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ARITHMETIC CODING OF WEIGHTED FINITE AUTOMATA

by J. KARI C1) and P. FRÀNTI (2)

Abstract. - Karel Culik and the first author have demonstrated how Weighted Finite Automata
(WFA) provide a strong tool for image compression [1, 2, 3j. In the present article we introducé
an improved methodfor the last step of the compression algorithm: for compressing the WFA that
approximates the given image. Our method is based on arithmetic coding of sparse matrices.

1. INTRODUCTION

The image compression based on Weighted Finite Automata (WFA) is a
relatively efficient fractal compression method that gives good compression
results. The principal idea is to infer a WFA A that represent a good
approximation of the image to be compressed, and to remember A instead
of the image. Inference algorithms for fînding a suitable WFA have been
discussed extensively in [1, 2, 3], but the important last step of expressing
the WFA as a bitstring has been mostly ignored.

In the present article we introducé a way of writing a WFA in a compressed
form that improves the compression results reported in [1, 2, 3]. The method
is based on arithmetic coding with three adaptive models for different parts
of the WFA. First we give a short description of WFA and the recursive
inference algorithm. Then we describe the arithmetic encoding of the WFA.
Finally, examples and compression results are presented.

2. PRELEMINARIES

Weighted Finite Automata (WFA) are finite automata with each edge
labeled besides an input symbol also by a real number. Initial and final states
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are replaced by initial and final distributions that give for each state a real
number. A WFA A over alphabet S with state set Q — {1, 2 , . . . , n} is
represented compactly by |E| transition matrices Wa, a G S, of size n x n,
a row vector / of size 1 x n and a column vector F of size n x 1. For ail
i, j £ Q, a e E, the element (i, j ) of Wa is the weight of the transition
from state i to state j with input symbol a. The initial and final distribution
values of state i are the i'th éléments of / and F, respectively.

The WFA A defines a fonction ƒA : S* -> R by

/ A (ai a2 . . . afc) = /Wa, Wa2 . . . Wflfc F ,

where ordinary matrix products are used. Equivalently, f A can be determined
as follows: Define for each state i E Q a fonction ^ : S* —> R recusively by

(1)

and

(2) ^ (a«/) ,

for ail w G E*, a G S. Then

(3) /A (W) = / l ^1 (tü) + h i>2 (w) + . . . + Ia ipn (w).

If the set {ƒ : S* —• R} of fonctions is taken as a linear space where
addition and multiplication by a constant are defined in the natural way
pointwise, then (2) can be written as

(20 (iPi)a

where ( ^ ) a is the fonction ( ^ ) a (w) = ^ H ) , Vw; G S*. Similarly (3)
becomes

(3') fA = h1>l+Ilifa + --. + Ia ̂ n -

In other words, the initial distribution gives the coefficients in the linear
expression of f A using fonctions ^ and the i'th row of transition matrix
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Figure 1. - The addresses of quadrants.

Wa provides the coefficients in a similar linear expression for ('0i)a. Clearly
(1), (2') and (3') uniquely define fA.

Let E — {0, 1, 2, 3}. A correspondence between functions S* —> R and
grey-tone images is obtained as follows. Words over E are understood as
addresses of subsquares of the unit square [0, 1] x [0, 1]:

Each letter of S refers to one quadrant of a square as shown in Figure 1.
We assign e as the address of the root of the quadtree representing an image,
/. e. it refers to the whole unit square. Each letter of S is the address of
a child of the root, i. e, a quadrant of the unit square. Every word in E*
of length k, say w9 is then an address of a unique node of the quadtree at
depth k, L e. an address of a subsquare of size 2"~fc x 2~k. The children
of this node have addresses wO, wl, w2 and w3. For example, the squares
addressed by words of length three are shown in Figure 2.

A function ƒ : E* —• R defines a multiresolution image, that is, an image
in every resolution 2fcx2fc: The grey-tone intensity of the pixel with address
w E Sfc is ƒ (w). Typically the values of ƒ are supposed to be within the
interval [0, 1], in which case 0 is interpreted as "white", 1 as "black" and
intermediate values as intermediate intensities, but other interprétations are
also possible. The different resolutions are compatible if the multiresolution
image ƒ is average preserving:

f H = 7 [/ M ) + ƒ (wl) + ƒ (w2) + ƒ (w3)]

vol. 28, n° 3-4, 1994
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F i g u r e 2 . - T h e a d d r e s s e s o f s u b s q u a r e s i n r e s o l u t i o n 8 x 8 .

for each w e S*. The function f A computed by WFA A is average preserving
if

(Wo + Wi + W2 + W3)F = 4F,

that is, if the final distribution F is an eigenvector of W0 + W1 + W2 + W3
corresponding to eigen value 4.

With this interprétation of alphabet S = {0, 1, 2, 3} the meaning of (2')
becomes obvious: It states that the quadrant a of the image ij)i 1S the linear
combination of images ^ 1 , ^ 2 , . . . , ipn with coefficients given by the i'th
row of matrix Wa.

Example 1: Consider the WFA A shown in Figure 3 (a). The transitions are
labeled with symbols of E and weights, which are inside parentheses. The

Informatique théorique et Applications/Theoretical Informaties and Applications
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0,1,2,3(1/2) 1,2(1/4) 0,1,2,3(1)

347

(b) (c)
Figure 3. - (a) WFA A defining the linear grayness function f^, (b) f A = V'i» (c) ih-

initial and final distribution values of the states are shown inside the nodes.
The images ipi and ^2 are shown in Figure 3 (b) and (c), respectively. Since
the initial distribution is (1, 0), f A = ifri.

Figure 4 shows the linear expressions indicated by the outgoing transitions
from the first state. The outgoing transitions from the second state simply
indicate that all four quadrants of ip2 are the same image 1^2-

3. A SCETCH OF THE RECURSIVE INFERENCE ALGORITHM

The inference problem for WFA means finding a WFA that approximates
well a given grey-tone image. Based on the discussion of the previous
section this can be rephrased as follows: Try to find multiresolution images
V>i, ^ 2 , - - - Ï tyn such that

(i) all four quadrants of all tjj% can be expressed as linear combinations
Of Vl, V>2,-.., il>n,

(ii) a good approximation of image ƒ can be expressed as a linear
combination of ^ 1 , ^2, • • •, ^n-

vol. 28, n° 3-4, 1994
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2
1
2

Figure 4. - Linear expressions defined by the outgoing transitions from state 1 in Figure 3.

The coefficients of (i) and (ii) define the transition matrices and the initial
distribution of the WFA, respectively, while the final distribution is given by
the average intensities of images tpi, 1 ^ i ^ n.

Algorithm 1 is a scetch of our implementation of the recursive inference
algorithm discussed in [2, 3]. See those références for more details. Basically
the algorithm processes all four quadrants of an image

(a) by trying to express the quadrant as a linear combination of existing
images ifri and

(b) by choosing the quadrant as a new image that is recursively processed.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Global variables:

n : number of states in the automaton,

ij>i : image of state i, 1 < i < n,

weight[t\[a]\j] : the weight of the transition from state i to state j with label a,

cAt'W[i][a] : number j such that rpj - (V't)a, if such j exists, 0 otherwise. (Indicates what

choice was done for quadrant a of state t in function build.)
Functions dk(ftg) — I ^ g E * (/("O ~~ 9iw))3 compute the square distance between images ƒ and g

in resolution 2* x 2 k .

Initially, n = the numer of éléments in the initial basis, ^1 ,^2 , •. •, V*n are the images in the basis,

and values of weighi and child are initiated to 0.

The WFA for image ƒ : Efe -* H of resolution 2* x 2* is constructed by calling buitd(f, k} oo).

fioat bxtild(ip, k, min)

/* Approximates image ip : Sfc -»> H of resolution 2fc x 2* by a WFA. In the end of the routine the

image i/>n of the last state is an approximation of ^ such that the value of cost — error+G'size is

minimized, provided cost < min. In this case the routine returns cost Otherwise (if min could not

be improved) value oo is returned. The function uses local variables s[a] and t[%\[a] to remember the

chosen values of child and weighi untü the end of the routine, that is, until the number of the new

state approximating ij> is known. */

If min < 0 or k = 0 then return(oo);

cost «— 0;

do steps 1—5 with (p — t/'a for all a € S:

1. Find r i , r 2 , . - • r n such that the value of

costl *-djfc_i(¥>,ri^i + ... + rnif>n) + G' sizeî

is small, where sizel dénotes the increase (in bits) in the size of the automaton caused by

adding edges to states 1,2, . . . , n. with label a and weights r\, r 2 , . . . , r„;

2. no <— n;

3. cost2 «— G-sizeê -f buiid(<p,k — l,min{m:n— co5i,co5f/}—G-$iztt)% where size2 is the increase

in the size of the WFA caused by an edge with weight 1 to a new state;

4. If costB < costi then cost «— cost + costî, s[a] «— n, <[n][a] <- 1;

5. If C05Ü < costS then cos< <— cosi + cos(i, n •— n0, s[a] +— 0, f[i][a] «— r t ) V:( 1 < : < no;

If cost > min return(oo);

n • - n + 1;

For all a G E set child[n)[a] *- s[a];

For all o € S and i - 1,2,... ,n - 1 set u>ei^[n][a][ï] «- i[t][a];

V»n <— the multirésolution image defined to state n;

return( cost)\

Algorithm 1. - Outline of the recursive inference algorithm for WFA.

vol. 28, n° 3-4, 1994
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The alternative that yields better result is chosen. The alternative (a)
corresponds to adding new edges that express the coefficients of the linear
combination, while (b) means adding a new state for the quadrant and just one
transition with weight 1. The alternative is chosen that gives smaller value of

cost — error + G * sizey

where G is a real number parameter given to the algorithm, error is the
square différence between the quadrant and its approximation (by square
différence we mean the sum of the squares of the différencies in the pixel
values in the two images), and size is the number of bits required to store
the new edges and states.

Parameter G controlls the quality of the approximation and the compression
rate. One bit increase in the size of the compressed file is allowed if the
improvement it provides in the image quality is at least G. The algorithm
thus chooses from the square error vs. file size-graph the point where the
derivative is -G.

The Algorithm 1 is slightly different from the algorithm described in [2, 3].
The main différence is that the new state is added only after its quadrants are
processed. Therefore its image is not available for the linear combinations
in its subquadrants. This prevents loops in the automaton. This also means
that before first call to function build, the WFA has to be initiated to a fixed
initial basis (see [2, 3]).

After Algorithm 1 has been executed, the transition matrices of the WFA
can be read from the variable weight. Element (i, j) of Wa is weight [i]
[a] [ƒ]. Images ipi of the states (except the states of the initial basis) are
approximations of some subsquares of the original image. Variable child
describes the relation between the states and the quadtree représentation
of the image: If state i approximates the subsquare with address w, then
state child [i] [a] approximates the subsquare with address wa9 provided
child [i] [à] ^ 0. If child [i] [a] = 0, the quadrant a was expressed as a
linear combination of existing states, so there is no state in the WFA for
subsquare wa.

4. COMPRESSING THE WFA

Algorithm 1 produces a WFA A that still has to be written as a bitstring.
The initial distribution of the WFA A will always be of the simple form
(0, 0 , . . . , 0, 1) since the image ipn of the state added in the end of the

Informatique théorique et Applications/Theoretical Informaties and Applications
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External routines encode-child, encode-bitmatrtx and encode-tueighi that take care of the arithmetic

encoding and updating the models are used. Routine initiatt.column initiâtes the probabilities of 0

and 1 in an unused context of the bitmalrix model.

Before calling encode initiate

normjfc[i] *— y^ft!^ for all images i, and

n «— the numer of éléments in the initial basis.

The encoding of the WFA produced by Algorithm 1 is done by calling encode(m> k), where m is the

number of states in the WFA, and the size of the original image is 2 l x 2 l .

tncodt(i, k)

/ * Encodes the subtree of the quadtree rooted at state i. State i represents a subimage in resolution

2* x 2*. • /

For all a e £ do

If child[i\[a] £ 0

{

encode.child(ltk) ;

encode(chiid[t\[alk - 1);

}

Else

{

encode.child(0,k) ;

For all j ~ l , 2 , . . . , n do

If u>eï>to[ï][a][7*] = 0 encode.bitmatrix(Otj) ;

Else

{

encode-bitmatrix(l, j) ;

encode-weighi(normk~i[j] • wetght[i][a][j],k — 2 + [log4 ^ j ) ;

n^n + 1; /* = i */

initiaie-column(n)\

Algorithm 2. - Outiine of a recursive algorithm for encoding a WFA produced by Algorithm 1.

outermost recursive call of build, i. e. the last state of A, is the approximation
of the original image. The final distribution, on the other hand, is uniquely
determined by the transitions and the initial basis: Since there are no loops,
the transitions tell how each ^ is eventually build up from the images of the
initial basis, and the average intensity of each state (=the final distribution)

vol. 28, n° 3-4, 1994
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can be computed. Therefore, initial and final distributions do not need to be
stored - it is sufficient to remember the four transition matrices.

The transition matrices can be encoded in a variety of ways. The only
requirement is that during the exécution of Algorithm 1 we have to be able
to compute - or at least estimate well - the increase in the size of the
compressed WFA caused by new edges and states on steps 1 and 3. The
algorithm is build in such a way that it takes into account how the WFA
is encoded in the end, and it attempts to produce WFA that are well suited
for that particular method.

Our choice is to use arithmetic coding with adaptive models. A model is
a method for calculating the probability distribution for the next symbol to
be encoded. The model gets as input the context of the symbol, L e. some
information computable without knowing the symbol. Arithmetic encoder
gets as input the probability distribution and the actual next symbol. The
decoder uses the same model to compute the same probability distribution
for the same context. Based on this information it can décode from the
compressed string the actual encoded symbol. The model is called adaptive
if the probability distribution it provides dépends on the history of symbols
already encoded. Consult référence [5] for more details.

In our application the weights will be encoded separately from their
positions in the matrices. In otherwords we store bitmatrices that indicate
the non-zero éléments of the transition matrices. The edges added on step 4
of Algorithm 1 are special: their weight is always one. They are stored by
encoding the variable child. So we use three models: one for variable child,
one for the bitmatrix of other edges, and one for the weights. Since adaptive
models are used, in order to be able to estimate the costs correctly on steps
1 and 3, the encoding has to be done in the same order as the edges are
added during the exécution of Algorithm 1.

Algorithm 2 is a scetch of the encoding algorithm. In the following we
explain in more details the algorithm and the models that are used. Algorithm
3 is an outline of the corresponding decoding algorithm.

4.1. The model for variable child

Four bits are encoded for each state i: For every a G S we encoded 1 if
child [i] [a] ^ 0 and 0 otherwise. This uniquely détermines the underlying
quadtree structure. Not that the actual value of child [i] [a] can be deduced by
numbering the nodes in the same depth first order as Algorithm 1 traverses
the tree.

Informatique théorique et Applications/Theoretical Informaties and Applications
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External routines decode-child, dtcodc-hilmatrix and decode-xotighi take care of the arithmetic de-

coding and updating the modeis. Routine iintiate^coïumn is used to initiate the probabilities of 0

and 1 in a new context of the bitmatrix model.

Before calling décode initiate

n <— the numer of éléments in the initial basis.

A WFA produced by Algorithm 1 is decoded by calling decode(k), if the size of the original image
is 2* x 2*.

decode(k)

/* Décodes a subtree whose root represents an image at resolution 2* x 2 l . Local variables s[a] and

t[j][a] are used to remember the values of child and weight un til the end of the routine. */

For all a € E do

If decode.child(k) = 1 decode{k - 1); s[a) = n;

Else

{

s[a] = 0;

For a l l ; = 1 ,2 , . . . ,n do

If decode-bitmairix(j) = 1 then t[j)[n] *-~decode-weighl(k — 2 + [log4 ^J) /normjt-i[;];

Else t{J][a] <- 0;

For all a G E set child[n][a] <- s[a\\

Foi all O € E

If s[a] = 0 then, for all j = 1,2,... ,n — 1 set weighl[n)[a)[j) ^~ i[j][a]\

Else weighi[n}[a)[s[a}}^\-

initiate-coiumn(n);

c o m p u t e \j)n and normk> [n] <— y*'^?'0^ for different reso lu t ions fc';

Algorithm 3. - Outiline of a recursive algorithm for decoding a WFA encoded by Algorithm 2.

The depth of the state in the tree is used as context. The idea is that the
probability of bit 1 is greater for the nodes close to the root than for those
closer to the leaves. In particular, a node is a leaf iff all four bits are O's,

Initially, in every context the probabilities of both bits are set to 1/2. After
encoding x O's and y I's at the particular depth, the probabilities are updated
to (x + l)/(x + y + 2) and (y + 1)1 {x + y + 2) for 0 and 1, respectively.
The same probabilities should be used in Algorithm 1 for calculating size 1
and size 2 on steps 1 and 3:

vol. 28, n° 3-4, 1994
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( X + 1 \
] + size l', and

x + y + 2 /

size 2 = -log2 ( — 7 — — ),

where size 1' is the increase in the size of the automaton due to the new
edges with weights n , r 2 , . . . , rn .

Bit b at depth k is encoded by routine encode_child (6, fc) that (i) encodes
the bit using arithmetic coding and (ii) updates the model for context k.
The corresponding routine for decoding is décode jMld (k) that returns the
encoded bit and updates the model.

If child [i] [a] ̂  0, nothing else than bit 1 needs to be stored for quadrant
a. The state child [i] [a] is then encoded by a recursive call. If child [i] [a]
— 0, the weights weight [i] [a] [7], 1 < j ' £ n found on step 1 have to be
encoded in addition to the bit 0. For each j a bit indicating whether weight
[i] M Ij] — 0 is encoded using the model of subsection 4.2. If weight [i]
M [j] ^ 0 the weight is stored using the method of subsection 4.3.

4.2. The model for the bitmatrices

A bit indicating whether weight [i] [a] [j] = 0 is encoded using the
column j as the context. This is based on the observation that some images
are more frequently used in linear combinations than others. It is sufficient
to encode a bit for the columns that correspond to states that existed when
step 1 of Algorithm 1 was executed. Others correspond to states that were
created later and were therefore not yet available.

A new context is initiated when a new state becomes available. The
probabilities of bits 0 and 1 are then initiated to po and pi according to
their occurences in the bit matrices (in all contexts) so far. Later, after
encoding x O's and y I's in the context, the probabilities are updated to
(x +po)/(x + y + 1) and (y + pi)/(x + y-+ 1) for 0 and 1, respectively.

Bits are encoded by routine encodeJ?itmatrix (6, j) that also updates
the model for context j . The corresponding routine for decoding is
décodeJbitmatrix (j). A new context is initiated by initiate_column.

4.3. Encoding the weights

Finally non-zero weights TJ — weight [i] [a] [j] have to be encoded.
Consider their précision: Assume p bits after the binary point are stored. The

Informatique théorique et Applications/Theoretical Informaties and Applications
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précision should be increased by one bit if the image quality gets improved by
at least G. The error caused by rounding Vj is on the average approximately

where

Therefore the précision should be increased if

3 g 4P+1 3 . 4P+2 '

that is, if

1
p < log4 4 - 1 (V>j, 0) + Iog4 -g - 2.

Instead of weight ry, normalized weight

Tj = norrrik-i [j] • TJ

is stored, where

is the square root of the mean square distance of ipj from zero in resolution
4*-i x 4*-is por rf- précision

is used. Advantages of using the normalized weight are the uniformity of
the précisions (the same number of bits at the same resolution) and better
distribution of the weights.

For encoding the weights, an interval I = [x, y = x + M - 2~s] is divided
into M subintervals of length 2~s. First, information concerning which
subinterval contains r!- is encoded using arithmetic encoding (here (-00, x)
and (y, 00) are possible intervals). If r1- e / , the last p — s bits are written
as such. If r' < x (or r' > y), the positive real number r — x — rf- (or

vol. 28, n° 3-4, 1994
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r = Tj — y, respectively) is stored as follows: m = |jog2 (r-H- 1)J is written in
unary (this requires m + 1 bits), and r+1 - 2m is written as such (m+p bits).

Weights r ' are encoded in précision p by routine encode_weights (r'-, p)
that also updates the model. The corresponding routine for decoding is
décode_weights (p).

5. RESULTS

Our set of test images consists of four well-known 8—bit gray scale images
of resolution 512 x 512 (lena, airplane), or 256 x 256 (bridge, camera). Lena
is the green component of the original rgb-image lena.

Recommendations for the compression algorithm was set up by the
JPEG {Joint Photographie Experts Group) working group. The bit rate
requirement for "useful" image quality was set to 0.25 bits per pixel, and
for "recognizable" image quality to 0.083 bits per pixel [4]. We try to meet
the first requirement.

Table 1. - Test results for several well-known images.

G

0.010

0.005

Image

Lena

Airplane

Bridge

Camera

Lena

Airplane

Bridge

Camera

Wl
bpp

0.20

0.23

1.34

0.67

0.29

0.35

2.08

1.03

FA
mse

70.90

71.10

84.15

41.81

51.87

45.12

40.55

21.28

W + 1

bpp

0.19

0.20

1.20

0.74

0.28

0.29

1.82

1.07

WFA
mse

70.83

64.67

76.40

41.66

46.54

40.87

37.45

21.34

JPI
bpp

0.20

0.21

1.20

0.74

0.28

0.29

1.82

1.07

3G
mse

113.91

117.06

94.42

54.67

66,57

62.68

55.95

32.07

Table 1 contains the test results for these images when compressed by the
recursive inference algorithm (WFA), by the recursive inference algorithm
applied to the Mallat form of the Wó wavelet transform (W+WFA, see
[2, 3]), by JPEG. The inference algorithm was applied with parameter values
G = 0.01 and G = 0.005. For each case the bit rate of JPEG was set to
match as closely as possible with the ones given by the W + WFA method.
The result of both WFA and W + WFA clearly outperforms the results of
JPEG. The compression results for Lena and G — 0.005 are illustrated in
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Original JPEG
bpp=8.00 mse=0.00 bpp=0,28 mse=66.57

WFA W+WFA
bpp=0.29 mse=51.87 bpp=0.28 mse=46.54
Figure 5. - Test image Lena a) original, b) compressed by JPEG, c) by WFA, d) by W + WFA.

Figure 5. The degderations of the methods are ho wever better visualized in
Figure 6, where magnifications from Lena are shown.

The drawback of the WFA inference algorithm is its high compression
time. The higher the automaton size (and thus the image quality) the higher
the running time. However, the decoding remains relatively fast. This is an
important property e. g. for an image archieving system where the images are
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Original
bpp=8.00 mse=0.00 bpp=0,28

JPEG
mse=66,57

WFA
bpp=0.29 mse=51.87

W+WFA
bpp=0.28 mse=46.54

Figure 6. - Magnifications of Lena.

stored only once, but retrieved often. The compression and décompression
times with Sun SparcServer 690M are given in Table 2.

Finaly, Table 3 contains more details about the encoding results of the
WFA. For all four WFA for Lena, we have listed the numbers of bits
required to encode the three different parts of the automaton: the undelying
quadtree structure (L e. variable child), the bitmatrices and the weights. The
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Table 2. - Compression/décompression times.

359

G

0.010

0.005

Image

Lena

Airplane

Bridge

Camera

Lena

Airplane

Bridge

Camera

W]
comp.

412.9

598.9

1480.5

443.2

614.6

1066.9

3101.5

940.6

FA
decomp.

10.5

15.2

64.5

21.0

13.9

23.9

149.0

48.1

comp.

518.1

547.2

1078.7

526.3

981.0

964.6

2341.0

1002.0

WFA
decomp.

22.0

25.7

44.4

26.7

36.0

33.2

103.2

54.5

Table 3. - Entropies for the different parts of the
WFA for Lena, and numbers of states and edges.

G

0.010

0.005

type

WFA

W + WFA

WFA

W + WFA

bits in
quadtree

1088

1874

1368

2326

bits in
bitmatrices

25850

32624

40090

48144

bits in
weights

25072

14431

34962

23087

states

477

831

601

1145

edges

4843

3534

5948

4972

numbers reported are the base 2 logarithms of the probabilities provided by
the models to the arithmetic encoder.

Also the numbers of states and edges in the WFA are listed. The numbers
do not include the initial basis which does not need to be stored. The number
of edges contains only the edges whose weights are stored - the edges with
weight 1 forming the quadtree structure are excluded.

On the average, a little more than two bits per state are needed for the
quadtree - a clear improvement to the trivial four bits per state. The numbers
of bits per encoded weight varies between 4.0 and 5.9. For parameter value
G — 0.005 one bit higher précision is used for the weights than in case
G = 0.01. Typically the combination with wavelets produces more states
but fewer edges, therefore the bitmatrices occupy a greater share of the
compressed file.
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