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THE INTERSECTION PROBLEM FOR
ALPHABETIC VECTOR MONOIDS

by T. HARJU (*), N. W. KEESMAAT (2) and H. C. M. KLEUN (3)

Abstract. - Let S and T be two vector alphabets consisting ofalphabetic vectors {a\, a^), where
ai , a2 € A U {e} for an alphabet A. We show that it is decidable whether or not S® H Y® is the
trivial submonoid of the direct product A* x A* for the generaled submonoids S® and F®. On
the other hand we show that a simple version, obtained front letter-to-letter homomorphisms, ofthe
modified Post Correspondence Problem is undecidable for alphabetic vectors.

1. INTRODUCTION

Let A be a finite alphabet. Dénote by A* the free monoid generated by
A, and let A* x 4* = {{u\-> U2)\u% E A*} be the direct product of A* with
itself. Each element u — (u\, 112) is called a vector over A*. For a subset
E Ç A* x A* we let S® be the submonoid of A* x A* generated by E. The
identity of E® is e — (e, e), where e is the empty word of A*.

Further, let E* dénote the free monoid generated by the vectors from
E. In this case E is considered to be an alphabet and hence each element
u — (uu, U12) * - • (uki-> v>k2) of E* is just a word of vectors.

We shall consider the intersection problem for the submonoids of A*xA*,
L e., whether or not E® n T® = {e} for the submonoids E® and T®
generated by the given subsets E and F of A* x A*9 respectively. The pair
(S,T) is refered to as an instance of the intersection problem.

We observe that in gênerai the intersection problem is undecidable, because
for a pair of homomorphisms (a, /?), a, 0 : B* —> C*, we choose A = BuC
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and define the generator sets as follows: S = {(a, a (a))\a G B} and
r = {(a, {3 (a))|a G B}. Clearly, now S® n F® ^ {e} if and only if the
instance (a, /?) of Post Correspondence Problem (PCP) has a solution.

We shall now restrict the instantes (S, F) to cases, where the vectors are
alphabetic. A vector u = (ui, ^2) G i * x 4* is called alphabetic, if each
of its components Ui is either a letter or the empty word e : Ui E AU {e}.
In particular, the identity e = (e, e) of A* x A* is an alphabetic vector.

Let A (A) dénote the set of all alphabetic vectors over A*. Notice that here
A (A)® = A* x A*, because the alphabetic vectors clearly generate A* xA*.
We say that E® is an alphabetic submonoid of A* x A*,if E Ç A (A).

Let h A : A (A)* -4 A* x i * be the monoid homomorphism defined by
KA (ai, 02) = (ai, 0,2) for ail (ai, 02) G A (A). We shall write u = v
for the words u, v G A (A)*, if they produce the same element of the
direct product, L e., if h A (U) = h A {V). Thus given two sets E and F of
alphabetic vectors, the problem is to détermine whether or not there exists a
pair (u, v) G S* x F* such that u = v. Such a pair (u, v) will be referred
to as a solution of the instance (E, F).

Alphabetic submonoids occur in, e. g., [1], [3], [4], (see also their
références for related work) where concurrent Systems with a vector
synchronization mechanism are studied. Such a concurrent System consists
of a fixed, say n, number of sequential processes together with a control
on their mutual synchronization. We shall now discuss only the simplest of
these cases, n = 2.

The behaviour of the i-th sequential process is given as a language Li
over some alphabet A of actions. The basic units of the synchronization
are alphabetic vectors which express which actions can be performed
simultaneously in the System. These synchronization vectors form a set
E. If E* is used as the synchronization mechanism, then the valid
concurrent computations of the System are those combinations (lui, ^2)
of computations Wi G Li which have a décomposition in E*: there is
a v G E* such that h A (V) = (wi, ^2). Or, to put it differently, the
set of concurrent computations is (Li x L2) n E®. If another set F of
synchronization vectors is used, the question arises whether or not the new
and the old system have common computations: is [L\ x L2) H (E® n F®)
nontrivial? Again this question is undecidable by a réduction from PCP,
even in the case that the sets Li are regular languages. To see this,
let (a, (3) be a pair of homomorphisms a, (3 : B* —̂  C* with B
and C disjoint. Let A = B U C, and set L\ = {ba (b)\b G 5 } * and
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L2 = {b{3 (b)\b G B}\ E - {(&, b)\b e 5 } U { ( C , e), (e, c)\c G C } , and

r = {(c, c)|c G C} U {(6, e), (e, 6)|6 G S } . Clearly, the instance (a, /3) of
PCP has a solution if and only if (Li x L2) n (E® n r®) ^ {e}.

In this réduction the languages L\ and L2 play a crucial rôle. If we assume
that they both are A*, then we are asking whether or not S® and T® have a
non-trivial intersection. This is the question considered in this paper.

In Setion 2 we shall prove that the intersection problem is decidable for
alphabetic submonoids: Given two alphabetic submonoids S® and Y® of
A* x A*, the problem whether or not S® n Y® = {e} is decidable.

An easy conséquence of this resuit is that PCP is decidable when restricted
to instances (a, /?), where a and f3 are weak codings, L e., a, j3 : X* —» A*
are such that a (a), /3 (a) G A U {e} for ail a in X.

In Section 3 we consider the following variant of PCP: let a, /? : X* —•
A (A)* be two homomorphisms that are letter-to-letter, /. e,, for each letter
a E X, a (a) and f3 (a) are alphabetic vectors. Let x, y G X be two
distinguished border letters. In the alphabetic bordered PCP we ask whether
or not there exists a word tu = xuy in X* with u G (X\{x, y})* such that
a (w) = /3 (tu). This problem is shown to be undecidable and thus contrasts
with the resuit from Section 2.

2. THE INTERSECTION PROBLEM IS DECIDABLE

In this section we prove

THEOREM 1: Let A be afinite alphabet Given two alphabetic submonoids
E® and T® of A* x A\ the problem whether or not E® n T® = {e} is
decidable.

Let us fix two alphabetic submonoids S® and V® of A* x A*. We shall
show that S® Pi T® ^ {e} if and only if there is a solution (it, u) for the
instance (S, F) such that the length |u| of u is at most the cardinality |S | of S.

We can clearly assume that (e, e) g S U F, and further that E n F - 0 ,
for otherwise we can check trivially that Y,® n T® ^ {e}.

Suppose that u = v is a nontrivial solution for n G E* and Î; G F* with
u, v ^ e. We let

u = (ai , 6i) (a2, &2)---(afc, 6fc) and u = (ci, di) (c2, cfe) . . . ( c t , dt)

for (ai, &i) G S and (CJ, di) G F. Assume further that ^ is of minimal length,
that is, the number k ^ 1 of components of u is as small as possible.
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First of ail we can restrict the components of u as follows:

(1) ai 7̂  s. Indeed, if ai = e, then b\ ^ e and we can consider the
generators E" 1 = {(6, a)|(a, b) G E} and F " 1 = {(6, a)|(a, b) € F}
instead of E and F, respectively. Clearly, S® H F® ^ {e} if and only if

(2) 6i = e. Indeed, if &i ^ e, then the first decomposing vector
^1 = (ci, di) for Ï; would have to be either (ai, e) or (e, 6i), since
(ai, &i ) G E and E n F = 0 . In the former of these cases, we may exchange
E and F, and in the latter case we interchange S to F"1 and F to S"1 in
order for (1) and (2) to be satisfied.

Now, since

• • afc, 6162 . . . bk) =

there are order preserving bijections a : {
j8 : {i\di 7̂  e} —• {i|6i / ^} such that ai =

Consider the word

W = (ai, 6

^ e} —>• {i|c2-
and d» = &/?(;

e} and

^ (1 ) Ï 6(^)^+1 (1)) . . . ( a (0 a ) r - i ( j) , 6 ^

obtained from a\ by repeating the functions a and /? until either of them
becomes undefined, L e., until

(a) a(pay(i) = e, or

(fe) da(£a)r(!) = e.

Notice that since a and /3 are order preserving bijections and (ai, b\ ) ^
(ci, di), the exponent r is always well-defined in above.

A pictorial représentation of forming this word in Case (a) is given in
figure 1.

= £

Figure 1.
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Now, by the définitions of the bijections a and /?,

W = ( c a ( l ) , < * ( 1 ) ) ( c a / ? a ( l ) > dapa ( i ) ) . . . (ca (/fc,)—1 (1)> d a ( j9a )— 1 (1))»

and hence w G F*.

We shall first consider Case (a). For this define

Wa = ( a i , e)(a/3a (1)» &£a (1)) • • • ( a ( / ? a ) ^ (1)S &(/?<*)r-1 C1)) * ' ' ( £ ' ft(0«)r O ) ) '

We have wa G E* and, moreover, u;a = w. Thus in this case
h A {wa) G E® n F® gives also a solution.

By the minimality assumption for u, it follows that u = wa, and hence
that a{%) — i and /3 (i) = i + 1, f. e.,

u = {ai, e)(a2y b2)...(ak-i, &fc-i) (e, &*),

v = (ai, 62) (a2, 63) • • • (ofc-i, 6ifc)

for nonempty letters a ,̂ 6̂  G A.

Similarly, in Case (fc) for the word

wb = (ai, e) ( a ^ ! ) , ^ a ( i ) )

•••(a(/3a)'-1(l)i ^(/?a)-i(l)) (a(j3ay(l), &(/3a)-(1)),

we have /IA (^5) G E® fi F 0 . In this case, we obtain that

u = (ai, e) (a2, 62) • • • (afc_i, 6^_i) (afc, 6fc),

u = (ai, 62) (a2, 63) • • • (afc-i, bfc) (ajfc, e)

for nonempty letters a«, !,• 6 A.

In both of these cases it is easy to see that if u = w\ - (at;, bi )-W2- (aj ,bj)-w$,
where (aj, 6i) = (a^, 6j) for some indices i, j with i < j , then tt?i (at-, 6ï)tü3
provides another solution. We deduce from this that a minimal solution u
has length at most the cardinality of the alphabet E. This shows that it is
decidable whether or not E® n F® = {e}, and hence Theorem 1 is proved.

3. UNDECIDABILITY OF ALPHABETIC BORDERED PCP

In the proof of the undecidability of the alphabetic bordered PCP we use
the following modification of Post's Correspondent Problem.

Let a, j3 : X* —> X* be two nonerasing homomorphisms for an alphabet
X, We shall say the pair (a, j3) is a bordered instance, if there are two
special letter c, d G X such that for B = X\{c, d}9
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a (c), 0(c)€c-B* and a (d), /? (d) G fî* * d,

a (a), p (a) G 5* (a G B).

LEMMA: It is undecidable whether or not there exists a word w G B*
such that a (cwd) — (3 (cwd) for a given bordered instance (a, (3) of
homomorphisms.

The proof is standard, see [2] and omitted hère.
We now prove

THEOREM 2: The alphabetic bordered PCP is undecidable.
Let then (a, (3) be a bordered instance of homomorphisms as above. Set

X — {ai, a 2 , . . . , ajv}> where ai = c, CLN = d and B = {02,. . . , ajv_i}.
Define

M = max{|a(ai) | , ^ (a , ) ] |* = 1,2,..., N},

and write a (ai) = a i i a ^ . . . a^M and /3 (CLJ) = PjiPj2 • • • /?jM> where a^,
jSij G X U {e} and a n — c — Pu, ajVM = d — PNM- Clearly, we may
assume that M > 1.

Further, let

£>i = {[ï, j] 11 ̂  i < i\T, l<j < M},

D2 = {[i, j ] , [t, 1, fc] 11 < h k < iV, 2 ^ j £ M}

be two new alphabets. Our basic alphabed for the components of the vectors
will be A = X U D\. Define two homomorphisms a i , fii : D | —• A (A)*
as follows:

ax ([1, 1, 1]) = ( a n , e),

<*!([«, 1, fe]) = (aii, [fc,M]), ( i # l ) ,

«i([<,i]) = (aii. [ < i i - l ] ) i ((i, i ) 9E (1, 1)),

and

A([», 1, fc]) = (ftiï [t, 1]),

f3i([h3]) = (0ijAh3})> ((s, i) ^ (JV, M)),
A ([AT, M]) -

Clearly, both of these homomorphisms map letters to alphabetic vectors,
L e., they are letter-to-letter homomorphisms.
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Consider the instance (ai , f3\) with border letters [1, 1, 1] and [N, M]9

and define for each word w = aia^ .. .a^a/v € aB*d, the word
r (w) = uiUi1 .. .ui^UN, where

ui = [1, 1, 1] [1, 2 ] . . . [1, M], uN = [TV, 1, tm] [AT, 2 ] . . . [TV, M]

Uij = [ij, 1, ij_i] [ijy 2 ] . . . [ij, Af],

We observe that

a i ( u i ) = (a(a i ) , [1, 1 ] . . . [1, M - 1]),

/ 3 I ( « I ) = (/3(ÛI), [1, 1] . . . [1, M]),

ai (« i j = (a ( a i j , [ij-i, M) [ij, 1 ] . . . [̂ -, M - 1]),

ai (uN) = (a (ûiV), [iro, M ] . . . [JV, 1], [iV, M - 1]),

A (UJV) - 09 (a jv), [ ^ 1] [JV, 2 ] . . . [TV, M - 1]).

From these it is now straightforward to show that for all u G cB*dy

a (u) = (3 (u) if and only if ai (r (it)) = f3\ (r (n)). Moreover, if v is a
solution to the instance (ai , /?i) of the alphabetic bordered PCP, then one
can easily construct a word u G cB*d such that v — r (u). This proves
Theorem 2.
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