X, and
are based on the following resuit:

LEMMA 3.1: Let se be a class of automata and suppose that there exists a
mapping A which associâtes to every automata Z an automaton Azestf, such
that Z ^ A Z and for each Xestf,

Then, if Z ^ D , there exists an automaton Xestf such that:

Z = DxX ifandonly z/Z = DxAz.

Proof: The if part is immédiate since we assumed that A Z G J / . On the
converse, the fact that Z ^ A Z and Z^D, gives us:

Suppose now that there exists an automaton Xesé such that Z = DxX.
Then Z ^ X so, we have AZ^X. Multiplying by D on both sides we get:

Thus, if a suitable mapping (or construction) A is provided for the class se,
Lemma 3.1 gives elegant necessary and sufficient conditions for the design

Informatique théorique et Applications/Theoretical Informaties and Applications



CONTROL PROBLEMS IN DISCRETE EVENT PROCESSES 561

problem with respect to the class sé. In the next sections, we will discuss two
basic constructions corresponding respectively to the control and observation
problems.

4. THE CENTRALIZED CONTROL PROBLEM

Suppose that D is a process on the set of events E. Among those events,
some of them may be controllable, that is there exists physical means to
prevent their occurrence. For example, a communication process can suspend
message sending until it receives a given signal. Given such a subset Sc of
controllable events (and its complement the uncontrollable events Suc), the
centralized control problem can be stated informally as designing an automa-
ton which changes state according to the séquence of events generated by D,
and prevent or authorize controllable events according to its state.

If an automaton is to perforai such a controlling task, its only 'impossible'
events must be exactly those it prevented, thus we have the following défini-
tion:

DÉFINITION 4 .1: Control Automata
An automaton C is a control automaton with respect to Zc if, for ail

states s,

a G Suc implies s • a is defined

The class of ail control automata (with respect to Sc) will be noted se c.

If C is a control automaton, we can define the following control strategy
for C: in states, prevent the occurrence of any event such that s*a is
undefmed, and allow ail others. It is clear, from the définition of control
automata, that such a strategy is always realizable.

The centralized control problem can be formulated as:
Let <séc be the class of control automata with respect to 2C. Given a process D,

and a spécification Z such that Z ^ D , does there exist an automaton Xejtfc

such that

Z - D x X ?

Consider now the following construction Cz on an automaton Z: we add a
new unmarked state u to Z and whenever s • CT is undefined — including the
new state u - and a is uncontrollable, we set s-a = u in Cz. With this
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construction we have:

THEOREM 4.2: The mapping Cz has the foilowingproperties:
(i) Cxeste.

(ii) Z ^ C Z .
(iii) For each X e stc> Z ̂  X => Cz S X.

Proof: (i) This is immédiate from the construction of Cz.
(ii) Every path in Z is also a path in Cz.
(iii) Suppose that Z ̂  X, we first have L (Cz) = L (Z) g L (X) since any path

in C z which goes in a marked state does not go through the new state u - there
are no outgoing arrows from u.

Now, let xeL(Cz\ if i-jc^u then jceL(Z)gL(X). Otherwise, if i-x = u,
x can be decomposed as x — x'o y such that x'eL(Z) and a y is a séquence
of uncontrollable events. But xreL(X), so x' ayeL(X) since X is a control
automaton. •

COROLLARY 4 .3 : The centralized controlproblem has a solution if and only
*/Z = D x C 2 . •

Notes: Other sets of necessary and sufficient conditions for the existence
of a solution to the centralized control problem appear in [3], These condi-
tions are based on the notion of controllable languages. A language K is
controllable with respect to L to if

x e PrefK and xoeL with a uncontrollable implies x a e PrefK

and their results are established by considering the controllability of L (Z)
with respect to

5. THE OBSERVATION PROBLEM

Suppose that D is a process on the set of events E. Among those events,
the occurrence of some of them may be unobservable. For example, a com-
munication process may not be able to tell if a given message has been
received. Given a spécification Z for the process and such a subset 2U0

of unobservable events (and its complement the observable events So), the
observation problem is whether or not certain properties of a System can be
determined without knowledge about the occurrence of unobservable events.

In order to perform such an observation task, an automaton should have
the same 'reactions' whether or not an unobservable event occurred. The

Informatique théorique et Applications/Theoretical Informaties and Applications



CONTROL PROBLEMS IN DISCRETE EVENT PROCESSES 563

simplest observation automata are the ones that loop on all (defined) unob-
servable events:

DÉFINITION 5.1: Observation Automata

An automaton O is an observation automaton with respect to 2 0 if, for ail
states s,

s*a is defined and a e E u 0 implies s*a = s.

The class of ail observation automata (with respect to 20) will be noted M'0.

The observation problem can be formulated as:

Let sé0 be the class of observation automata with respect to Zo. Given a
process D, and a spécification Z such that Z ^ D, does there exist an automaton
X G si'0 such that

Z = DxX?

This problem will be solved in the same fashion as the control problem. We
want to construct the smallest observation automata O z that contains a given
automata Z. The idea behind the construction is the following: suppose an
observable event occurs in Z changing its state to s, in order to ignore
unobservable events we have to assume that Z could be either in state s or
in any other state reachable from s by a séquence of unobservable events.
For example, the initial state of O z will be the set of all states reachable
from the initial state of Z with séquences of unobservable events.

More formally, let S be the set of states of Z, with initial state i and
marked states M. Let S*o be the set of unobservable séquences. The states of
the automaton O z are non-empty subsets £P+ (S) of S. The initial state is:

I = {i • u | i • u is defined and u e Z*o}

and the marked states of O z are ail subsets that contain at least one marked
state of Z. The transition function is defined as:

Let T g S, if s* a is defined in Z for at least one s in T then T°o is defined
and

(i) If a e £0,T °a = {s 'aw|seT, s • a w is defined and u e E*o}
(ii) I f aeE u 0 ,T°a = T

otherwise T ° a is undefined.

vol. 27, n° 6, 1993



564 A. BERGERON

In order to prove that the construction O z satisfies the hypothesis of
Lemma 3.1, we need the following results on the relations between Z and
O z :

LEMMA 5.2: If i .x is defined in Z, then I ° x is defined in O z and i• xeI°x.

Proof: The proof is an induction on the length of x. If x = X, then i*x = i
and I°x = I are always defmed and we have, by construction, that ie l . Now,
let x — ya be defined in Z, then y is defined in Z and we can suppose that
I°y is defined and \.yel°y. Since (i*j/)*a is defined we have immediately
(l°y)°a is defined.

If a is observable we have immediately that (i'y)'<je(I°y)°G. On the
other hand, if a is unobservable then (I ° y) ° a = I ° y so we have to prove
that (i*y)* ael°y. But if an accessible state of O z contains a given state s it
contains, by construction, all the states reachable from s by unobservable
events, so if imyel°y we have (i*y)'(J€loy. •

The second lemma expresses a deeper property: each séquence defined in
O z looks like some séquence in Z in the following sense. Consider the
projection

that erases unobservable events, then:

LEMMA 5.3: Ifl°x is defmed in O z and t e l °x , there exists a séquence x'
defined in Z such that i• x' = t and n(x) = n(xl).

Proof: The proof is an induction on the number of observable events of x.

Suppose that n(x) = X9 that is xe2*0, then I*x = l={i*u\i*u is defined
and u e E*o} thus if t e I ° x, there exists a séquence u' e E*o defined in Z such
that t = i*w' and n(u) = X = n(x),

Suppose now that x=yaz with a being the last observable event of x,
that is n (x) = n (y) a. Let t be a state in

I°x = l°y<3 = (loy)o<j={s''<ju\seloy, s * a w i s defined and weS* 0}

so there exists an s in I°y and a ur in E*o such that s* au' = t.
By the induction hypothesis, there is a y' defined in Z such that i* y' = s and
n(y) = K(/)- But the fact that i * / = s, and s*aw' is defined, implies that
\my'aw' = t is defined in Z, and n(y'ou) =
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We can now prove:

THEOREM 5.4: The mapping O z kas the following properties:

(i) O
(ii) Z^OZ.
(iii) For eaehXesf09Z^X=>Oz£X.

Proof: (i) is immédiate by construction, since O z loops on all unobservable
events.

(ii) If xeL(Z) then i.x is defined in Z, so I°x is defined in O z by
Lemma 5.2. If xeL(Z) then the state i*x is marked, and since i*xel°x,
the state I ° x will be marked.

(iii) Suppose that Z^X with Xej^o . First we will show that if x is defined
in Oz then n (x) is defined in X. If x is defined in O z then, by Lemma 5.3,
there exists an x' defined in Z such that n(x') = n(x). But since Z^X, x' is in
X. Since X loops on every unobservable event, TT(X') can be traced in X by
following the same path as x' and skipping the unobservable loops.

We will prove that L (ÖJ ü L (X) by induction on the number of unobserva-
ble events of séquences in L(ÖZ). If xeL(ÖJ, and x has no unobservable
events, then TC(X) = X and, by the preceding remark, we have xeL(X).

Suppose now that x = yoz with a being the last unobservable event of x.
We will show that both y o and yz are defined in X. Since X loops on every
unobservable a, we will be able to conclude that y oz is defined in X.

If x = y oz is defined in O z with a being the last unobservable event of x,
then n(x) = n(y)z is defined in X. By the induction hypothesis, y also is
defined in X, and since n (y) and y reach the same state in X, if n (y) z is
defined, then yz is also defined.

On the other hand, if x = yoz is defined in Oz, then y o is also defined,
and s*o is defined in Z for at least one s in 1°y. By Lemma 5.3, there exists
a ƒ defined in Z such that i*j/ = s and n(y') = n(y). But since s*a is defined
in Z, and i* / = s, we have that \*y' o is defined in Z, implying that y' o is
defined in X. By the induction hypothesis, y is defined in X, and since
n(y') = n(y)9 y and y' reach the same state in X. Thus, if y a is defined so
is y o.

In order to prove that L (Oz) £ L (X), we note that if x e L (Oz) then x is
in L(X) by the preceding paragraphs, and we only have to prove that x
reaches a marked state of X. If xeL(O z) then I°x is marked in Oz , so there
is a marked state t in Z such that t e l °x . By Lemma 5.3, there exists a
séquence x' defined in Z such that i*x' = t and 7t(x) = 7t(x'). But x' and x are
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566 A. BERGERON

both defined in X and reach the same state since n(x) = n(x'). Since x' reaches
a marked state in Z, it reaches a marked state in X. •

COROLLARY 5.5: The observation problem has a solution if and only if

Notes: In the framework of the theory developed by Ramadge and
Wonham, the observation problem is treated through the notion of
observability [6], and Corollary 5.5 can be used as an algorithm to détermine
if L(Z) is an observable language with respect to L(D).

Finally, we have the following propositions relating the constructions O z

and Cz. The fîrst one says that the 'observation' construction preserves the
property of being a control automaton:

PROPOSITION 5.6: Let sé'c be the class of control automata with respect to
Ec. If Qeséc and Oc is the minimal observation automaton with respect to Eo

that contains C, then Oceséc.

Proof: Let T be a state of O c and a an uncontrollable event. Recall that
T is a non-empty subset of the states of C and T ° a is defïned if s • a is
defined in C for at least one s in T. If a is uncontrollable, the fact that C is
a control automaton implies that s*G is always defined. •

Applying the constructions in the reverse order does not always yield an
observation automaton. We must take care of the possibility that some
unobservable and uncontrollable events are not defined:

PROPOSITION 5.7: Let sé0 the class of control automata with respect to Zo.
IfOesé0 and Co is the minimal control automaton with respect to Sc that
contains C, then CQesé0 if and only if the transition function of O is defined
for allo e^n^uo-

Proof: If the transition function of O is defined for all a e l „ c Pi £H0, then
we do not add any unobservable transition in the construction of Co. So if
O did loop on all unobservable events, Co has the same property. Conversely,
if there is a state s in O such that s • er is not defined with a e Huc D Swo, then
in constructing Co we will add a new transition s * a = u and the resulting
automaton will not be in sé 0. •

Informatique théorique et Applications/Theoretical Informaties and Applications



CONTROL PROBLEMS IN DISCRETE EVENT PROCESSES 567

6. CONTROL UNDER PARTIAL OBSERVATION AND DISTRIBUTED CONTROL

6.1 The Control Problem with Partial Observation

In this section, we want to characterize solutions to the problem of con-
structing a controller that can function under partial observation. Hère we
are given two subsets of S : Hc are the controllable events, and So are the
observable events. We want to construct controllers that prevent or authorize
events in Ec while getting only the information in 20.

The control problem with partial observation is the following:
Let se\c = sé'o H se\ be the class of observation automata with respect to Eo

and control automata with respect to 2C. Given a proces s D, and a spécification
Z such that Z ̂  D, does there exist an automaton X G se OC such that

We will solve this problem by combining the results of Theorem 4.2 on the
control problem, and Theorem 5.4 on the observation problem. We define,
for each automaton Z, the automaton

ocz=oCz.

THEOREM 6.1: The mapping OCZ has the following properties:
(i)

(ii) Z ^
(iii) For each X e se'oc, Z ̂  X => OCZ ̂  X.

Proof: (i) follows immediately from Proposition 5.6.
(ii) Holds, since Z g C z by Theorem 4.2, and C z ^ O C z by Theorem 5.4,
(iii) Let Xsséoc, Then if Z^X, we have CZ^X by Theorem 4.2, since

Xeséc. So OC z^X by Theorem 5.4, since X e ^ 0 . Thus OCZ^X. •

COROLLARY 6.2: The control problem with partial observation has a solution
if and only if

= DxOCz.

6.2 Distributed Control

We now have the tools to solve the problem of distributing the control
among several controllers that can control or observe different sets of events.
The problem, called the distributed control problem with global spécification,
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can be stated as:
Let s#0Ci be a finite family of classes of observation and control automata

with respect to Do. and Ec.. Given a process D, and a spécification Z such that
Z ^ D , do there exist automata X;G.s/oc. such that

To solve this problem, we sîmply apply to Z the construction of the preceding
section for each class ser

oc., yielding a family of mappings OCZ..

THEOREM 6.3: The distributed control problem with global spécification has
a solution if and only if

z=Dxnocz..

Proof: Since Z ̂  D, and Z ̂  OCZ. for each i, we have that

On the other hand, if a solution exists, we have that Z^X f for each i, thus
Z.^X£. Multiplying those together, along with D, we get

Notes: Necessary and sufficient conditions for the solution of the distri-
buted control problem with global spécification appear in [5], where they are
expressed in terms of language properties.

7. AN EXAMPLE

Suppose three rooms are connected with doors as indicated in following
diagram:

Each door, labelled A, B, C or D can allow objects to move in either
direction. Observable and/or controllable events will be, for example, of the
form Ain or Cout meaning that an object just passed through a door in a
given direction (fixing arbitrarily the "in" direction as left to right). We are
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to construct two controllers, one at Site 1 and one at Site 2, that should
prevent two objectsfrom being in the same room simultaneously. The control-
ler at Site 1 can observe events at doors A, B and C, and the controller at
Site 2 events at doors A, B and D. Six events are controllable, i. e. all except
Aout and Bout. Is it possible to distribute these controllable events among the
two controllers such that they can enforce the constraint, while allowing
maximum freedom to objects?

The following automaton represents the spécification Z. Each state displays
expïicitly the position of objects and we can take the "empty" state as initial.
(For clarity, we labeled only the "in" arrows since all events are réversible.)

Figure 1. - The spécification Z.

We can easily construct the observation automata OZ l and OZ2 (Figure 2)
giving the partial view of the spécification Z from Site 1 and Site 2 respec-
tively.

If these two automata function together, it is quite easy to convince oneself
that the product has only eight accessible states and there is a natural
correspondence with the eight original states of the spécification. Indeed,
states of the product can be thought of as non-empty intersections of states
of each of the observers.

If the number of objects is unbounded, the whole process has an infinité
number of states. But since we are interested only in enforcing the spécifica-
tion, we can model the whole process D by adding deadlock states (the
"alarm" states) to the spécification, and directing to them possible events
that violate the constraint. In Figure 33 the round states represent these states.
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Figure 2. - Observation automata OZ l for Site 1 and OZz for Site 2.

but

Figure 3. — The process D.

As for control stratégies, suppose fîrst that we choose the obvious distribu-
tion of controllable events:

Site 1 : Ain, Cin, Cout

Site 2 : Bin, Din, Dout

Controllable events distribution (1)
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Figure 4 shows parts of the automata OCZl and OCZ2 that result from
this choice (with the state u resulting from the 'control' construction). These
fragments shows explicitly that the séquence Ain Bin Cin Din is defined in both
automata, and since it is also defined in D, it will be defïned in the product
D x OCZl x OCZ2. But the séquence Ain Bin Cin Din is not in the
spécification Z, so there is no solution with this choice of strategy.

Figure 4. - Partial automata OCZ i and OCZ2 for distribution (l).

An alternate strategy is the following:

Site 1 : Ain) Cout, Din

Site 2 : Bin, Dout, Cin

Controllable events distribution (2)

This distribution, curiously, assigns control of events that are not observa-
ble from the site. For example, Site 1 will control event Din, which is unob-
servable from the site. For this choice, a solution exists. It can be obtained
simply from the two observers of Figure 2, by disabling, in a given state, all
the events that are undefined but controllable from the site. We obtain the
two controllers of Figure 5.

In order to prove that this is a solution, we have to show that the product
of these two automata with the process D is contained in the spécification Z.
It suffice to verify that all events that could lead to an alarm state are
disabled by one of the controllers. There are just 6 states to check. For
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Figure 5. - Control strategy for Site 1 and Site 2 (disabled events in italics).

example, if the two controllers are in states:

and

l e

- 1 —

then the process is in state

The events Ain and Bin must be disabled (as one can seen in Figure 3).
But the fîrst controller disables events Ain and Cout, and the second disables
events Bin and Dout. The vérification is just as elementary for the 5 other
states that could lead to an alarm state.

8. CONCLUDING REMARKS

In this paper, we obtained new sets of necessary and sufficient conditions
for the solution of problems in the theory of control of discrete event Systems.
Lemma 3.1 pro vides a unifying setting for design problems, which we applied
successfully to classical control and observation problems. It also suggests
that other classes of automata could be considered in order to solve other
kinds of design problems.

Further work includes investigation of the range problem. In [5] the follow-
ing problem is solved. With the notations of section 6.2, given ZrgZ'^D
where Z and Z' are respectively a minimal and a maximal spécification, does
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there exists controllers Xt e srfoc. such that

A necessary and sufficient condition for the existence of a solution is easily
seen to be

Dxnocz<z'.
Furthermore, if a solution exists, then the product D x II Xt where Xf = OCZ.
is always non-blocking (simply because anything defined in this product must
be marked by Z', thus by D).

A more difficult problem consists in asking for the existence of controllers
such that

Again, a necessary and sufficient condition is that Dx IIOC z .gZ', but there
is no simple way to ensure that the product is non-blocking.

We also intend to explore complexity issues, especially as regards the
observation construction, which can grow exponentially. These issues are
crucial in the commutation and télécommunication problems around which
we developed this model.
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