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FINITE DEGREES OF AMBIGUITY IN PATTERN LANGUAGES (*)

by A. MATEESCU (*) and A. SALOMAA (})

Abstract - The paper investigates nondeterminism and degrees of nondetermimsm in representing
words according to a pattern given a priori The issues involved belong to the basic combinatorics of
words Our main results concern decidabihty and construction offimte degrees of nondetermimsm

1. INTRODUCTION

There has been much interest recently in patterns and pattern languages.
(See, for instance, [3], [5], [6], [8] and their références). Indeed, a natural
way of describing a given sample of words is to exhibit a common pattern
for the words. Such an approach is especially appropriate if the sample is
growing, for instance, through some learning process. Finding patterns for
a sample sets is, thus, a typical problem of inductive inference.

Pattern languages in the sensé understood in this paper were introduced in
[1], The essential différence between the two cases, where the empty word
À can or cannot be substituted for the variables, was studied in [5]. It was
also observed that many problems in combinatorics of words, ranging from
the classical ones discussed in [11] to the more recent ones discussed in
[2] and [7], can be expressed in terms of the inclusion problem for pattern
languages. The same holds true for certain problems in term rewriting, [8].
From this point of view it is not surprising that the inclusion problem turned
out to be undecidable, [6],

Given a terminal word w and a pattern a, it may happen that w "follows"
the pattern a in several ways. In other words, there are several assignments for
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2 3 4 A. MATEESCU, A. SALOMAA

the variables in a, each of which gives rise to w. This kind of nondeterminism
or ambiguity in patterns will be investigated in this paper. Indeed, the classical
language-theoretic notions of unambiguity, inherent ambiguity and degrees of
ambiguity (see [10]) find their natural counterparts in the context of patterns.
The proofs make use of various aspects in combinatorics of words. The
case of a finite degree of ambiguity greater than one turns out to be rather
involved. In decidability issues, modifications of the resuit by Makanin, [9],
can be used.

2. DEFINITIONS AND PRELEMINARY RESULTS

Let E be an alphabet (of terminais) and V an alphabet (of variables)
such that S n V = 0 . Let H (S, V) (resp. H+ (S, V)) be the set of all
morphisms (resp. nonerasing morphisms)

h: (S U V)* -f E*

such that h (a) = a for ail a G E.
Nonempty words a over S U V are referred to as patterns. A pattern

a G (S U y ) + defines the languages:

LE (a) = {w | h (a) = w, for some h G H (E, V)}

LNE (OC) = {w\h (a) = w, for some h G iî+ (S, y )} .

The languages LE (a) and £ # £ (a) are referred to as pattern languages,
Sometimes we speak of E-patterns and NE-patterns ("erasing" and
"nonerasing") to indicate which of the languages we are interested in. Also
the alphabet E may be indicated in the notation: LE (Û, S) or LNE (a> S).
This is the case especially if E is not visible from a, that is, all letters of
S do not occur in a.

We now corne to the central notions of this paper. It may happen that a
word w in LE (a) or LNE (CK) has several "représentations", that is, there are
several morphisms h satisfying w = h(a). For instance, the terminal word
w — a7 ba7 possesses 8 représentations in terms of the pattern a — xyx. (The
number is 7 if a is viewed as an iVi?-pattern.) We express this by saying
that the degree of ambiguity of w with respect to a equals 8. Whenever
important, we indicate whether we are dealing with the E- or NE-ca.se.

The degree of ambiguity of a pattern a equals the maximal degree of
ambiguity of words w in the language of a, or infinity (oo) if no such
maximal degree exists. More formally, we associate to a pattern a over
S U V and a word w G S4* the subset S (a, w, E) of H (S, V), consisting
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FINITE DEGREES OF AMBIGUITY IN PATTERN LANGU AGES 235

of morphisms h such that h(a) = w. The cardinality of this subset is
denoted by card (a, w, E). (We make here the convention that morphisms
differing only on variables not present in a are not counted as different).
The degree of atnbiguity of a equals k ^ 1 iff

(a, ir;» 2) £ fc, for all w e LE (a),

and

(a, tu', E) = /c, forsome u/ G £ # (ce)-

If there is no such h, then the degree ofambiguity of a equals oo. For k = 1,
a is also termed unambiguous and, for fc > 1, a is termed ambiguous.

Remark: The terminals actually appearing in a constitute a subset E',
maybe empty, of E. Indeed, any pattern over E' U V is a pattern also over
E U V9 where S' Ç E. In the définition of the degree of ambiguity we
actually specified the pair (a, E). However, it is pleasing to observe that, in
fact, it suffices to specify only a because the degree is independent of the
choice of E. The following argument justifies this observation.

If a contains no terminals (that is, E' is empty), then the degree of
ambiguity of a is 1 or oo, depending on whether a contains occurrences of
one or more than one variable. If E' contains at least one terminal a, we
dénote by g : S* —• S7* the morphism keeping the letters of E7 fixed and
mapping the letters of S — E' into a. Clearly, the degree of ambiguity does
not decrease if the terminal alphabet E' is replaced by E. But it does not
increase either because, whenever w has m représentations according to a,
then g (w) has at least m représentations according to a. D

By the above remark, we speak of the degree of ambiguity of a pattern
a (without specifying the alphabet). The above définitions were carried out
in the £-case. The iVE-case is analogous.

The notions are now naturally extended to concern languages. We do
this in the E-case. A pattern language L is ambiguous of degree k > 1 if
L — LE (a), for some pattern a ambiguous of degree fe, but there is no
pattern f3 of degree less then k such that L = LE {(3). Here k is a natural
number or oo. Again, if k = 1 we say that L is is unambigous. Otherwise,
L (inhenrently) ambiguous.

It was shown in [1] that two TVE'-patterns are equivalent (in the sence that
they generate the same language) exactly in the case they are identical up to a
possible renaming of variables. This yields immediately the following result:
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236 A. MATEESCU, A. SALOMAA

THEOREM 1: The degree ofambiguity ofan NE-pattern a equals the degree
of ambiguity of the pattern language L^E (a).

Theorem 1 does not hold for i?-patterns: LE (X) = LE {XY) but the
degrees of ambiguity of the patterns X and XY are 1 and oo, resp^ctively.

THEOREM 2: For every E-pattern (containing at least one variable), there is
an equivalent E-pattern whose degree ofambiguity is oo. Conversely, there
are E-patterns (for instance, XYYX) such that the degree of ambiguity of
every equivalent E-pattern, and hence also the degree of ambiguity of the
generated language, equals oo.

Proof: To prove the first sentence, it suffices to replace ail occurrences of
a variable X in the pattern with X\ X2. The second sentence follows by a
simple case analysis concerning patterns equivalent to XYYX. •

In what follows we do not make any distinction between E- and
NE -patterns because the results hold in both cases.

THEOREM 3: Every pattern containing occurrences ofonly one variable X is
unambiguous. Every pattern containing occurrences of at least two variables
X and Y but of at most one terminal a is ambiguous of degree 00.

Proof: The first sentence follows by a length argument: for every w, the
value h (X) is uniquely determined. To prove the second sentence, we first
replace in the given pattern the other variables (if any) with a. The resulting
pattern contains m > 1 X's9 n > 1 Y's and p > Oo's. Given any fc, we
can find a Zk such that

mx + ny + p = Zk

has more that k positive solutions (x, y). This means that aZk has more than
k représentations according to the given pattern. •

3. DETERMINISM AND NONDETERMINISM

We now continue the study begun in the preceding section and characterize
some basic cases of ambiguity and nonambiguity.

THEOREM 4: Every pattern a satisfying the following two conditions is of
00 degree of ambiguity. (i) a contains occurrences of at least two variables.
(ii) Some variable occurs in a only once.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Proof: Let Z be the variable that has only one occurrence in a. We'll
consider the foliowing two possibilities:

Case 1: The pattern a starts or ends with Z. Assume that a ends with Z
(the situation a starts with Z is symmetrie). Hence, a = /3 Z, where f3 is a
pattern that contains at least one variable, but Z does not occur in /?. Let
X be the leftmost variable in f3 9 i. e. f3 = X 7, where 7 is a pattern. (We
assume without loss of generality that f3 starts with a variable). Therefore,
a = X^Z and Z does not occur in I 7 .

Now, assume to the contrary that a has the degree of ambiguity ky where
k < 00. Let w be a terminal word that has k different décompositions with
respect to a. Let u be a fixed terminal word. Consider the morphism ƒ,
defined as: ƒ (X) = w and ƒ (Y) = u, for any variable 7 , Y / I . We
obtain ƒ (a) = £ = ira.

The terminal word £ has one décomposition with respect to a corresponding
to the morphism ƒ and, moreover, t has k other décompositions with respect
to a, corresponding to the k possible décompositions of w, each such
décomposition being modified as follows: if Z was substituted by r in the
originally considered décomposition of w, then Z is substituted by rv9 in
order to obtain £, and any other variable Y continues to be substituted as
in the originally considered décomposition of w. Thus, t has k + 1 different
décompositions with respect to a, contrary to the assumption that a has the
degree of ambiguity fc.

Case 2: The variable Z has only one occurrence in a and this occurrence
is neither the leftmost nor the rightmost occurrence of a variable in a.
Hence, a = X f3 Z 7 Y, where f3, 7 are patterns, X, Y, Z variables (possibly
X — Y) and Z does not occur in X /3^Y. Again, assume to the contrary
that a has the degree of ambiguity fc, where k < 00, and let w be a terminal
word that can be decomposed in k different ways with respect to a. Hence,
there are pi, qu n , i — 1 , . . . , &, such that w = pi r% q% and Z was substituted
by 7-j. Consider the morphism ƒ, such that: ƒ (X) = w9 f (Y) = «/, and
ƒ (Q) — u, for any Q, Q ^ X, Q ^Y, and « is a fixed, arbitrary terminal
word. (Note that, if X = Y, then ƒ continues to be well-defined.) Let
t be the terminal word f (a). Hence, t = wsw, where s = f(fiZ'y).
Note that t has one décomposition, with respect to a, corresponding to the
morphism ƒ. Moreover, t = pi n q% spi n q%9 for i = 1 , . . . , k. Each such
décomposition of t is corresponding to the substitution of Z in a with the
terminal word ViqispiTi, and the remaining variables are substituted as in
the original décomposition of w. Therefore, altogether, t has k + 1 different

vol. 28, n° 3-4, 1994
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décompositions with respect to a, contrary to the assumption that the degree
of ambiguity of a is k. D

Theorems 3 and 4 détermine the degree of ambiguity of all patterns except
patterns a satisfying each of the following three conditions: (i) a contains
occurrences of at least two variables, (ii) a contains occurrences of at least
two terminais, (iii) Every variable occurs in a at least twice. Indeed, all
tricky cases f all among such patterns a. Let us consider patterns with two
occurrences of two variables, separated by terminal words. Such patterns
belong to one of the three types

We mention without proof that the first two types are always of degree of
ambiguity 1 or oo, whereas a finite degree ^ 1 is possible in the third type.
We will return to this matter in Section 5,

The following theorem serves as a basis in many constructions.

THEOREM 5: The pattern XaYXbY is unambiguous.

Proof: Assume that for some terminal words u\, vi, u2, v2 there is the
equality:

(1) u\ av\ u\ bv\ = u2 av2 u2 bv2

Note that \uiavi\ = \uibvi\, i = 1, 2. Thus, the equality (1) leads to the
next two equalities:

(2) til CLV\ — u2 av2 and u\ bv\ = u2 bv2

Without loss of generality, we can assume that \u\\ < \u2\ and, consequently,
\v\\ ^ \v2\. Thus, there are terminal words u$ and v$ such that u% = u\ u$
and v\ = V3V2. Hence, from (2) we deduce that:

av$ = U3 a and bv$ = U3 b.

The above System of équations has the unique solution us = ^3 = À.
Therefore, we obtain u\ — u2 and v\ — v2 and thus, the pattern is
unambiguous. D

Composition can be applied to patterns in the natural fashion: variables are
uniformly substituted by patterns. If in the pattern of Theorem 5 the variable
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X is replaced by X\ a Y\ X\ b Y\ (that is, the original pattern with renamed
variables) and the variable Y is left unchanged, we obtain the pattern

Clearly, also this pattern is unambiguous, by Theorem 5. In fact, the next
theorem is a corollary of Theorem 5.

THEOREM 6: Compositions of unambiguous patterns are unambiguous.
Unambiguous patterns of arbitrarily many variables can be ejfectively
constructed.

4. DECroABILITY

Using the gênerai theorem of Makanin, [9], the following results can be
obtained quite independently of our other results.

THEOREM 7: The following problems are decidable, given a pattern a and a
natural number k. Is the degree ofambiguity of a equal to fc, greater than k or
less than k? Consequently, it is decidable whether or not a is unambiguous.

Proof: It was shown in [4] how Makanin's decidability can be extended
to concern Systems of équations and inequalities. Inequalities x ^ xf are
essential in expressing that a given équation possesses two solutions. The
details of the argument are left to the reader. D

Theorem 7 does not yield a method of deciding whether or not the degree
of ambiguity of a is ex». Indeed, this is an open décision problem. As regards
décision methods for pattern languages, the results of Theorems 1 and 7 can
be combined for TVE'-patterns. The situation is trickier for üJ-patterns. In
f act, even the decidability of the équivalence problem is open for E'-patterns.

We mention, finally, that Theorem 6 gives a simple way of going from a
System of équations to a single équation. Consider a System of équations

where ai and /% may contain variables and constants (that is, terminals).
Choose an unambiguous pattern P ( X i , . . . , Xn) of n variables X%. Then
(*) has a solution exactly in the case the équation

has a solution.

vol. 28, n° 3-4, 1994
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5. FINITE DEGREE OF AMBIGUITY

It is rather difficult to exhibit patterns with the degree of ambiguity k > 1,
where k is finite. Indeed, it was our conjecture for a long time that 1 and
oo are the only possible degrees.

Notations: If t G £* then first(t) (last(t)) dénotes the leftmost (rightmost)
letter of t. Moreover, pref(t) (suf(t)) is the set of all proper préfixes (suffixes)
of t.

DÉFINITION 8: Let a = a (X\,..., Xn) be a pattern. A nontrivial solution
of the équation:

a(Xu...iXn) = a(X[,...,X'n)

is a 2 n-tuple of terminal words, (x\,..., xn, x[,..., x'n), such that:

a ( # i , . . . , xn) = a (x ;
l 7 . . . , x'n)

and, moreover, (xi, • • •, xn) ^ (x\,..., xf
n). D

LEMMA 9: The pattern,

a — XuvX vwu Y uvw Y

has the degree of ambiguity 2, if w, v, tt? «r^ nonempty words over the
alphabet E = {a, 6, c} JMC/Z //ZÖI/:

(i) |u| = \v\ = \w\,
(ii) first(t) = last(t), for any t G {n, v, w},
(iii) p r e / (uf îi;) H suf (uvw) = 0 anrf pre f (v) f) suf (w) = 0 ,
(iv) if ti € pre f (uv) and t<i G suf (uv), then t\t ^ U2 for any t G S*.

Proof: First, observe that the pattern a is ambiguous. For example:

ot (wu, uvwvw) = wu uv wu vwu uvwvw uvw uvwvw

= wuuvw uv wuuvw vwu vw uvw vw

— a (wuuvw, vw).

It remains to prove that there is no terminal word t that has 3 or more
décompositions with respect to a.

CLAIM A\: The gênerai form of nontrivial solutions ofthe équation:

Informatique théorique et Applications/Theoretical Informaties and Applications
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is:

x\ = w {y uvw)1 CÏ y\ — M uvw {v vwu)3 77,

X2 = w [y uvw)1 £ uvw v, yi — {y vwu)3 77,

where Q is a proper prefix of v uvw or A, r\ is a proper prefix of v vwu or
A, i, j ^ 0 and, moreover,

£ vwu /i = v uvw C and 7] uvw \x = v vwu rj.

Proof of Claim A\: Assume that #1, yi, X21 y2 are nonempty words over
E such that |a;i| < \x2\ and

(1) xi uvx\ vwuyi uvwyi = X2 uvx2 vwuy% uvwy2*

Hence, there are x'2, y[ € E + such that X2 = x\ x'2, yi = yi 2/2 and
1^1 = |7/i| > 0. If follows from (1) that

(2) uvxi vwuyi 2/2 uvwy[ = £2 1*̂ 0:1 x2 vwuy2 uvw.

Reading in the above equality a prefix of length \xf
2 uv\ and a suffix of

length \uvwy[\, we obtain

(3) uvx% = x*2 uv and uvwy[ = ; UVW

for some X3, 2/3 G S + .
Note that xf

2 cannot be a proper prefix of uv. (Otherwise xs is a proper
suffix of uv and for t — uv this contradicts condition (iv).)

Assume that x'2 = uv. From (i) and (3) (second equality) we deduce
that y[ = vw and hence uvw = y$ u. Using (i) it follows that w = u, a
contradiction.

Now, assume that a/2 = u?;pi, yj = q2 vw for some words pi, g2, with
0 < bil = I92I < H- From the second equality of (3) we obtain

(4) uvwq2 — y$u.

Hence, g2 is a proper suffix of u, L e., u = q\ q2 for some gi G £ + . The
equality (4) becomes ui>w = 2/3 gi. Thus q\ is a proper suffix of w and a
proper prefix of u. But this contradicts the first part of condition (iii).
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Concluding, we deduce that \xr^\ = \y[\ ^ \uvw\. Hence, xf
2 = uvg,

y^ = huvw, for some g, h G X* such that \g\ — \h\ + \w\. Therefore, the
relation (2) becomes:

x\ vwuhuvwy2 uvwh = guvx\uvgvwuy2-

Considering préfixes and suffixes of the same length in the above equality,
we obtain:

(5) xivwuh = guvxi and

From the second equality in (5), if follows that g cannot be a proper prefix of
w. (Otherwise, af ter simplification, a proper prefix of v is equal to a proper
suffix of w, contrary to the second part of condition (iii).)

Hence, g = wg\ for some / G S*, with \gf\ = \h\. Thus, the relations
(5) become:

(6) x\ vwuh — wg1 uvx\ and 2/2 uvwh = g vwuy2.

By a similar argument, x\ cannot be a proper prefix of w. Thus, x\ = wxn\
for some xn G S*. Dénote 7/2 = y/;- From (6), it follows that

(7) x" vwuh — g1 uvwx1 and yn uvwh — g1 vwuyn.

Denoting g1 = v and h = //, the relations (7) become:

x;/ ( vwu fj,) = {y uvw) xn and yn ( uvw fi) = (^

where |i/| — |/x|.

Using a well-known resuit often called Lyndon's Theorem, it follows that

(8) x" = {vuvw)1 C and yn = {vvwu)3 7/

where i, j > 0 and:

(9) v uvw Ç = Ç vwu fj,, rjuvw IJL — vvwurj.

Using (8) and (9) we obtain the gênerai form of #1, #2, yi, 2/2 as in the
Claim Ai.
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End of the proof of Claim A\.
Assume now the existence of an intermediate solution, (x', yf)J of the

équation:

L e., \xi\ < \rf\ < |a?2|, \m\ < W\ < \vi\ and

ot{x\, yi) = a (ar', y') = a(x2, ï/2).

CLAIM A2: If x\y xf, #2, yi, y', ï/2 ^re terminal words with the above
properties, then:

x\ — w C, y\ — p uvw 6 uvw 77,

x' = w C uvw; 0, y — à uvw 77,

# 2 == ^ C WVIÜ Ö u v t ü TT, y% = 77,

where Ö, 5, 77, p, ^, 7r are terminal words that satisfy the system of équations
E = _ { e i , e2, e3, e_4, es} wzY/z; __

(ei) 9vwu8 = 8uvw6

(02) f]uvwp — 6uvwr)
Qvwup = 6uvwÇ>
(,uvw8 = TTUVWÇ

(es) rjuvwS = TVVWUT}

and, moreover, \ir\ = \S\ and \0\ = |p|.

Proof of Claim A2: From Claim ^4i we obtain that

(10) x' = w {y uvw)% Çtp and ?ƒ = ^ (i/ vwu)3 77,

for some nonempty terminal words <£ and ̂ , such that ip is a proper prefix
of uvwu, lp is a proper suffix of IJLUVW and |y>| + |^;| = |i/| +

Moreover, we obtain that:

(11) a (x', yf) — w (v uvw)1 Çip uvw (v uvw)1

Qip vwu ip {y vwu)3 77 uvw ip {y vwu)3 77.

From the equality a(x\, yi) = a(xf, yf) and (11) it follows that:

(12) uvw (y uvw)1 £ vwu fi uvw {y vwu)3 77 uvw /J, uvw

= (f uvw (1/ uvw)1 Ç(p vwu "ip (v vwu)3 77 uvw ip.
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Note that tp cannot be a proper prefix of uvw. (Otherwise, after
simplification of <p, it follows that a proper suffix of uvw must be a proper
prefix of uvw, contrary to the condition (iii).)

Hence, <p — uvw 9 and $ — 6 uvw, for some words 9, 6 e £* such that 0
is a prefix of v with \6\ < \v\, and 6 is a suffix of fj, with \6\ < |/x|.

The equality (12) becomes:

(13) {y uvw)1 C vwu jjb uvw {v vwu)3 77 uvw jjb

— 6 uvw (u uvw)1 Ç uvw 6 vwu 6 uvw (u vwu)3 r) uvw 6

where:

(14) \9\ + |5| + 3 |u| = |/x| = |i/| and |0| < |ju|

Note that |/x| > |5| + 3|M| = \uvwS\.
Reading the suffixes of the equality (13), we deduce that:

(15) /x = puvwd

for some word p, with \p\ = \0\. If follows from (13) (reading
prefixes/suffixes of the same length) that

(16) (y uvw)1 C vwu p = 9 uvw (y uvw)1 Ç

and

6 uvw [y vwu)3 r) uvw p — 9 vwu 6 uvw {y vwu)3 r).

Now, assuming that i ^ 1 and using (16), we have:

(u uvw)l~ v uvw C vwu p = 9 uvw {y uvw)%~ v uvw Ç.

Using the equality (VWU/J, ~ vuvwC, (see Claim Ai) and using (15),
the above equality becomes:

{y uvw)%~ C vwu p uvw 6 vwu p

= 6 uvw (y uvw)%~ Q vwu p uvw 6.

Note that \6vwup\ — \puvw6\. From the suffixes of the above equality,
we obtain:

uvw 6 vwu p — vwu p uvw 6.

But, this is contradicts u ^ v.
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Therefore, the only possibility is i = 0. By a similar proof, we obtain
that also j — 0.

Note that, from (14), \v\ > \6\ 4- 3|ii| = |0iwu;| and from préfixes of
the equality a(xf, y!) = a (#2, y2) we obtain that v — Ouvwir, for some
word 7T, with |TT| = \6\.

Thus, from Claim Au (10) and (13), we obtain the first part of Claim
A2, L e.:

x\ — wÇ) yi = puvwôuvwT)

x
f = w Ç uvw 6 yf = S uvw 77,

X2 = W C uvw ^ uvw K-i VI = V'

It remains to verify the conditions satisfied by the tenninal words 0, 6,

77, p, (, TT, ï. e., the second part of Claim A<i.

Reading préfixes and suffixes of the same length in the equalities

OL{X\, y\) = a(xf, y1) = a(x2, yi)

we obtain the following 5 equalities:

(17) C vwu p — 6 uvw Q

(from préfixes in a(x\,y\) — a(x\ yf)),

(18) C uvw 8 vwu S = TT uvw C uvw 6

(from préfixes in a(xf,yf) = a(x2, 2/2)),

(19) C v w u P u v w 8 = 6 UVW 7T UVW C

(from préfixes in a(xi,y2) = a (x 2 , 2/2)),

(20) T) uvw p uvw 8 — 6 uvw -ÏÏ VWU 97

(from suffixes in a ( # i , 2/1) = o;(x2, 2/2)),

(21) 7]uvw6 = -Kvwurj

(from suffixes in a(a/ , y') = a (#2, 2/2))-

From (17) and (19) we obtain:

(22) ( uvw 6 =
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From (20) and (21) it follows that

(23) 7] UVW p — 6 UVW 7}.

From (22) and (18) we obtain:

(24) 0 vwu 6 — 6 uvw 0.

Therefore, from (24), (23), (17), (22) and (21) we can conclude that the
terminal words 0, 6,77, £, TT, p should satisfy the following set E of équations:

(ei) 9 vwu 6 = 6 uvw 9
(02) r]uvwp = 9 uvw rj
(e$) Qvwup = 9uvwC

C,uvw6 — 7T uvw Ç
T)UVW6 = TTVWUT]

with the supplementary conditions |0| = |p| and |TT| = \6\.

End of the proof of CLaim A2.

We will complete the proof of Lemma 9, proving the following:

CLAIM A3: The System E from Claim A2, with the supplementary conditions
\9\ = \p\ and |7r| — \S\, does not have solutions.

Proof of Claim A%: First, it is easy to observe that from conditions
(ii) and (iii) of Lemma A, it follows that for any two different words
*, tf € {«, vy w}9 first(t) # firsttf) and last(t) ^ last(t'). Hence,
without loss of generality, we can assume that: ƒirst (u) = last (u) = a,
first (v) = last (v) — 6, f irst (w) = last (w) = c.

Consider now the following two sets:

A - {0, 6, 7?, C, TT}

and

B = {e, 6, r?, C, P}.

From the System E, we can deduce that the words from the set A
have the following important property: If t G A, then for any t* e A9

first (t) = first (t'). Similarly, if t e B, then for any tf e B9

last(t) = last(tf). The above property can be extended for préfixes of
words from A (for suffixes of words from B).

Thus, we'll start a discussion concerning the possible shortest word among
the words: 0, 6, 77, £, 7r, p.
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Case I\ : The shortest word is 6 and, moreover,

|Ö| < |*| - M, \e\ < M, \e\ < |c|.
Note that 9,pe B, \9\ = \p\ and therefore 0 = p. Let's dénote: 0 = p = &.

Hence, (5 = <5̂  £i, C = Ci £i> f° r some nonempty words, #i, Ci- The equalities
(ei), (e3) and (04) from .E become:

(en)

Cl

From (en) if follows that last(6[) — last(w) = c. From (e3i) we
obtain that Za5^(Ci) ~ lo>st(u) — a and from (e4i) it follows that
last(S[) = Zast(Ci), *• ̂ . a = c, a contradiction.

Case /2 .* The shortest word is 6 and, moreover,

\s\<\9\=Ap[,\s\<\n\,\ê\<\c\.
Note that 6, 7t e A, \6\ = |TT| and therefore S = 7i\ Let's dénote:

(Ç rr 7T = £2. Hence, ö = 2̂ ö^, r? — ̂ 2 ̂ 2» f° r s o m e nonempty words,
Ö2, ^2- The equalities (ei), (e2) and (es) from E become:

0f
2vwu^2 — uvw ^2^2

V2 uvw P = ^ n<yttl ^

From (ei2) it follows that first(9f
2) = first(u) = a. From (052) we

obtain that first^) = first(v) = 6 and from (e22) it follows that
first{rl2) = f ir st (6*2), L e. a — b, a contradiction.

Case ƒ3 ; The shortest word is 77.

Dénote 77 = £3 and observe that 5 = £3 £3, p = P3C3» C — C3C3» f° r

some nonempty words, 63, p'3, C3. The equalities (e2), (e3), (e4) and (es)
from E become:

uvw

(e33) C3 6 ^^W P3 - Ö £3 IMJtü C3

^ = ir uvw C^
= 1VVWU

From (e33) and (643) it follows that last(pf
3) = Zast (C3) = last(6'3).

From (e23) we obtain that last(p^) = c and from (653) it follows that
last (6^) = a. Therefore, we obtain a = c, a contradiction.
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Case ƒ4 ; The shortest word is Ç.

Dénote Ç — £4 and observe that 9 = £4^4, r/ = £4^4, ?r = £4^4» for
some nonempty words, 0'49 774, 714. The equalities (e2), (e3), (04) and (es)
from E become:

(624) rf^uvw p =

(634) VWUp = Ö̂

(644) uvw^ô = 71-4 wu; £4

From (e24) and (es4) it follows that first (774) — first (0^) = first (714).
From (634) we obtain that first (774) = & and from (644) it follows that
first(n/

4i) = a, Therefore, we obtain a = b, a contradiction.

Now we consider the situation when the shortest length of a word in the
set C = {£, 77, 0, 6} is reached by exactly 2 words from this set. There are
6 possible combinations as follows:

Case J\ : The shortest words are Q and 77, L e. | ( | = [77] and all others
words from the set C are longer.

Because C, 77 E A, it follows that Q — 77 = £5 and 0 = £5 9§ for nonempty
word 0f

b.

The equalities (e2) and (e^) from i£ become:

(e2s) uvw p = 6

(035) vwup = 6

Hence, first (9§) — a and first (9§) = 6, a contradiction.

Case J2 : The shortest words from C are £ and 0.

The equality (e3) from JB becomes:

(e3ö) vwup = tit??i; ̂

Thus, ƒzr5i (u) = /irsf (w), a contradiction.

Ca^e J3 : The shortest words from C are ^ and 6,

Because (, <5 G A, and, moreover, \S\ = (7r| it follows that ( = S = ?r — ,
and 9 = &97 for some nonempty word 97.

The equalities (ei) and (03) from ,B become:

(637) vwup = 9f
7

Hence, first (97) = a and first (0?) = 6, a contradiction.
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Case J4 : The shortest words from C are rj and 9.
Because 77, 6 € B, and, moreover, \6\ — \p\ it follows that rj = 6 = p = &

and 6 = 6^s for some nonempty word <5g.
The equalities (ei) and (es) from E become:

(eis) ^svwuêf
s = <5g£8 ™tü

(^58) fi%UVw8$ — 7TVWU

Hence, last (6%) = c and /ast(^g) = a, a contradiction.

Case J5 : The shortest words from C are 97 and 5.

The equality (es) from E becomes:

(esg) TjUVW = 7TVWU

Thus, last(w) = last(u), a contradiction.

Cö^e JQ : The shortest words from C are 0 and <$.

The equality (ei) from E becomes:

(êiio) vwu = uvw

Thus, we obtain again a contradiction.
All the remaining cases lead to contradictions, because one can argue:

f) ^ 7T (see (es)), ^ ^ 6 (see (ei)), ( / p (see (e3)) and also, C / ö

(see (es)).
This complètes the proof of Claim A3 and the proof of Lemma 9, too. D

CoROLLARY 10: The pattern,

(3 = XabXbcaYabcY

has the degree of ambiguity 2.

Proof: Take in Lemma 9, u — a, v = b and w = c and note that
conditions (i)-(iv) are satisfied. D

Notations: Let 7 be the unambiguous pattern from Theorem 5 and let a i
be the pattern a from Lemma 9, for:

u — a
4 6a8 ba4, v = ba7 bcacaabcab, w = caabcbcabcabcbcabc.

LEMMA 11: The pattern,

a = 1(a1(X,Y),Xj3(Q,R))

with the variables X,Y,Q,R has the degree of ambiguity 3.
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Proof: Let ao be the pattern from Lemma 9 for some fixed values uo, VQ9

WQ of the terminal words, w, u, w. Consider the pattern:

where 7 is the unambiguous pattern from Theorem 5 and (3 is the pattern
from Corollary 10.

CLAIM C\ : The pattern a1 has the degree of ambiguity at most 3.

Proof of Claim C\ : Observe that the equality

a' (X, F, Q, R) = t,

for some terminal word t G £*, leads to the equalities:

for some unique words t\, £2 e S* (7 is an unambiguous pattern).
Consider now the following two possible situations:
Case K\ : The équation ao (X, Y) = t\ has at most one solution, (#o, Vo )•
It follows that the équation a;o (3 (Q, iî) = *2 leads to at most one value

of fi (Q, i2). Consequently, because /3 has the degree of ambiguity 2, there
are at most two pairs of terminal words, (ç', r ;), (</', r") that satisfy the
equality xo/?(Q, i2) = £2. Hence, in this case, f has at most 2 possible
décompositions with respect to a'\

Case K2: The équation ao (X, Y) = t\ has 2 solutions, (#1, Î/I),
(a?2, 2/2).

If follows from Claim Ai (see the proof of Lemma 9) that

X\ = Wo (^ ̂ 0 ̂ 0 WQY CÎ ^2 = ^0 (^ ̂ 0 t̂ ) ̂ o)* C u0

for some terminal words 1/, CÎ ̂ d i ^ 0.

From the equality X2 /?(Q, i2) = £2, w e obtain

and from the equality xi (3 (Q, R) = £2 it follows that

(II) P(Q,R) = tiovowQvif2.

The équation (I) has at most 2 solutions, say (gi, n ) and (52, ̂ 2)- The
équation (II) has at most 1 solution (#3, rç), because the value of /3 (Q, R)
has a prefix that starts with IÉO ̂ 0 ̂ 0 • (See the proof of Lemma 9, Claim Ai.)
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Therefore, altogether, t has at most 3 décompositions with respect to <r',
corresponding to:

O i , yi, Ç3, r3) , (x2, 2/2, Cl, n ) , (#2, 2/2, 92, n ) .

o/ f/ze proo/ o/ Claim C\.

CLAIM G<I : For the values:

UQ = a4 6a8 èa4, f o = ba7 bcacaabcab, WQ = caabcbcabcabcbcabc,

the pattern al (= a) few ?/ze degree of ambiguity 3.

Proof of Claim C2 : From Lemma 9, we have that:

/? (ca, abcbc) .= /3 (caabc, bc) = ^,

where ^ = caabcabcaabcbcabcabcbc.

In a similar way, we obtain that:

oro (tüu, uvwvw)~= ao (wuuvw> vw) = $ ' ,

where ty' = h (1îr) and the morphism /i is defined by: h (a) = u, h (b) = v,
/i(c) = w;.

Notations:

ari = tün, yi = uvwvwy

X2 = wuuvw, y<i = x;?/;,

g i — c a , 7*1 = abcbc,

q2 = caabc, V2 — bc.

Note that in all the above solutions we have v — À.

Now we'U define the values of u, u, K; in such a way that the équation

(*) j3(Q, R) = uvw/3{qi, n) = uvw1®

will have a solution (43, r$). (Note that this équation has at most 1 solution,
because u is starting with a.) Moreover, the values of u, v, w will satisfy
the conditions (i)-(iv) from Lemma 9.

The équation (*) becomes:

(**) QabQbcaRabcR =

For simplicity, we can consider that R = * . Hence, we obtain from (**):

(***) QabQbca^ abc — uvw.
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It is easy to check that there is no value of Q with |Q| ^ 11 such that
the corresponding values of u, v, w are satisfying the conditions (i)-(iv)
of Lemma 9. Assume now that \Q\ = 12. It follows from (***) that
\u\ = \v\ = |IÜ| — 18. The resulting value of w is WQ = caabcbcabcabcbcabc.
Using (***), it is easy to observe that we can choose the value of v as being
v0 = 6a7 bcacaabcab, and the value of u as being no = a4 bas ba4.

Note that uo, VQ> WQ satisfy the requirements (i)-(iv) of Lemma 9.

End of the proof of Claim Ci. D

THEOREM 12: Explicit examples of paîterns with degrees of ambiguity 2
and 3 can be given.

Comment: Our example of a pattern of degree 3 has length 324 and the
shortest word that actually has 3 different décompositions with respect to
this pattern has length 1018. On the other hand, our example of a pattern of
degree 2 given in Corollary 10 is rather simple: XabXbcaYabcY.

By forming compositions and using Theorem 6, our last results is obtained
as a corollary of Theorem 12.

THEOREM 13: For any m ^ 0 and n > 0, a pattern with the degree of
ambiguity 2m 3 n can be effectively constructed.

It is worth mentioning that we have not been able to find any inductive way
of going from the degree of ambiguity k to the degree A; + 1 . Thus, we cannot
exhibit patterns with an arbitrarily given finite degree of ambiguity, although
we can do so for patterns whose degree of ambiguity is arbitrarily high.

6. CONCLUSION. OPEN PROBLEMS.

Our results deal with patterns and pattern languages and, thus, are
interconnected with ail related areas, already indicated in the Introduction.
However, the results can also be viewed to concern the basic theory of word
équations as follows.

Let P (X\,..., Xn) be a pattern of n variables X%. The pattern P defines
infinitely many individual équations

(*) P(Xu...,Xn) = Z,

where Z ranges over S + . For given P and Z, we dénote by iV(P, Z)
the number of solutions of (*), that is, the number of n-tuples of words
( lu i , . . . , wn) over S* satisfying•(*). For each pair (P, Z), N {P, Z) is a
nonnegative integer. For afixed P , there are three possibilities.
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(i)iV(P, Z) < 1, for all Z.
(ii) There is a Z1 such that N (P, Z') > 1 but the numbers N (P, Z)

possess an upper bound, that is, for some k, N (P, Z) < k for all Z.
(iii) The numbers N (P, Z) possess no upper bound, that is, for every &,

N(P} Zf) > k holds for some Z'.
We have been able to exhibit extensive classes of patterns for which (i)

or (iii) holds. For instance, (i) holds if the number of variables n = 1, and
(iii) holds if n > 1 and P is "linear" with respect to some variable (see
Theorems 3 and 4). According to our main results (Theorems 12 and 13),
also (ii) is possible. However, it is an open problem, and in our estimation
a very fundamental one in the theory of word équations, whether all finite
degrees of ambiguity can actually by constructed. By theorem 6, it suffices
to carry out the construction for prime degrees. We conjecture that such
a construction is possible. Since arbitrarily large degrees can be obtained
(Theorem 13), it would seem rather strange if some degrees were "missing".

The most interesting open décision problem is the decidability status of
(iii). "Almost all" patterns seem to satisfy (iii), and yet Makanin's Theorem
is not directly applicable to this case.
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