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FINITE DEGREES OF AMBIGUITY IN PATTERN LANGUAGES (*)

by A. Mateescu (1) and A. Sacomaa (1)

Abstract — The paper investigates nondeterminism and degrees of nondeterminism in representing
words according to a pattern given a priort The 1ssues involved belong to the basic combinatorics of
words Our man results concern decidability and construction of finite degrees of nondeterminism

1. INTRODUCTION

There has been much interest recently in patterns and pattern languages.
(See, for instance, [3], [5], [6], [8] and their references). Indeed, a natural
way of describing a given sample of words is to exhibit a common pattern
for the words. Such an approach is especially appropriate if the sample is
growing, for instance, through some learning process. Finding patterns for
a sample sets is, thus, a typical problem of inductive inference.

Pattern languages in the sense understood in this paper were introduced in
[1]. The essential difference between the two cases, where the empty word
A can or cannot be substituted for the variables, was studied in [5]. It was
also observed that many problems in combinatorics of words, ranging from
the classical ones discussed in [11] to the more recent ones discussed in
[2] and [7], can be expressed in terms of the inclusion problem for pattern
languages. The same holds true for certain problems in term rewriting, [8].
From this point of view it is not surprising that the inclusion problem turned
out to be undecidable, [6].

Given a terminal word w and a pattern «, it may happen that w “follows”
the pattern « in several ways. In other words, there are several assignments for
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234 A. MATEESCU, A. SALOMAA

the variables in a, each of which gives rise to w. This kind of nondeterminism
or ambiguity in patterns will be investigated in this paper. Indeed, the classical
language-theoretic notions of unambiguity, inherent ambiguity and degrees of
ambiguity (see [10]) find their natural counterparts in the context of patterns.
The proofs make use of various aspects in combinatorics of words. The
case of a finite degree of ambiguity greater than one turns out to be rather
involved. In decidability issues, modifications of the result by Makanin, [9],
can be used.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let X be an alphabet (of terminals) and V' an alphabet (of variables)
such that X NV = &. Let H(X, V) (resp. H4 (X, V) be the set of all
morphisms (resp. nonerasing morphisms)

h: (SUV) >zt

such that h(a) = a for all a € .

Nonempty words o over ¥ U V are referred to as patterns. A pattern
a € (U V)T defines the languages:

Lg(a)={w|h(a)=w, forsome he H(XZ,V)}
Lyg(a) ={w|h(a)=w, forsome he Hy (2, V)}.

The languages Lg (o) and Ly g (o) are referred to as pattern languages.
Sometimes we speak of FE-patterns and N E-patterns (“erasing” and
“ponerasing”) to indicate which of the languages we are interested in. Also
the alphabet ¥ may be indicated in the notation: Lg («, %) or Ly g (a, ).
This is the case especially if ¥ is not visible from «, that is, all letters of
3; do not occur in a.

We now come to the central notions of this paper. It may happen that a
word w in Lg (o) or Ly g () has several “representations”, that is, there are
several morphisms h satisfying w = h (). For instance, the terminal word
w = a” ba" possesses 8 representations in terms of the pattern a = xyz. (The
number is 7 if o is viewed as an NV E-pattern.) We express this by saying
that the degree of ambiguity of w with respect to a equals 8. Whenever
important, we indicate whether we are dealing with the E- or N E-case.

The degree of ambiguity of a pattern o equals the maximal degree of
ambiguity of words w in the language of «, or infinity (co) if no such
maximal degree exists. More formally, we associate to a pattern « over
¥ UV and a word w € X7 the subset S (o, w, ) of H (X, V), consisting
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FINITE DEGREES OF AMBIGUITY IN PATTERN LANGUAGES 235

of morphisms h such that h(a) = w. The cardinality of this subset is
denoted by card (a, w, ). (We make here the convention that morphisms
differing only on variables not present in o are not counted as different).
The degree of ambiguity of o equals k = 1 iff

card (o, w, ) S k, forall w € Lg (o),
and

card (a, v, T) =k, for some w' € Lg (a).

If there is no such k, then the degree of ambiguity of o equals co. For k = 1,
o is also termed unambiguous and, for k > 1, a is termed ambiguous.

Remark: The terminals actually appearing in « constitute a subset X,
maybe empty, of ¥. Indeed, any pattern over ¥’ U V is a pattern also over
¥ UV, where ¥/ C X. In the definition of the degree of ambiguity we
actually specified the pair (o, ¥). However, it is pleasing to observe that, in
fact, it suffices to specify only o because the degree is independent of the
choice of ¥. The following argument justifies this observation.

If o contains no terminals (that is, ¥’ is empty), then the degree of
ambiguity of « is 1 or oo, depending on whether « contains occurrences of
one or more than one variable. If ¥’ contains at least one terminal a, we
denote by g: X* — X'* the morphism keeping the letters of ¥’ fixed and
mapping the letters of ¥ — ¥’ into a. Clearly, the degree of ambiguity does
not decrease if the terminal alphabet ¥’ is replaced by . But it does not
increase either because, whenever w has m representations according to «,
then g (w) has at least m representations according to a. [

By the above remark, we speak of the degree of ambiguity of a pattern
o (without specifying the alphabet). The above definitions were carried out
in the F-case. The N E-case is analogous.

The notions are now naturally extended to concern languages. We do
this in the E-case. A pattern language L is ambiguous of degree k 2> 1 if
L = Lg(a), for some pattern o ambiguous of degree k, but there is no
pattern [ of degree less then & such that L = Lg (8). Here k is a natural
number or co. Again, if £ = 1 we say that L is is unambigous. Otherwise,
L (inhenrently) ambiguous.

It was shown in [1] that two N E-patterns are equivalent (in the sence that
they generate the same language) exactly in the case they are identical up to a
possible renaming of variables. This yields immediately the following result:

vol. 28, n° 3-4, 1994



236 A. MATEESCU, A. SALOMAA

THEOREM 1: The degree of ambiguity of an N E-pattern o equqls ghe degree
of ambiguity of the pattern language Ly (o).

Theorem 1 does not hold for E-patterns: Ly (X) = Lg (XY) but the
degrees of ambiguity of the patterns X and XY are 1 and oo, respectively.

TueoREM 2: For every E-pattern (containing at least one variable), there is
an equivalent E-pattern whose degree of ambiguity is co. Conversely, there
are E-patterns (for instance, XYY X ) such that the degree of ambiguity of
every equivalent E-pattern, and hence also the degree of ambiguity of the
generated language, equals oo.

Proof: To prove the first sentence, it suffices to replace all occurrences of
a variable X in the pattern with X7 X3. The second sentence follows by a
simple case analysis concerning patterns equivalent to XYY X. []

In what follows we do not make any distinction between FE- and
N E-patterns because the results hold in both cases.

THEOREM 3: Every pattern containing occurrences of only one variable X is
unambiguous. Every pattern containing occurrences of at least two variables
X and Y but of at most one terminal a is ambiguous of degree co.

Proof: The first sentence follows by a length argument: for every w, the
value h (X) is uniquely determined. To prove the second sentence, we first
replace in the given pattern the other variables (if any) with a. The resulting
pattern contains m 2 1 X’s, n 2 1Y’s and p 2 0a’s. Given any k, we
can find a 2; such that

me+ny+p=z

has more that k positive solutions (z, y). This means that a** has more than
k representations according to the given pattern. []

3. DETERMINISM AND NONDETERMINISM

We now continue the study begun in the preceding section and characterize
some basic cases of ambiguity and nonambiguity.

THEOREM 4: Every pattern « satisfying the following two conditions is of
oo degree of ambiguity. (i) a contains occurrences of at least two variables.

(ii) Some variable occurs in a only once.

Informatique théorique et Applications/Theoretical Informatics and Applications
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Proof: Let Z be the variable that has only one occurrence in . We’ll
consider the following two possibilities:

Case 1: The pattern o starts or ends with Z. Assume that o ends with Z
(the situation « starts with Z is symmetric). Hence, a = 8 Z, where 3 is a
pattern that contains at least one variable, but Z does not occur in §. Let
X be the leftmost variable in 3, i. e. § = X v, where v is a pattern. (We
assume without loss of generality that (3 starts with a variable). Therefore,
a = X~vZ and Z does not occur in X +.

Now, assume to the contrary that o has the degree of ambiguity &k, where
k < co. Let w be a terminal word that has k different decompositions with
respect to a. Let u be a fixed terminal word. Consider the morphism f,
defined as: f(X) = w and f(Y) = u, for any variable Y, Y # X. We
obtain f(a) =t = wo.

The terminal word ¢ has one decomposition with respect to « corresponding
to the morphism f and, moreover, ¢ has k other decompositions with respect
‘to «, corresponding to the k possible decompositions of w, each such
decomposition being modified as follows: if Z was substituted by 7 in the
originally considered decomposition of w, then Z is substituted by rv, in
order to obtain ¢, and any other variable Y continues to be substituted as
in the originally considered decomposition of w. Thus, ¢ has k + 1 different
decompositions with respect to «, contrary to the assumption that o has the
degree of ambiguity k.

Case 2: The variable Z has only one occurrence in o and this occurrence
is neither the leftmost nor the rightmost occurrence of a variable in a.
Hence, o = X B Z v Y, where 3, v are patterns, X, Y, Z variables (possibly
X =Y) and Z does not occur in X Y. Again, assume to the contrary
that o has the degree of ambiguity &, where k£ < oo, and let w be a terminal
word that can be decomposed in & different ways with respect to «.. Hence,
there are p;, ¢, i, ¢ = 1,..., k, such that w = p; ; q, and Z was substituted
by 7;. Consider the morphism f, such that: f(X) = w, f(Y) = w, and
f(Q)=wu,forany Q, Q # X, @ #Y, and u is a fixed, arbitrary terminal
word. (Note that, if X = Y, then f continues to be well-defined.) Let
t be the terminal word f(«). Hence, ¢ = wsw, where s = f(8Z7).
Note that ¢t has one decomposition, with respect to ¢, corresponding to the
morphism f. Moreover, ¢t = p; r; q, 8p; 7i g;, for 2 = 1,..., k. Each such
decomposition of ¢ is corresponding to the substitution of Z in o with the
terminal word r; g;sp; 7;, and the remaining variables are substituted as in
the original decomposition of w. Therefore, altogether, ¢ has k& + 1 different
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238 A. MATEESCU, A. SALOMAA

decompositions with respect to «, contrary to the assumption that the degree
of ambiguity of o is k. [

Theorems 3 and 4 determine the degree of ambiguity of all patterns except
patterns ¢« satisfying each of the following three conditions: (i) o contains
occurrences of at least two variables. (ii) o contains occurrences of at least
two terminals. (iii) Every variable occurs in o at least twice. Indeed, all
tricky cases fall among such patterns «. Let us consider patterns with two
occurrences of two variables, separated by terminal words. Such patterns
belong to one of the three types

XwYw Xw3Y, XuYw YwsX, Xur XwyYwsY. .

We mention without proof that the first two types are always of degree of -
ambiguity 1 or co, whereas a finite degree # 1 is possible in the third type.
We will return to this matter in Section 5.

The following theorem serves as a basis in many constructions.

THEOREM 5: The pattern X a Y X bY is unambiguous.

Proof: Assume that for some terminal words wuy, vi, uz, ve there is the
equality:

(1) u1 avy uq bvy = ug avy ug buvs

Note that |u; avi| = |u; bu;|, ¢ = 1, 2. Thus, the equality (1) leads to the
next two equalities:

2) U1 AV = U avV2 and u1 bvyr = ug bvy

Without loss of generality, we can assume that |u;| < |u2| and, consequently,
[v1] 2 |vz|. Thus, there are terminal words ug and v3 such that uy = uy u3
and v1 = w3 v. Hence, from (2) we deduce that:

avs = uza and bvs = us b.

The above system of equations has the unique solution uz = vz = A
Therefore, we obtain u; = wuy and v; = vy and thus, the pattern is
unambiguous. []

Composition can be applied to patterns in the natural fashion: variables are
uniformly substituted by patterns. If in the pattern of Theorem 5 the variable
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X is replaced by X7 a7 X3 bY; (that is, the original pattern with renamed
variables) and the variable Y is left unchanged, we obtain the pattern

X1aY1 X1bY1aYX1aY1 X1bY70Y.

Clearly, also this pattern is unambiguous, by Theorem 5. In fact, the next
theorem is a corollary of Theorem 5.

THEOREM 6: Compositions of unambiguous patterns are unambiguous.
Unambiguous patterns of arbitrarily many variables can be effectively
constructed.

4. DECIDABILITY

Using the general theorem of Makanin, [9], the following results can be
obtained quite independently of our other results.

THEOREM 7: The following problems are decidable, given a pattern o and a
natural number k. Is the degree of ambiguity of « equal to k, greater than k or
less than k? Consequently, it is decidable whether or not o is unambiguous.

Proof: It was shown in [4] how Makanin’s decidability can be extended
to concern systems of equations and inequalities. Inequalities z # z' are
essential in expressing that a given equation possesses two solutions. The
details of the argument are left to the reader. [

Theorem 7 does not yield a method of deciding whether or not the degree
of ambiguity of « is co. Indeed, this is an open decision problem. As regards
decision methods for pattern languages, the results of Theorems 1 and 7 can
be combined for IV E-patterns. The situation is trickier for F-patterns. In
fact, even the decidability of the equivalence problem is open for E-patterns.

We mention, finally, that Theorem 6 gives a simple way of going from a
system of equations to a single equation. Consider a system of equations

(*) aizﬁia i=1,"')n,

where o; and ; may contain variables and constants (that is, terminals).
Choose an unambiguous pattern P (X1,..., X,) of n variables X;. Then
(*) has a solution exactly in the case the equation

P(al,..-,an)zp(ﬂl,...,ﬂn)
has a solution.
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5. FINITE DEGREE OF AMBIGUITY

It is rather difficult to exhibit patterns with the degree of ambiguity k£ > 1,
where k is finite. Indeed, it was our conjecture for a long time that 1 and
co are the only possible degrees.

Notations: If t € X* then first(t) (last(t)) denotes the leftmost (rightmost)
letter of ¢. Moreover, pref(t) (suf(t)) is the set of all proper prefixes (suffixes)
of t.

DerniTiON 8: Let @ = a (X71,..., X») be a pattern. A nontrivial solution
of the equation:

a(X1,..., Xn) = a(X},..., X))

is a 2n-tuple of terminal words, (z1,..., Zn, Z],..., Z,), such that:
a(Tiy. .., Tn) = a(z],..., zh)
and, moreover, (z1,---, Tn) # (z},..., z,,). O

LemMA 9: The pattern,

a=XuwXvwuY vvwY

has the degree of ambiguity 2, if u, v, w are nonempty words over the
alphabet ¥ = {a, b, c} such that:

® lul = || = |uwl,
(i) first(t) = last(t), for any t € {u, v, w},
(iii) pref (uvw) N suf (uvw) = & and pref (v) N suf (w) =G,
@iv) if t1 € pref (uv) and ty € suf (uwv), then t1t # tty for any t € L.
Proof: First, observe that the pattern o is ambiguous. For example:
~~ =~ e N— ——
a (wu, vwwwvw) =wu w Wy vwu wwwIw uvw UVWIW
= WUUVW, UV WUUVW, VWU VW, UVW VW
= o (wuuvw, vw).

It remains to prove that there is no terminal word ¢ that has 3 or more
decompositions with respect to a.

CLamm Aj1: The general form of nontrivial solutions of the equation:

o (X1, Y1) = a(Xa, )

Informatique théorique et Applications/Theoretical Informatics and Applications
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is:
z1=w(v uvw)i ¢, y1 = puvw (v 'uwu)j 7,
2 =w (v uvw)i Cuvwv, vy = (v ku)j 7,
where ( is a proper prefix of vuvw or A, 1 is a proper prefix of vvwu or
A i, j 2 0 and, moreover,
Cvwu p = vuvw( and NUVW U = V VWU .

Proof of Claim A;: Assume that x;, y1, 2, y2 are nonempty words over
¥ such that |z1| < |z2| and

(D T1 UVT] VWUY] UVWY1 = T2 UUTQ VWUY2 UVWY2.

Hence, there are x5, 3y} € X1 such that zo = 71 %), y1 = ¥}y and
lz5] = |yi| > 0. If follows from (1) that

) UVT] VWUY] Yo UVWY) = Th UVT] Th vWUY2 UVW.

Reading in the above equality a prefix of length |25 uv| and a suffix of
length |uvwy)|, we obtain

3) wory =zyuv  and  wvwyl = y3 uvw

for some z3,y3 € 1.

Note that z, cannot be a proper prefix of uv. (Otherwise z3 is a proper
suffix of wv and for ¢ = ww this contradicts condition (iv).)

Assume that zf, = uv. From (i) and (3) (second equality) we deduce
that y'l = vw and hence wvw = y3u. Using (i) it follows that w = u, a
contradiction.

Now, assume that z, = uvpi, ¥} = g2 vw for some words p1, ¢z, with
0 < |p1] = |g2| < |ul|. From the second equality of (3) we obtain

) uvwe = Y3 U
Hence, g is a proper suffix of u, i. e., u = ¢ g2 for some q; € £t. The
equality (4) becomes uvw = y3 g1. Thus ¢; is a proper suffix of w and a

proper prefix of u. But this contradicts the first part of condition (iii).
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242 A. MATEESCU, A. SALOMAA

Concluding, we deduce that |z}| = |yj| 2 |uvw|. Hence, z5 = uvg,
Y} = huvw, for some g, h € E* such that |g| = |h| + |w|. Therefore, the
relation (2) becomes:

1 vwuhuvwyz uvwh = guvriuvguwuys.

Considering prefixes and suffixes of the same length in the above equality,
we obtain:

&) 1 vwuh = guvz and wys wvwh = gurwuys.
From the second equality in (5), if follows that g cannot be a proper prefix of

w. (Otherwise, after simplification, a proper prefix of v is equal to a proper
suffix of w, contrary to the second part of condition (iii).)

Hence, g = wg', for some ¢’ € ¥*, with |¢'| = |h|. Thus, the relations
(5) become:

(6) z1 vwuh = wg' uvz; and 1y uwvwh = ¢ vwuys.

By a similar argument, z; cannot be a proper prefix of w. Thus, z1 = wz”,
for some " € ©*. Denote y2 = 3. From (6), it follows that

@) 2" vwuh = ¢’ wowz”  and ¢ wvwh = ¢ vwuy”.
Denoting ¢’ = v and h = u, the relations (7) become:

" (vwup) = (v vow) " and ¥ (wvwp) = (v vwu)y".

where |v| = |yl
Using a well-known result often called Lyndon’s Theorem, it follows that

®) ' = (wuww)¢ and ' = @wowu)q
where ¢, j 2 0 and:
©)] vuvw ( =  vwu i, NUVW U = Vowun.

Using (8) and (9) we obtain the general form of z1, z2, y1, y2 as in the
Claim A4;.
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End of the proof of Claim Aj.
Assume now the existence of an intermediate solution, (z’, y), of the
equation:

Q(Xl, Yi) = a(X27 YZ)-
i e, |z1] < |2'| < |72, ly2| < 19| < |y1| and
a($1, le) =o (xlv yl) = Cl($2, Z/2)

Cuam Az: If z1, *', x2, y1, ¥, y2 are terminal words with the above
properties, then:

1 =w(, y1 = puvw b uvwn,
' = wluvw, Y = buvwn,
z2 = wluvwbuvwm, Y2 =1,

where 8, 6, 1, p, (, 7 are terminal words that satisfy the system of equations
E = {e1, e, e3, €4, €5} with: __
(e1) Bvwub = Suvwb
(e2) nuvwp = Guvwn
(e3) Cvwup = fuvw(
(e4) Cuvwd = Tuvw(
(e5) nuvwé = mowun
and, moreover, |t| = |6| and |6] = |p|.
Proof of Claim Ay: From Claim A; we obtain that
(10) ' = w(vuvw)' Cp and Y =9 (v ku)j 7,

for some nonempty terminal words ¢ and ¢, such that ¢ is a proper prefix
of wvwv, 9 is a proper suffix of puvw and |p| + |[¢| = [v| + |uvw| =
lul + |wvwl.

Moreover, we obtain that:
(1 a(, y) = w(vuww) Couvw (v uvw)

Covwutp (v vwu)’ nuvw ¥ (vvwu)’ .

From the equality o (z1, y1) = a(z/, ¥') and (11) it follows that:

(12) wow (v wvw)' ¢ vwu puvw (v vwu) nuvw puvw
= puvw (v uww)* Co vwu P (v vwu)’ nuvw Y.
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244 A. MATEESCU, A. SALOMMA

Note that ¢ cannot be a proper prefix of uww. (Otherwise, after
simplification of ¢, it follows that a proper suffix of uwvw must be a proper
prefix of wvw, contrary to the condition (iii).)

Hence, ¢ = wvw 6 and ¢ = § uvw, for some words 6, § € ¥* such that ¢
is a prefix of v with |f| < |v|, and § is a suffix of p with |§] < |g|.
The equality (12) becomes:

13) (v uvw)i ¢Cvwu puvw (v ku)j NUVW [
= 0 uwvw (v uvw)’ ¢ uvw 6 vwu 6 vvw (v vwu) nuvw §

where:
(14) 0]+ 18] + 3lu| = [u| =|v|  and  |6] < |yl
Note that |u| 2 |6] + 3 |u| = |uvwé|.
Reading the suffixes of the equality (13), we deduce that:
as) U= puvwd
for some word p, with |[p| = |0|. If follows from (13) (reading
prefixes/suffixes of the same length) that
(16) (v uvw)i Cvwup = b uvw (v uvw)i ¢
and
S uvw (v ku)j nuvw p = 0 vwu § uvw (v ku)j 7.
Now, assuming that ¢ 2 1 and using (16), we have:
(vuvw) ™ v uvw Cvwu p = O uow (v uvw) ! vuvw C.

Using the equality (vwupu = vuvw( (see Claim A;) and using (15),
the above equality becomes:

(v wvw) ™! ¢ vwu puvw S vwu p
= 0 uvw (v uvw) ! ¢ vwu puvw 6.

Note that |6 vwu p| = |p uvw §|. From the suffixes of the above equality,
we obtain:

uvw 6 VWU p = vwu p uvw 6.

But, this is contradicts u # v.

Informatique théorique et Applications/Theoretical Informatics and Applications



FINITE DEGREES OF AMBIGUITY IN PATTERN LANGUAGES 245

Therefore, the only possibility is ¢ = 0. By a similar proof, we obtain
that also 5 = 0.

Note that, from (14), {v| 2 {0} + 3|u] = |# uvw| and from prefixes of
the equality « (2, ¥') = a (2, y2) we obtain that v = 6 uvw , for some
word , with |r| = |4].

Thus, from Claim Aj, (10) and (13), we obtain the first part of Claim
Ay, i e

1 = w(, y1 = puvw S uvwn
¢ =wluwb Y = Suvwn,
Ty = wuwvwfuvw, Y2 = 1.

It remains to verify the conditions satisfied by the terminal words 8, 6,
n, p, ¢, 7, L e., the second part of Claim Aj.

Reading prefixes and suffixes of the same length in the equalities
(1(1111, yl) = a('zI, y,’,) = Ol($2, y2)
we obtain the following 5 equalities:

an Cvwup = Guvw(

(from prefixes in a(z1, v1) = a(z', ¥')),

(18) Cuvw b vwud = T uvw uvw b
(from prefixes in a(z', ¥') = a(z2, ¥2)),

19) Cvwup uvvwd = uvw w uvw ¢
(from prefixes in a (z1, ¥2) = a(z2, ¥2)),

20) nuvw p uvw d = 6 uvw T vwun
(from suffixes in a(z1, y1) = a(z2, ¥2)),

21 nuvw é = Tvwun

(from suffixes in (7', ¥') = a(z2, ¥2)).
From (17) and (19) we obtain:

(22) Cuvw b = wovwul.
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246 A. MATEESCU, A SALOMMA
From (20) and (21) it follows that

23) nuvw p = duvwn.
From (22) and (18) we obtain:

24) Bvwu b = duvwb.

Therefore, from (24), (23), (17), (22) and (21) we can conclude that the
terminal words 6, 6, 1, {, 7, p should satisfy the following set E of equations:

(e1) Ovwud = Suvwb

(e2) muwvwp

(e3) Cvwup = Quvw(

(e4) Cuvwé = Tuvw(

Quvwn

(e5) nuvwé = mvwun
with the supplementary conditions |#| = [p| and [7| = |6].
End of the proof of CLaim As.

We will complete the proof of Lemma 9, proving the following:

CLamM A3: The system E from Claim A, with the supplementary conditions
|0l = |p| and |7| = |6, does not have solutions.

Proof of Claim Ajs: First, it is easy to observe that from conditions
(ii) and (iii) of Lemma A, it follows that for any two different words
t, t' € {u, v, w}, first(t) # first(¢') and last(t) # last(t'). Hence,
without loss of generality, we can assume that: first (u) = last (u) = aq,
first (v) = last (v) = b, first(w) = last (w) = c.

Consider now the following two sets:

A=1{0,6n,( 7}
and

B= {0’ 6, m, ¢, ,D}
From the system FE, we can deduce that the words from the set A
have the following important property: If ¢ € A, then for any ¢ € A,
first(t) = first(¢). Similarly, if ¢ € B, then for any ¢ € B,
last (t) = last(t'). The above property can be extended for prefixes of
words from A (for suffixes of words from B).

Thus, we’ll start a discussion concerning the possible shortest word among
the words: 6, 6, n, ¢, =, p.
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Case I : The shortest word is  and, moreover,
6] < 18] = I}, 16] < Inl, 18] < I

Note that §, p € B, |6] = |p| and therefore § = p. Let’s denote: § = p = &;.
Hence, § = &) &, ¢ = (j &1, for some nonempty words, 6}, (3. The equalities
(e1), (e3) and (e4) from E become:

(e11) & vwuby = 8 & uvw

(e31) (& vwu = §uvw(y

(e1) = (&Luvw ] = muvw (]

From (e11) if follows that last (8}) = last(w) = c. From (e31) we

obtain that last(¢}) = last(u) = a and from (eq1) it follows that
last (6}) = last(¢}), i. e. a = ¢, a contradiction.

Case Iy : The shortest word is § and, moreover,

181 < 161 = lnl, 16] < Inl, 6] < IC].

Note that §, 7 € A, |§| = |x| and therefore § = w. Let’s denote:
§ = 7w = &. Hence, 0 = &6), n = & nj, for some nonempty words,
5, M. The equalities (e1), (e2) and (es) from E become:

(e12) Ghvwuéy = vvwby 0

(e22) mMhuvwp = 85 uvwn)

(es2) mMmuvwés = vwulpm)

From (ej2) it follows that first(63) = first(u) = a. From (es3) we
obtain that first(ny) = first(v) = b and from (ez2) it follows that
first (nh) = first(03), i. e. a = b, a contradiction.

Case I3 : The shortest word is 7.

Denote 7 = &3 and observe that § = 83 €3, p = ph &3, ( = (3 &3, for
some nonempty words, &, p3, ¢5. The equalities (ez), (e3), (e4) and (es)
from E become:

(e23) Euvwpy = 0 &3 uvw

(ess) (3&svwupy = 083 uvw(

(e43) (& uvwéy = Tuvw

(es3) &uvwéy = mvwu

From (e33) and (e43) it follows that last (o) = last ((3) = last (83).
From (ez3) we obtain that last (p5) = ¢ and from (es3) it follows that
last (83) = a. Therefore, we obtain a = ¢, a contradiction.
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Case I4: The shortest word is (.

Denote ( = &4 and observe that § = &40y, n = &), ™ = &a 7y, for
some nonempty words, 6}, 7}, 7. The equalities (e2), (e3), (e4) and (es)
from F become:

(e24) Myuvwp = O uvwéan

(e34) wvwup = Fjuvwéy

(e44) wvwés § = mhuvwéy

(es4) mMyuvwésé§ = myvwué)y

From (e24) and (es4) it follows that first () = first(6}) = first (n}).
From (e34) we obtain that first(ny) = b and from (esq4) it follows that
first(zy) = a. Therefore, we obtain a = b, a contradiction.

Now we consider the situation when the shortest length of a word in the
set C = {¢, n, 0, 6} is reached by exactly 2 words from this set. There are
6 possible combinations as follows:

Case Jy: The shortest words are ¢ and 7, i. e. |(| = [n| and all others
words from the set C are longer.

Because (, 7 € A, it follows that { = n = & and 6 = & 65 for nonempty
word 6.

The equalities (ez) and (e3) from F become:

(e25) wvwp = 05 uvwés

(e35) vwup = O uvwés

Hence, first(0;) = a and first(8}) = b, a contradiction.
Case Jp : The shortest words from C are ¢ and 6.

The equality (e3) from E becomes:

(e36) wvwup = uvw(

Thus, first(v) = first(u), a contradiction.

Case J3 : The shortest words from C are ¢ and 6.

Because (, 6§ € A, and, moreover, |§| = |x| it follows that { = 6 =7 = &7
and 6 = &; 6, for some nonempty word 6.

The equalities (e1) and (e3) from E become:

(er7) Orvwuér = wvwéy 65

(e37) vwup = huwvwéy

Hence, first(6,) = a and first (6;) = b, a contradiction.
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Case Jy : The shortest words from C are n and 6.

Because 7, 6 € B, and, moreover, |6| = |p] it follows thatp = 6 = p = &
and § = 83 &g for some nonempty word .

The equalities (e1) and (es) from E become:

(e18) Egvwuby = 8 &g uvw

(ess) Esuvwéy = mowu

Hence, last (§3) = c and last (§5) = a, a contradiction.
Case Js : The shortest words from C are 1 and 6.

The equality (e5) from E becomes:

(es9) nuvw = wovwu

Thus, last (w) = last (u), a contradiction.

Case Jg : The shortest words from C are # and 6.

The equality (e;) from E becomes:

(e110) vwu = uvw

Thus, we obtain again a contradiction.

All the remaining cases lead to contradictions, because one can argue:

n # 7 (see (e5)), 6 # 6 (see (e1)), { # p (see (e3)) and also, ¢ # 6
(see (e3)).

This completes the proof of Claim A3 and the proof of Lemma 9, too. [

CoroLLARY 10: The pattern,
B=XabXbcaY abcY
has the degree of ambiguity 2.

Proof: Take in Lemma9, 4 = a, v = b and w = ¢ and note that
conditions (i)-(iv) are satisfied. []

Notations: Let v be the unambiguous pattern from Theorem 5 and let «;
be the pattern o from Lemma 9, for:

u = a* ba® ba?, v = ba” beacaabcab, w = caabcbeabeabebeabe.

Lemma 11: The pattern,
o=7(u(X,Y), XB(Q, R))
with the variables X, Y, Q, R has the degree of ambiguity 3.
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Proof: Let ap be the pattern from Lemma 9 for some fixed values ug, vo,
wp of the terminal words, u, v, w. Consider the pattern:

O'l = "Y(ao (X1 Y)a XIB(Qa R))

where v is the unambiguous pattern from Theorem 5 and (3 is the pattern
from Corollary 10.

Cramv Cy : The pattern o' has the degree of ambiguity at most 3.
Proof of Claim C; : Observe that the equality
o (X,Y,Q, R) =t,
for some terminal word ¢ € ¥*, leads to the equalities:
ap (X, Y) =t, X B(Q, R) =1,
for some unique words t1, t2 € ¥* (v is an unambiguous pattern).
Consider now the following two possible situations:

Case K1 : The equation o (X, Y') = t; has at most one solution, (zg, ¥o)-

It follows that the equation zg G (@, R) = t2 leads to at most one value
of B(Q, R). Consequently, because 3 has the degree of ambiguity 2, there
are at most two pairs of terminal words, (¢, r’), (¢’, r"’) that satisfy the

equality zo 3 (Q, R) = t2. Hence, in this case, ¢t has at most 2 possible
decompositions with respect to o’.

Case Kj: The equation a9 (X,Y) = t; has 2 solutions, (z1, y1),
($2, Zl/2)-
If follows from Claim A; (see the proof of Lemma 9) that

x1 = wo (¥ uo vo wo)’ ¢, 2 = wo (v ug vo wo)' € ug vo wo ¥,

for some terminal words v, ¢, and ¢ 2 0.
From the equality z3 8 (Q, R) = t3, we obtain

) B(Q, R) =t
and from the equality z; 8(Q, R) = t3 it follows that

I B(Q, R) = ugvowo vth.

The equation (I) has at most 2 solutions, say (g1, r1) and (g2, 72). The
equation (I) has at most 1 solution (g3, r3), because the value of 8 (Q, R)
has a prefix that starts with ug v wo. (See the proof of Lemma 9, Claim Aj;.)
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Therefore, altogether, ¢ has at most 3 decompositions with respect to o/,
corresponding to:

(=1, ¥1, g3, 73), (z2, ¥2, @1, T1), (x2, y2, @2, T2).
End of the proof of Claim C;.

CLamM Cs: For the values:

uo = a*ba® ba*, vy = ba’ beacaabeab, wg = caabcbcabecabebeabe,

the pattern o' (= o) has the degree of ambiguity 3.
Proof of Claim Cs : From Lemma 9, we have that:
B (ca, abcbe) = B (caabe, be) = ¥,
where ¥ = caabcabcaabebeabeabebe.
In a similar way, we obtain that:
~ ap (wu, wwwvw) = oy (wuvvw, vw) = ¥,

where ¥/ = h (¥) and the morphism k is defined by: h (a) = u, h(b) = v,
hic) = w.

Notations:
1 = wu, Y1 = uVwWow,
T3 = WUUVW, Y2 = VW,
Q1 = ca, r1 = abcbe,
q2 = caabe, ro = be.

Note that in all the above solutions we have v = A.
Now we’ll define the values of u, v, w in such a way that the equation

*) B(Q, R) = vvw B (q1, 1) = uvow ¥

will have a solution (g3, r3). (Note that this equation has at most 1 solution,
because u is starting with a.) Moreover, the values of u, v, w will satisfy
the conditions (i)-(iv) from Lemma 9.

The equation (*) becomes:
(**) QabQbcaRabc R = uvw V.
For simplicity, we can consider that R = ¥. Hence, we obtain from (**):

(*%%) Q abQ bca ¥ abe = vvw.
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It is easy to check that there is no value of @ with |@Q] < 11 such that
the corresponding values of u, v, w are satisfying the conditions (i)-(iv)
of Lemma 9. Assume now that |Q| = 12. It follows from (***) that
|u] = |v] = |w| = 18. The resulting value of w is wo = caabcbcabeabebeabe.
Using (**%), it is easy to observe that we can choose the value of v as being
vo = ba” beacaabcab, and the value of u as being ug = a* ba® ba*.
Note that ug, vg, wo satisfy the requirements (i)-(iv) of Lemma 9.
End of the proof of Claim Cy. [J

TueEOREM 12: Explicit examples of patterns with degrees of ambiguity 2
and 3 can be given.

Comment: Our example of a pattern of degree 3 has length 324 and the
shortest word that actually has 3 different decompositions with respect to
this pattern has length 1018. On the other hand, our example of a pattern of
degree 2 given in Corollary 10 is rather simple: X ab X bcaY abcY.

By forming compositions and using Theorem 6, our last results is obtained
as a corollary of Theorem 12.

THEOREM 13: For any m 2 0 and n 2 0, a pattern with the degree of
ambiguity 2™ 3" can be effectively constructed.

It is worth mentioning that we have not been able to find any inductive way
of going from the degree of ambiguity & to the degree k+ 1. Thus, we cannot
exhibit patterns with an arbitrarily given finite degree of ambiguity, although
we can do so for patterns whose degree of ambiguity is arbitrarily high.

6. CONCLUSION. OPEN PROBLEMS.

Our results deal with pattens and pattern languages and, thus, are
interconnected with all related areas, already indicated in the Introduction.
However, the results can also be viewed to concern the basic theory of word
equations as follows.

Let P(Xi,..., Xn) be a pattern of n variables X;. The pattern P defines
infinitely many individual equations
©) P(Xi,..., Xn) =12,

where Z ranges over L 1. For given P and Z, we denote by N (P, Z)
the number of solutions of (*), that is, the number of n-tuples of words
(ws,..., wy) over ©* satisfying (*). For each pair (P, Z), N (P, Z) is a
nonnegative integer. For a fixed P, there are three possibilities.
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@ N(P, Z) £ 1, for all Z.

(ii) There is a Z' such that N (P, Z') > 1 but the numbers N (P, Z)
possess an upper bound, that is, for some k, N (P, Z) £ k for all Z.

(iii) The numbers N (P, Z) possess no upper bound, that is, for every k,
N (P, Z') > k holds for some Z'.

We have been able to exhibit extensive classes of patterns for which (i)
or (iii) holds. For instance, (i) holds if the number of variables n = 1, and
(1ii) holds if n > 1 and P is “linear” with respect to some variable (see
Theorems 3 and 4). According to our main results (Theorems 12 and 13),
also (ii) is possible. However, it is an open problem, and in our estimation
a very fundamental one in the theory of word equations, whether all finite
degrees of ambiguity can actually by constructed. By theorem 6, it suffices
to carry out the construction for prime degrees. We conjecture that such
a construction is possible. Since arbitrarily large degrees can be obtained
(Theorem 13), it would seem rather strange if some degrees were “missing”.

The most interesting open decision problem is the decidability status of -
(iii). “Almost all” patterns seem to satisfy (iii), and yet Makanin’s Theorem
is not directly applicable to this case.
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