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ON SEMIGROUPS OF MATRICES
OVER THE TROPICAL SEMIRING (*)

by IMRE SIMON (*)

Abstract. - The tropical semiring Ai consists ofthe set ofnatural numbers extended with infinity,
equipped with the opérations of taking minimums (as semiring addition) and addition (as semiring
multiplication). We use factorizotion forests to prove finiteness results related to semigroups of
matrices over Ai. Our method is used to recover results of Hashiguchi, Leung and the author in
a unified combinatorial framework.

1. INTRODUCTION

In 1978 [6] we characterized finitely generated finite semigroups of
matrices over the tropical semiring Ai. (Ai is N U {oo} equipped with
the opérations of minimum and addition.) The results obtained were applied
to solve a long standing open problem of John Brzozowski.

In 1982 K. Hashiguchi [2] proved the decidability of a more gênerai
problem. Let us take a finitely generated semigroup of matrices over the
tropical semiring. Is the set of ail coefficients in a given row and column
finite or not?

Hashiguchi's method consisted in finding an upper bound for the
coefficients which holds whenever the set in question is finite. That upper
bound can be used to synthetize an algorithm which décides the proposed
problem. Later on, in 1986, Hashiguchi improved both his results and his
upper bound but the resulting algorithm is still impractical.

(*) This work was supported by FAPESP, CNPq and CAPES/COFECUB. Major parts of this
work were done while visiting the Universities of Paris-VI (1986), Rouen (1987) and Paris-VII
(1988).

0) Instituto de Matemâtica e Estatfstica, Universidade de Sâo Paulo, 05508-900 Sâo Paulo, SP,
Brasil.
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278 i. SIMON

In 1987 H. Leung [4, 5] published an algorithm to décide the same problem
based on an elaborate extension of our method in [6]. Leung used topological
arguments and consequently, while giving a much better upper bound on the
complexity of the problem, he lost the upper bound on the coefficients.

In 1986 the author discovered independently the same algorithm found
by Leung and began building a combinatorial framework for the study of
the structure of finitely generated semigroups of matrices over the tropical
semiring. This paper contains our ideas to solve the proposed problem
using factorization forests [8]. Our method gives simultaneously H. Leung's
algorithm and an upper bound on the coefficients.

For further motivation, applications and many remaining open problems
we refer the reader to our survey article [7].

Finally, we mention that using Lemmas 10 and 7 it is easy to recover
Hashiguchi's Main Lemma of [3] with validity for any finitely generated
semigroup of matrices over the tropical semiring. This solves an open
problem stated in [3].

2. SEMIRINGS AND IDEMPOTENT MATRICES

We introducé initially the semirings of our interest. The tropical semiring,
denoted A4, has support jW = NU {oo} and opérations a@b = min {a, b}
and a <8> 6 = a + 6. The opérations of N are extended to M in the usual way
and the identities of ffi and ® are, respectively, oo and 0. Notice that M is
a complete positive commutative semiring [1].

We shall also need an extension of Ai obtained by introducing a new
element u for which a topological interprétation can be given. See [5] for
details. This semiring shall be denoted by T, its support is T = N U {w, oo}
totally ordered by the relation

We extend the opérations of M by defining, for x G T,

ui + x — x + u) = max {a;, x}.

Clearly, Ai is a subsemiring of T.

Our results for the semirings Ai and T are obtained through the
considération of finite projections as follows. Let TZ be the semiring with
support 1Z — {0, 1, a>, oo}, totally ordered by the relation 0 < 1 < u < oo,
equipped with the opérations a © 6 = min {a, b} and a (g) b = max {a, 6}.
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ON SEMIGROUPS OF MATRICES OVER THE TROPICAL SEMIRING 279

The semirings T and 1Z are related by the projection function \& : T —> 1Z,
given by

x if x G 1Z

1 otherwise.

The subsemiring M # of 1Z is denoted by A/*; its support is J\f = {0, 1, oo}.
We shall use a projection TT : TZ -^ J\f given by

if rrGAf

if x = ÙJ.

For a semiring ÜT we dénote by Mn K the multiplicative monoid of
n x n matrices with coefficients in K, For x G Mn K and z, j G [1, n] the
coefficient of x in row i and column j is denoted by (i, x, j"). The pair
(i, j ) shall be called a position; we shall say that (i, x, j) is the coefficient
of x in position (i, j ) .

In the case of our semirings the functions ^ and ?r are extended to the
corresponding matrix monoids in the natural way.

Now we characterize idempotent matrices in Mn 1Z.

LEMMA 1 : For every matrix e in Mn TZ the following statements are
equivalent,

(i) e is idempotent;

(iï) for every p > 1 and for every feo, fei,..., kp G [1, n], (feo, e, kp) ^
max{(feç_i, e, fe^) |q G [1, p]} and for every i, j G [1, n], töere ^xtó5 a
k G [1, n] such that (fe, e, fe) ^ (z, e, jf) = max{(i , e, fe), (fe, e, j)};

(in) for every i, j , fe G [1, n], (i, e, j ) < max{(z, e, fe), (fe, e, j ) }
/or every i, j G [1, n], (i, e, j ) = max{( i , e, fe), (fe, e, j)} for
k G [1, n].

Proof: (i) implies (ii). Assume that e is idempotent and let i, j G
[1, n]. Then (i, e, j ) = (i, e2 , j ) = min{max{(z, e, fe), (fe, e, j)} \ k G
[1, n]}9 hence, for every fe G [1, n], (i, e, j) < max{( i , e, fe), (fe, e, j ) } .
By induction on p, for every feo, fei, • • . , fep G [1, n], (feo, e, fcp) <
max{(feg_i, e, feg) | ç G [1, p]}. On the other hand, since e — e2 implies
that e = e71, there exist i = feo, fei,..., kn = j such that (i, e, j ) =
max{(feg_i, e, fe^) | g G [1, n]}. Since fe^ G [1, n] for each one of the
n -h 1 g's, there exist 0 ^ r < r ' < n, such that fer = fcr' = fe.
Using what we just proved, for any 0 ^ 5 < t ^ n, (kSy e, fet) £
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2 8 0 I. SIMON

max{(A;9_i, e, kq)\q G [5+ 1, t]} ^ max{(fcg_i, e, fcg) | q G [1, n]} =
(i, e, j ) , hence, (fcS} e, A*) ^ (i, e, j). Thus,

0 , e> fc) ^ (^ e> J') ^ max{( i , e, fe), (A;, e, j)} < (i, e, j ) ;

where the second inequality follows from the first part of statement (ii).

Hence, (fe, e, A;) ^ (i, e, j ) = max{(i , e, fc), (A;, e, j ) } , as required.

(ii) implies (iii). This is clear.

(iii) implies (i). Choose i, j G [1, n]. The two conditions in (iii) are
equivalent to saying that (i, e, j ) — min{max{(ï , e, A;), (A;, e, j ) } | A: G
[1, n]}. Hence, (i, e, j ) = (i, e2, j ) and e is idempotent. •

Condition (ii) above suggests the following définition. Let e G Mn 1Z be
idempotent. We say that position (i, j ) is anchored in e if there exists a
A: G [1, n] such that 0 = (A;, e, A;) £ (i, e, j ) = max{(z, e, A;), (A;, e, j ) } .

LEMMA 2: Le? e G Mn 1Z be idempotent. If (i, e, j ) = 0 then (i, j )
ij anchored. Let ko, ki,...y kp G [1, n] te swc/z f/uzf (A;g_i, e, kq) ^
(fco, e, A;p) for every q. Then, if (A;r_i, kr) is anchored for some r then
so is (ko, kp).

Proof: The first assertion is an immédiate conséquence of (ii) in
Lemma 1. To see the second one let l G [1, n] be such that 0 =
(/, e, I) ^ (Ar-iï e, A;r) = max{(A; r_i, e, Z), (Z, e, Av)}. Successively
using Lemma 1 (ii) and the facts that (Av-1, e, l) ^ (A;r-i, e, kr) and
that (A;9-i, e, kq) ^ (A;o, e, A;p), for every q, we have that

(A;o, e, Z) < max{(A;o, e, fci),..., (A;r-2, e, A;r-i), (A;r_i, e, Z)}

^ max{(/co, e, A;i) , . . . , (A;r_2, e, Av-i), (A;r-i, e, fcr)}

£ (A;o, e, A;p),

f. e. (A;o, e, Z) < (A;o, e, A;p). Similarly, (Z, e, AÎP) < (fco, e, A;p); hence,
max{(fco, e, Z), (Z, e, fcp)} < (A;o, e, kp). Then applying Lemma 1 in the
third inequality we have that 0 = (Z, e, Z) ^ (Av-i, e, kr) < (A;o, e, A;p) ^
max{(A:o, e, Z), (Z, e, A;p)} £ (A;o, e, A^). This implies that (A;o, kp) is
anchored in e. •

The next définitions and Lemma are essential in the sequel. Let e G Mn 1Z
be idempotent. Assume that (i, e, j ) = 1. Position (i, j) is stable in e if it
is anchored, otherwise it is unstable. Thus, (i, j ) is unstable if and only if
(A;, e, A;) = 1 whenever k G [1, n] and max{(z, e, k), (fc, e, j ) } = 1. The
stabilization of e is the matrix e' G Mn 11 with coefficients
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ON SEMIGROUPS OF MATRICES OVER THE TROPICAL SEMIRING 281

) if (i, e, j ) = 1 and (i, j ) is unstable

z, e, j) otnerwise.

If e — e' then e is stable, otherwise e is unstable. A set X Ç Mn 7£ is stable
if the stabilization e" of any idempotent e in X also belongs to X.

For a, b e MnH we define a < b if, for every i, j e [1, n],
(*j a> j) = (h &J i)* It is easy to see that this partial order is compatible
with matrix multiplication, L e., if a ^ 6 and c < d then ac ^ bd.

LEMMA 3: Le? e G M^ 7£ &£ idempotent. Then é1 is a stable idempotent for
which ee' = e' = ê  e. Further, if e is unstable then e$ < J e, where < J
dénotes the usual ordering of the J-classes of Mn 11.

Proof: Let i, j and k be in [1, n]. Observe initially that (i, e, j ) <
(i, e0, j). Also, (i, e, j) ^ (i, e8, j ) implies that (i, e, j ) = 1, (ï, eö, j ) =
a; and that position (i, j) is not anchored in e. Finally, if 0 —
(/c, e, k) < (i, e, j ) = max{(z, e, fc), (/c, e, j )} , then we also have that
0 = (fc, eö, fe) < (i, e^ j ) = max{(i, e", fe),(fe, e", j ) } . Indeed, the
assumption implies that (fc, fc), (i, jf), (i, fc) and (fe, j) are ail anchored;
hence, the respective coefficients in e and ê  are the same.

To prove that ê  is idempotent we first claim that, for every i, j , fc E [1, n],
(i, e ,̂ j) ^ max{(i5 e', fe), (k, e**, j )} . Indeed, if we assume the contrary
then, by Lemma 1,

(i, e, j) < max{(i, e, fc), (fc, e, j )}

We can conclude that (i, e, j) = 1, max{(i, e", A;), (fc, e*, j)} = 1 and
(^ e', j) = ui. If (i, e', fc) = 1 then (i, fc) is anchored in e; hence, by
Lemma 2, (i, j ) is anchored in e, a contradiction. Analogous conclusion
holds if (fc, e', j ) = 1 and this proves the claim.

Next we claim that for every i, j G [1, n] there exists a k € [1, n], such
that (i, e*, j) = max{z, e*, fc), (fc, e*1, j )} . Indeed, choose a k for which
(i, e, j) = max{(z, e, fc), (fc, e, j )} and (fc, e, fc) is minimum. Then, using
what we already proved.

max{(i, e, Ar), (A;, e, j)} = (i, e, j )
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If the last inequality is an equality then we are done, otherwise we can
conclude that (z, e, j) = (i, e", j) = 1 while max{(i, e', k), (fc, e', j)} =
u>. Then, («, j ) is anchored in e and the choice of k implies that
(A;, e, fc) = 0. Thus, from the initial observations, 0 = (k} e', A;) ^
(h eK j) = max{(z, e', A;), (A;, e**, j )} ; a contradiction which establishes
the claim. Thus, e** is indeed idempotent by Lemma 1.

Now we prove that (e**)" = e'. To see this assume that (i, e", j) = 1.
Then, (i, e, j ) = 1 and (i, j ) is stable in e. Let k G [1, n] be such
that 0 = (fc, e, fc) < (i, e, j) = max{(i, e, fc), (fc, e, j )} . From the initial
observations, 0 = (fc, e", fc) ^ (i, e', j) = max{(i, e", A;), (A:, e', j )} ;
hence, (i, j) is stable in e* and (z, (e*)', j ) = (i, e", j ) .

8 Q tl li 11

±,w, rrw wx««xx Mi«v ^̂> e = e0 which implies that eeR = e3 e = eö. Indeed,
e £ ê  and the idempotence of e and ê  imply that e < ee' e ^ e .̂ Assume,
for a contradiction, that (i, ee^ e, j ) 7̂  (z, e ,̂ j ) for some i, j G [1, n]. Then,
(i, ee^ e, j) = (i, e, j ) = 1 and (i, e', j) = w. Let fc, / G [1, n] be such that
1 = (i, eeB e, / ) = max{(i, e, fc), (fc, e», i)» (h ^ î)}- T h e n ' (fc

;
 e^ l ^ ^

hence (fc, Z) is anchored in e. By Lemma 2 (i, j) is anchored in e implying
that (i, e', j ) — 1, a contradiction which establishes the claim.

Finally assume that e is unstable. From ee$ e = e$ we conclude that
ett ^ JTe. Assume that eJeK Since S = MnTlis finite, we have ePe ' = eeK
Then, e 7?- ee^ = e .̂ By a dual argument, e £ e'; hence, eTieK Being both e
and ê  idempotents, we conclude that e — e', a contradiction of the stability
of e. This concludes the proof of Lemma 3. •

3. BOUNDING THE COEFFICIENTS

In this section we dérive some bounds on the size of coefficients of
matrices over the tropical semiring. Initially we introducé measures of this
size. Let Y Ç Mn T, z G Mn 11 and r G H. We define

s r (F, z) = min {(i, y,j)\y€Y and (i, z, i ) = r} ,

S r (Y, z) = max {(i, y, j ) | y G y and (i, z, j) = r} ,

assuming that the min and max of an empty set are, respectively, 00 and 0.
Thus, s r (y, z) (Sr (y, z)) is the least (greatest) coefficient in Y in positions
whose coefficient in z is r.

Let y G Mn M, Y Ç Mn M and z G Mn 71. We say that y agrées with
z if yty — zit. Also, y agrées with z if every matrix in Y agrées with z.
Note that if yi agrées with z%, for i = 1, 2, then 2/12/2 agrées with z\ 22-
Also, if JZ is idempotent then y agrées with z if and only if it agrées with
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zK since ZTÇ = z$ 7i\ The définitions above on the size will be used mainly
when Y agrées with z,

Finally recall that if Y is a subset of a semigroup S then Y + dénotes the
subsemigroup of S generated by Y.

LEMMA 4: Let yi G Mn M agrée with z% G Mn TZ,
fori-\, 2. Then, Si (yi y2, z\ z<i) < Si (y\ , z\) + Si (y2, zi) and
minjsa; (yi, z\), sw (2/2, 22)} ^ sw (yi y2, *l 22).

Proof: Assume that (i, zi 2:2, j ) = 1 and let fc G [1, n] be such
that (i, 2fi^2) j ) = max{(z, s i , fc), (fc, 22, j ) } = 1. If (i, ^ i , fe) = 0
then (z, y\,k) = 0, since yi agrées with ^ i . Thus, (i, y\,k) £
Si (yi, 21). Similarly, (fe, y2) j ) ^ Si (j/2, 2:2). Itfollows that (i, yi 2/2, j ) ^
(i, 2/1, fe) + (fe, 2/2, j ) ^ Si (?/i, 21) + S i (2/2, 22). T h u s > s i (2/12/2, ^1^2) =
max{(i , yi y2, i ) | ( ^ z\ *2, j) = 1} ^ Si (2/1, zx) + Si (2/2, ^2).

Assume that (i,z\Z2,j) = o; and let fe G [1, n] be such that
(*\ y\ V2> j) = (i, yi , fe) + (fe, y2, i ) . Then, LU = (i, zi z2 ) j ) ^
max{(i , z i , fe), (fe, z2, i ) } - If (i, 21, fc) = 00 then (i, 2/1, fe) = 00, since 2/1
agrées with z\\ thus (i, yi y2, j) = 00 and, since yi y2 agrées with ^1 22, we
conclude that (z, z\ Z2, j) = 00: a contradiction. It follows that (i, 21, fc) <
00 and similarly (fe, Z2<> j) < 00. Thus, max{(z, 21, fe), (fe, #2, j ) } < 00
and we conclude that u) = (z, #i ^2, i ) = max{(z, z\, fe), (fe, ^2, j ) } . If
(i, jsi, fe) - u; then sw (yi, zi) £ sw (yi, zi) + (fe, y2, j) ^ (i, yi , fe) +
(*, 2/2, j ) = (i, 2/1 ̂ 2, j ) . Similarly, if (fe, z2) j ) = a; then sw (y2, z2) <
(h y\ V2, j ) - Altogether, min {s^ (yi, z\), s^ (y2, z2)} < (i, yi yi, i ) .
Thus, min{s w (y i , ^ i ) , s w (y 2 , ^2)} ^ min {(i, yi y2 , j ) | (i, ^l ^2, i ) =
a;} = s w ( y i y 2 ï ^1^2). •

LEMMA 5: Lef e G Mn % be idempotent and asuume that Y Ç Mn A4
agrées with e. Then, Si ( Y + , e8) < 2 Si (Y, e) and min{sa ,(Y, e), q} <
sw(Y<3, e8), for every q > 1.

Proof: Assume that (i, e", j) = 1. Let yi , y 2 î . . . , yq be in Y, for q ^ 1.
If g = 1 we have nothing to prove, so assume that q > 2. Now, (i, e ' , j ) = 1
implies that (i, e, j ) = 1 and that (i, j ) is anchored in e. Let fc G [1, n]
be such that 0 == (fe, e, fe) < (i, e, j) = max{(2> e, fe), (fe, e, j ) } = 1. If
(i, e, fe) — 0 then (i, yi , fe) = 0 since yi agrées with e. Thus, (i, yi , fc) <
Si (Y, e). Similarly, (fe, y^, j) < Si (Y, e). On the other hand, since each
yr agrées with e, (fe, e, fc) = 0 implies that (fc, y r , fc) = 0 for every
re [1, g]. Thus, (z, y i . . . y 5 , j ) < (z, yi, fc) + (fc, y2,
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2Si (Y, e). It follows that SiCy+.e*) = max{(i, y, j) \y e Y+ and
(i,e*,j) = 1} < 2Si(y,e).

Let now q ^ 1 and assume that (i, e' , j) = cv. Let yi, y2, • • •, Vq € V
and let z = &o, fei, fe2, • • • > fe^ = j in [1, w] be such that (i, y i . . . yq, j) —
(feo, 2/1, fei) + • • • + (fe<?-i, yg, fe<?). Since yi--yq agrées with e9 we
conclude that 0 < (i, y\-*yq, j) < oo, and, consequently, for each r,
(fcr_i, y r , fcr) < ce. Since each yr agrées with e we conclude that for each
r, (À;r_i, e, Av) < a;; hence, max{(fc r_i, e, A;r) | r G [1, q]} ^ a;. Assume
initially that (fe r-i, e, fer) = a; for some r E [1, q]. Then,

(1) Sa, (Y", e) ^ (fer_i, y r , A;r) < ^ ( f e r _ i , 2/r, fcr) = (i, yi--yq,j)-
r = l

Assume now that (fer_i, e, fer) < CJ for every r G [1, q]. From (i, e', j) = u;
we conclude that 1 ^ (i, e, j ) . Using Lemma 1 we have:

(2) 1 ^ (ï, e, i ) 1 max{(fcr_i, e, fer) | r G [1, q}} % 1.

Now, we claim that (fer-i, e, fcr) = 1 for every r. Indeed, assume that
(fcr-i, e, fcr) = 0 for some r. Then, by Lemma 2, (fcr_i, A;r) is anchored
in e and so is (fco, ^g) = (^ i)* Since (2) implies that (i, e, j ) — 1 it
follows that (i, e', j ) — 1: a contradiction which establishes the claim. Now,
since each yT agrées with e we can conclude that 1 ^ (fer-i) î/r, fer) for
every r; hence,

q

( 3 ) g ^ ^ ( f e r _ l , y r , fer) = ( i , y i •••%, j ) .

Since either (1) or (3) holds, it follows that minls^ (y, e), q} <
(h yi'" Vq> j)\ hence, min {sw (y, e), q} ^ min {(i, y, j ) | y G y ? and
(i, e9, j ) = u} — sw (y^, e'). This concludes the proof of Lemma 5. •

4. BASIC OBJECTS AND THEIR PROPERTIES

In this section we set up the notations and the major définitions needed
to prove the main resuit. Let A be a nonempty finite alphabet and let
if : A+ —> MnT be a morphism such that Aip Ç MnÀ4. In other
words, A+ y? is just a finitely generated subsemigroup of Mn M. We shall
dénote by A the maximum of the nonnull finite coefficients in Atp, i. e.
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A = max {Si (a (p, a (p *) | a G A}. Note that, even though we shall not do
it, there is no loss of generality if we assume that A = 1.

Let 5 be the least stable subsemigroup of MnH which contains Aipty.
In order to précise a generating set for S we define an alphabet B given by

B = A U {be | e is an unstable idempotent in 5} ,

where the union is disjoint. Let ƒ : B+ —• Mn 1Z be the morphism defined
by a f — aipty, for a G A, and be ƒ = e ,̂ for every unstable idempotent
e in S. Clearly, B+ f = S.

Now we defined the principal object used in our proof. A tropical
tree T consists of a rooted plane tree with vertex set V and a labeling
A : V —> £ + x S which satisfies:

• no vertex in V has outdegree one;

• every vertex of outdegree 0 has label (6, bf), for some b G B\

• every vertex v of outdegree two has label (x\ X2, z\ 22), where (x\, z\)
and (#2, 2:2) are, respectively, the labels of the direct left and right
descendants of v;

• for every vertex v of outdegree p > 2 the labels of the direct descendants
of v are (ar*, e), for i E [1, p], and the label of v is (#i #2 • • * xP, e"), where
e is some idempotent in 5 which will be called the idempotent of vertex v.
The label of the tropical tree T is the label of the root of T.

It will be convenient to classify the vertices of a tropical tree as continuous
or discontinuous. Continuity hère will be meant with respect to the product in
S. More precisely, we say that vertex v is discontinuous if it has outdegree
p > 2 and its idempotent is unstable. A vertex is continuous if it is not
discontinuous.

Ail paths considered in T will be directed away from the root. A path
c in T is continuous if every internai vertex of c is continuous. Note that
we allow for discontinuous vertices at the extremities of c. The span of a
tropical tree T is the length of a longest continuous path in T.

LEMMA 6: Let T be a tropical tree of height h and span s. Let q be the
cardinality of a maximum chain of principal ideals generated by unstable
idempotents of S. Then, h ^ (1 + q) s < \S\s.

Proof: Let c = (vo, ^i, • • •, vr) be a continuous path beginning and
ending on discontinuous vertices VQ and vr. Let vr+i be a descendant of vT\
the existence of such a vertex is guaranteed by the descontinuity of vT. Let

vol. 28, n° 3-4, 1994



286 i. SIMON

(XJ, Zi) be the label of vertex v{. Then, z\ and zr+i are unstable idempotents
such that zo = z\ and zr = zl+i- Since c is continuous, z\ G S1 zr S1. On
the other hand, from Lemma 3, S1 zr S

1 is properly contained in S1 zr+\ S1,
Thus, z\ and zr+\ are unstable idempotents such that S1 z\ S1 C S1 zr+\ S1.

If follows that if c has p unstable vertices then 5 has a chain of p principal
ideals generated by unstable idempotents. From the définition of span and
the choice of q it follows that h ^ (1 + q) s. Clearly, 1 + q £ \S\ and this
complètes the proof. •

A multiplicative rational expression over A is a rational expression which
uses only the opérations of concaténation and star. To such an expression
R we associate a fonction R : N —» A*, where kR is the word obtained
by substituting by k each occurrence of * in R. For example, the words
associated to c(ba*)* c are ce, ebac, c(ba2)2 c, c(ba?)3 c...

The connection between tropical trees and multiplicative rational
expressions is given by the next Lemma. Let T be a tropical tree labeled
by (x, z)j with x G A+ and let R be a multiplicative rational expression
over A. We say that R is a witness for T if Oi? = x, NRtp agrées with
2, Si (Ni?<^, 2) is finite and, for every k > 0, sw (kR(p) z) ^ fc. We alert
the reader that the définition of a witness, as well as the next Lemma, refer
exclusively to tropical trees with label in A"*" x 5.

LEMMA 7: For every tropical tree T labeled by (x, z), with x G A~^\ there
exists a multiplicative rational expression R over A which is a witness for T
and such that Si (NR<p, z) ^ 2h A, where h is the height ofT.

Proof: We proceed by induction on the height h of T. If h — 0 then the
only vertex of T is its root and the label of T is (a, af) for some a £ A,
Let R — a; since k R = a for every A: and a / — a (p * , we have that

Si(Ni2<p, a/) = Si(a</>, a/) = Si(a<p, a y?*) ^ A.

Assume now that the root v of T has outdegree 2 and that the tropical
trees associated to the direct descendants of v are T{ with label (x^, 2j), for
i = 1, 2. Then, the label of T is (x, 2), with x — x\X2 and z = 21 22- By the
induction hypothesis T{ has witness Ri such that Si (N Ri tp, z%) ^ 2h-1 A.
We claim that the multiplicative rational expression R = R\ R2 satisfies
the Lemma for T. Indeed, 0 # = (ORi) (0R2) = xi x2 = x. Also,
agrées with 21 22 = 2 . Now, for each k ^ 0, we have, by Lemma 4,

Si (fc J ïp , z) = Si ((fc#1 y?) (kR2 if), zi z2)
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Hence,

Si (NRip, z) = max{Si (kR<p, z) \ k G N}

< max {Si (kRi cp, z\)

^ m a x { S i (kRnp, zi)\k G N }

+ m a x { S i ( A ; i Î 2 < P , z2)\ke N }

^ 2h~~1 A + 2h~1 A - 2h A.

Now, for every k > 0, using Lemma 4 and the induction hypothesis we
have that

s^ (kR(p, z) = sw ((A;.Ri <p) {kR2 y?), ^1 ̂ 2)

^ min{sw (fcJîi (/?, zi), s^ (fc i?2 ¥?, ^2)} ^ fe.

This concludes the proof when the root of T has outdegree 2.

Assume finally that the root v of T has outdegree p > 2. Let
Ti, T2 , . . . , Tp be the tropical trees associated to the direct descendants of v\
let e = e2 E MnU and x% E A+ be such that (x*, e) is the label of T{. Then,
x = x\x2---xp and z — e", where (x, z) is the label of T. By the induction
hypothesis Ti has a witness i?; such that Si (N Ri <p, e) ^ 2h~1 A, We claim
that R\ — - Rp (Ri * • • Rp)* satisfies the Lemma for T. Initially we note that
OR = 0i?i*--0iîp = xix2' — xp = x. Also, for every k > 0, kRip
agrées with z. Indeed, kR<p = (kR\ • •-kRp(kRi > •-kRp)

k)<p; hence,
since kRqtp agrées with e and e = e2 we have that k R tp agrées with e.

p
Then fc R(f agrées with z = e", since e 7r = e' ir. Let now Y = (J NRq<p.

Then y agrées with e and, for every k ̂ 0, kR<p e Y+. Also,

Si (y, e) - max {Si (N Rq<p, e) | g G [1, p]} < 2 / l~1 A.

By Lemma 5,

^ ( ) 2Si(y, e) ̂  2.2/l"1 A = 2h A.

Finally, let us fix a fc > 0. Let y = {kRq(p\q G [l ,p]} . Again,
y agrées with e and for every k > 0, kRy> G Yp+kp, since

k R k R ( k - -kRp)
k\ thus, s^ (feiï<p, e») ^ s (P+*P ö)
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Also, since $u(kRq(p, e) > k, for every q, we have that s^ (Y, e) =
min {sw (y, e) \ y G Y} > fe. Thus, by Lemma 5,

sw (fcfl y», e») ^ sw (y*+**, e») > min {sw (y, e), p + fcp}

^ min {&, p + fcp} = fc,

since p > 3. This concludes the proof of Lemma 7. •
We close this section with a simple property.

LEMMA 8: If a tropical tree is labeled by (x, z) then xf -K — zir.

Proof: This is proved by a straighforward induction on the height of
the tree, after observing that ƒ and -K are morphisms and that for every
idempotent e G Mn 7Z, en = e$ TT, since 1 TT = un = 1. •

5. CONSTRUCTION OF TROPICAL TREES

In this section we construct tropical trees needed to show the main resuit.
We shall need some définitions and results from [8]. For an alphabet A

we dénote the free semigroup generated by A either by A+, as usual, or
by A J7. In the second notation, the éléments of A T will be represented as
(ai, a 2 , . . . , ap), where a% G A.

A factorïzation forest F = (X, d) over A consists of a subset X
of A+ together with a function d : X —> T X such that, for every
x G X, xd = (xi, #2) . . . , Xp) implies that x = xi X2 • • • ^p', i. e. xd is
a factorization of x whose factors belong to X. The external set of F is
the set {x e X\ \xd\ = 1}.

Given F we associate to each x G X a rooted ordered plane tree a;F
whose vertices are labeled by éléments of X. If \xd\ = 1 then x F consists
just of the root labeled x. If xd = (xi, X2,.. . , xp), with p > 1, then the
root of x F has outdegree p and a copy of x% F is associated to the i-th
direct descendant of the root. This allows us to speak of the outdegree of
vertices of x F, and of paths in x F . The height of x F is denoted xh and
the height of F is h = sup{x/i |x G X}.

Let ƒ : B+ —> S be a semigroup morphism, with 5 finite. Factorization
forest F is Ramseyan mod ƒ if for every x of outdegree p > 3,
xrf = (xi, X2,. . . , xp) implies that there exists an idempotent e G S such
that e = x ƒ — xi ƒ = • • * = xp ƒ. We say that ƒ admits a Ramseyan
factorization forest if there exists a factorization forest F = ( S + , d) over JB
with external set B which is Ramseyan mod ƒ.
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We recall the main resuit of [8].

THEOREM 9: Every morphism ƒ : B+ —• S, from a f ree semigroup to a
finite one, admits a Ramseyan facîorization forest ofheight at most 9 |5 | .

In what follows we consider the data defined in Section 4 and fix a
factorization forest F — ( 5 + , d) with the properties asserted by Theorem 9.
We call H the height of F and note, for future use that

H<9\S\.

The following Lemma is the main resuit of this section.

LEMMA 10: For every x G B+ there exists a tropical tree of span at most
H labeled by (x, z), for some z G S.

Proof: Based on the factorization forest F , Ramseyan mod ƒ, we define
P Ç B+ as follows. Let P be the least subset of J3+ which satisfies the
following properties:

• B is contained in P;

• if x G £+ , xd^PT and \xd\ = 2 then x G P ;

• if a; G B+, xd G P J7, |xd| > 2 and x ƒ is stable then x G P .

The set P enjoys the following properties.

ASSERTION 1: For every x E P there exists a tropical tree ofheight at most
H labeled by (x, xf) whose vertices are ail continuons,

Proof: Using the factorization forest F we have associated a tree x F to
x. Vertices of this tree are labeled by certain factors of x\ since x e P, the
définition of P implies that all these labels belong to P . Let f be a vertex
of the tree x F and let y G B+ be its label. We extend the labeling of v to
(y, yf). Note that, F being Ramseyan mod ƒ, x G P implies that whenever
the outdegree of v is at least 3 the matrix y f is a stable idempotent Thus,
the tree xF becomes a tropical tree of label (x, xf) with no discontinuous
vertices. This tree has height at most H which is the height of P . •

ASSERTION 2: Let x G 5 + \ P be such that xd G P T. There exists a
tropical tree ofheight at most H labeled by (x, xft) whose root is its unique
discontinuous vertex.

Proof: The hypothesis imply that \xd\ > 2, and that xf is an unstable
idempotent. We proceed exactly as in Assertion 1 with the exception that
we substitute the label of the root by (x, xfl), which is necessary now to
get a tropical tree. •
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ASSERTION 3: Every x E B+\P has a factorization x — yxfyf such that
xl E 5 + \ P and x'd e P T.

Proof: Let x1 be a shortest segment of x which is not in P; then, x = yxfyf

for appropriate y, y1 E I?*. Let x'd = {x\,..., xp). Note that the choice of
x1 guarantees that every proper nonempty segment of x1 is in P; in particular,
x'fd E P T. From the définition of P we conclude that \x'\ > 1. I

The construction of our tropical trees will be done by a séquence of
substitutions. One instance of this opération is given by the foliowing
Assertion.

ASSERTION 4: Let x — yby', with b E B\A and y, y1 E B*. Let T\ be a
tropical tree with label (x, z) and span s\. Let T<i be a tropical tree with
label (z', bf) and span S2 whose root is discontinuons. Then there exists a
tropical tree T with label (yxfyf, z) and span s = max{si, $2}-

Proof: Let v\ be the (external) vertex of tree T\ whose label is (&> bf)
and which corresponds to the factorization ybyf of x. Tree T is constructed
by substituting vertex v\ in T\ by the tree T2. We maintain the labeling of
the vertices in T2. As for Ti, we consider the path in T\ from the root to
vi. Vertices of T\ not on this path maintain their labels . Let (a?j, zf) be
the label in T\ of vertex v% on this path. The vertex ^i, which lies on the
tree with root v*, détermines a factorization yiby\ of x%. The label of v% in
T will be (y,V^, Zi).

Noting that the lebel of T2 is (rr', bf), the reader will verify without
difficulty that T is a tropical tree with label (yxfy\ z). Since the root of T%
is discontinuous, the span of T is the maximum of the spans of T\ and T2.
This complètes the proof of the Assertion. •

We are ready to prove Lemma 10 by induction on \x\. For x E P the
tropical tree given by Assertion 1 satisfies the Lemma with z — xf. Let
then x E B+\P and let us apply Assertion 3. Since xf E B + \ P but
xfd E P T the définition of P implies that \x*d\ > 2 and that x1 f is an
unstable idempotent. Let e = x' f and let b be the letter in B\A for which
bf = eK By the induction hypothesis there exists a tropical tree T\ with
label (ybyf, z)9 for some 2 E 5, with span 51 at most H. By Assertion 2
there exists a tropical tree T2 with label (x', e') and height (hence span
52) at most H whose root is discontinuous. The tropical tree T given by
Assertion 4 has label (yxfyf, z) = (ar, ̂ ) and span 5 = max {s\, 52} ̂  iï".
This complètes the proof. •
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LEMMA 11: For every z E S there exisîs an x E A+ and a tropical tree
labeled by (x, z).

Proof: Initially we need a closer look at the génération of S, Let
Bo = A. Given Bk Ç B, k > 0, let S* = (£*ƒ)+. Given Sk, k ^ 0,
let Bk+i = A U {be\e = e2 e Sk and e ^ e0}. By construction,
#A; Q Bk+\ Ç S, and £& Ç Sfc+1 Ç 5. Since S is finite, there exists
l ^ |S|, such that 5/ = S/+1 C 5. Since S is the least stable subsemigroup
of Mn H which contains A, we conclude that Si = S and Bi+\ — B.

Now, for every z e S there exists a least k such that z e Sk. We
shall proceed by induction on such a fc. Initially we observe that for
z E BQ ƒ = A ƒ we have a E A such that af — z\ hence it is sufficient to
consider the one vertex tropical tree with label (a, af).

Consider now k > 0 and assume that for every z E Bk ƒ there exists
a tropical tree Tz labeled by (xz, z), with xz E A+. Let z E Sfc. By
construction, there exists y E JB̂ j" such that y f = z. Our tropical tree is
obtained by induction on \y\ by repeating the following construction. Let
Ti be a tropical tree labeled by (XÎ, z%)9 with Xi E A+ and Zi e Sk, for
i = 1, 2. Let T be the tree whose root has outdegree two and T\ and T<i are
the tropical trees of the direct left and right descendants of the root. Then
the label of T is (xi X2, z\ z<i).

Finally, assume that for every z E S& we have a tropical tree Tz labeled
by (xZl z), with xz E A+. We claim that the same is true for z E Bk+i ƒ.
Indeed, if z E Bk f the claim follows at once from the induction hypothesis;
otherwise there exists e — e2 E Sk such that 6e ƒ = ê  = ^. By the
induction hypothesis, there exists a tropical tree Te labeled by (xe, e) for
some xe E A+. Consider now the tree whose root has outdegree three and
every one of the direct descendants of the root have tropical trees identical
to Te. Then, T is a tropical tree labeled by (xg, e )̂ and consequently it
justifies our claim. This concludes the proof of Lemma 11. •

6. MAIN RESULT

In order to précise our problem we need some définitions. Let X C Mn K,
for some semiring K. For I E Klxn and J E Knxl the (J, J)-section of
X is the subset of K given by {I x J \ x E X} . The case when I and J
have exactly one coefficient which is 1% ail others being 0K is particularly
interesting. In this case, assuming that the nonnull coefficients are (1, I, i)
and (j, J, 1), the (ƒ, J)-section of X is the set of all coefficients of matrices
in X in row i and column j \ this set is usually called the (i, j)-section of X.
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Next we prove the main theorem which we announced in [9]. Note that
the équivalence of (i) and (iii) has been proved by K. Hashiguchi in [3] and
the équivalence of (i) and (ii) has been proved by H. Leung in [5]. All these
proofs were obtained pairwise independently but our présentation certainly
was influenced by the work of both K. Hashiguchi and H. Leung.

THEOREM 12: Let tp : A+ —> Mn M be a morphism with A finite; let
S be the least stable subsemigroup of Mn 1Z which contains A <p \£ and let
I G {0, o o } l x n and J G {0, o o } n x l be matrices, The following statements
are equivalent:

(i) the (/, J) -section of A+ tp is infinité;

(ii) the (/, J) -section of S contains u>;

(iii) there exists a multiplicative rational expression R over A such that,
for every k > 0, k < I(kRtp) J < oo.

Proof: (i) implies (ii). Assume, for a contradiction, that the (I, J)-section
of S does not contain ou. Let Z Ç M be the (/, J)-section of A+ ip.
Let F be a factorization forest with the properties asserted in Theorem 9;
let H be the height of F. Let q be the cardinality of a maximum chain of
principal ideals generated by unstable idempotents of S. Let u = 2(1 +^ H A,
where A = max{Si (aip, acp^)\a e A}. Then, H £ 9|5| , q < \S\ and
u < 29I5I2 A. We shall show that Z Ç [0, u] U {oo}. This implies that Z
is finite, a contradiction that establishes the resuit.

To see the claim, let x G A+ . By Lemma 10 there exist a tropical tree
T of span at most H labeled by (a;, z), for some z G S, By Lemma 6 the
height h of T satisfies h ^ (1 + q) H. By Lemma 7 T has a witness R such
that Si (NRipy z) ^ uf since 2h A < 2^^)H A = u.

Let m = I (x (p) J . If m G {0, oo} then we have nothing to prove,
otherwise, 0 < m < oo. Taking projections by $?r we have that
m * 7T = 7 (xfn) J = 1, since I = I^ir, J = J^n and, x belonging to
A + , x (p * = xf. By Lemma 8, J (z TT) J = 1. Now, from the définition of 7r,
Iz J G {1, u;}; the assumption that the (ƒ, J)-section of S does not contain
u) implies that I z J = 1. Hence, there exist i, j G [1, n] such that (1, 7, i) =
0 = (j, J, 1) and (ï, 2, j ) = 1. Now, # being a witness for T, we have that
OR = x\ hence, from Si (NRcp, z) < u we conclude that (i, xip, j) ^ u.
Consequently, m — I (x <p) J < (1, / , i) + (i, x <p} j) + (j, J, 1) < u and
this proves the claim.

(ii) implies (iii). Let z G 5 be such that / z J = u;. By Lemma 11 there
exists an a: G A+ and a tropical tree T labeled by (x, z). By Lemma 7
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T has a witness R. Let us fix k > 0 and let m = I (k R ip) J. Since
kRip e MnM, since it agrées with z and since Iz J = a>, we conclude
that 0 < m < (jj < oo.

Since m = I(kRip) J, there exist i, j G [1, n] such that (1, J, i) = 0 =
(j, J, 1) and (i, kRip, j) = m. Since fciîy? agrées with z and / 2 J = UJ it
follows that (z, 2, jf) = a;. Thus, since R is a witness for T we have that
k ^ Soj^kRip, z) ^ (i, kR<p, j) — m. Altogether, k ^ / (k R ip) J < 00,
as required.

(iii) implies (i). This is clear. H

Since Mn TZ is a finite semigroup it follows that S is effectively
computable. Hence, a direct conséquence of Theorem 12 is a resuit proved
by K. Hashiguchi in [2],

COROLLARY 13: It is decidable whether or not a given section of afinitely
generated subsemigroup of Mn M, is finite,

The following resuit, proved in [6], is also easily deduced from
Theorem 12.

COROLLARY 14: Let (p : A*~ —* Mn Ai be a morphism with A finite. Then
A+ ip is finite if and only if every idempotent in A+ ip * is stable.
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