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FRACTALS, DIMENSION, AND FORMAL LANGUAGES (1)

by W. MERZENICH (2) and L. STAIGER (3)

Abstract - We consider classes of sets of r adic expansions of reals specified by means of the
theory of formai languages or automata theory It is shown how these spécifications are used to
calculate the Hausdorff dimension and Hausdorff measure of such sets

Since the appearence of Mandelbrot's [Ma77] book "Fractals, Form,
Chance and Dimension" Fractal Geometry as a means providing a theory
desenbing many of the seemmgly complex patterns in nature and the
sciences has become popular not only in the sciences (cf. [PS88]), but
also in Computer Science. Hère Barnsley's [By88] "Computational Fractal
Geometry" aims at a practical description of fractal patterns by so-called
Iterated Function Systems (IFS). Besides IFS several other computational
methods for the description (génération) of fractal images have been
developed. Recently concepts involving methods of Automata or Formai
Language Theory have become popular (see e. g. [BM89], [BN89], [CD90],
[CD90/93], [CD93], [Fe93], [HKT93], [PLH88], or [Sm84]). Several of those
concepts seem to originate not in Automata or Formai Language Theory,
rather being developed earlier in connection with problems in Dynamical
Systems Theory or Geometrie Measure Theory (cf. [HPS92]). Nevertheless,
providing a thorough considération of finite computational devices, Automata
or Formai Language Theory yields a new insight into problems dealing with
the génération of fractal images as the above mentioned papers show.
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3 6 2 W. MERZENICH, L. STAIGER

What concerns the analysis of fractals it is known from geometrie measure
theory (cf. [Fa85]) that the estimation of the fractal dimension or measure
of even rather simply definable sets is already a complicated task. It would
be interesting to know whether Automata or Formai Language Theory can
also contribute to the solution of problems arising there.

In this paper we show that this language or automata theoretical approach
to image description does not only provide a method for their génération but
also for the computation of their fractal or Hausdorff dimension and measure,
that is, for their analysis, and even more generally, we can use our approach
for the computation of the Hausdorff dimension and measure of certain
constructively given subsets of the unit cube [0, l]d in Euclidean space Rd.

In order to specify subsets of the unit cube [0, 1] constructively, we
consider real numbers b G [0, 1] as infinité r-ary expansions b = 0./3
with j3 G Yu where Yw is the set of all semi-infinite séquences of r-
ary digits (Y := {0, 1 , . . . , r — 1}, r G N, r ^ 2). Then an expansion £ G
(Y x . . . x y ) w describes the point p (f) := (O.pn £ , . . . , Q.prd \) G [0, l]rf.

dtimes

In what follows let y be a finite alphabet of cardinality r := cardY > 2,
and let X := 7 x . . . x T , We consider X^ as a metric space with metric

d times

p defined by

p(0i 0 = înf {r"'™' : w is a common prefix of P and^}.

This metric p satisfies the ultrametric inequality p(/3, £) £
max{p(^, 7?), p(^, 77)}. Since X is finite, the space (Xw, p) is compact.

The open (they are simultaneously closed) balls in (Xu', p) are the sets
of the form w • Xw , where w is a finite string over X. Sets of finite strings
(so-called languages) will play a major rôle in our investigations. Therefore,
as usual we introducé X* as the set of ail finite strings (words) over X,
including the empty word e. For w G X* and p G X* U X^ let w • p
be their concaténation. This concaténation product extends in an obvious
way to subsets W Ç X* and P C X* U Xw . The Zercgtfz of a word w
is denoted by |iu|.

A word w is a prefix of some p G X* U Xw (short to Ç p)
iff there is a p' G X* U Xw such that «/ • pl = p. Let A (P) :=
{w: w G X* A 3 p ( p E P A w ; Ç p ) } b e the language of finite préfixes of P.
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FRACTALS, DIMENSION, AND FORMAL LANGUAGES 363

We call a language V Ç X* prefix-free provided

Vtu, v(w Qv Aw, v G V —*• w = v ).

The bail w • X" has diameter diam (w • Xw) = T-~lw'. Thus balls «/ • X"
in X^ correspond to r-ary subcubes [i\ • r~lwl, (ii + 1) • r~lwl] x • • • x [i^ •
r~ | tü|, (id + 1) • r-l^l] in [0, l]d . Open sets in Xw are sets of the form
W - Xu = IJ wXu where W g X*. A subset E g I w is c f o ^ if

its complement is open (or if its éléments do not have any prefix in some

w' g x*).
So far we have made clear which connection between subsets of the unit

cube in Rd and languages of finite or infinité words we have in mind. The
following section makes these connections more précise, and dérives several
fondamental relations between the so-called entropy of languages and the
Hausdorff dimension in the space (Xw, p).

Then, in Section 2 subsets of Xu definable by finite linear Systems of
équations are introduced and a relation between the adjacency matrix of
the underlying regular language and the Hausdorff dimension of the defined
subset of Xu is derived.

This approach is extended further in Section 3 and yields an effective
procedure for Computing the Hausdorff measure of a subset of X^ definable
by a finite linear system of équations. This procedure is based upon bounds
on the Hausdorff measure derived also in this section.

The last section deals with a close relationship between the topological
density of the subsets of Xu investigated so far and their Hausdorff dimension
and measure. This leads to the conclusion that for black-and-white fractals
definable by finite Systems of équations the blackness of a picture is directly
related to its Hausdorff dimension and measure. This fact is illustrated in
the appendix, where we present several high-resolution (in comparison with
the number of defining équations) pictures of fractals and the dimension and
measure as computed by our algorithm.

1. HAUSDORFF DIMENSION AND THE ENTROPY OF LANGUAGES

In this section we consider subsets of X^ which can be obtained from
languages via certain opérations. We show that the close connection between
languages and open subsets of I w can be utilized to estimate the Hausdorff
dimension of these sets.

vol. 28, n° 3-4, 1994



3 6 4 W. MERZENICH, L. STAIGER

First we recall the définition of the Hausdorff dimension in the space
( I w , p): An r~n-cover of a set F g Xw is a family (v - X")veV of balls
such that V • Xu ^ F and whose diameters diam (v • Xw) do not exceed
r~n, that is, inf {\v\ :v eV} > n.

Let La(F;V) := ] P (diam?; - X"f = J ^ r -
a > l for a cover

(v-X")veV of F i F . Then

La (F) := lim (inf {La (F; V) : V • X" i F A inf {lul : v G V} ^ n})
n—KX>

is the a-dimensional outer measure of F , and the following properties are
satisfied [Fa85]:

PROPERTY 1: 1. Ifinï {p (£, f3) : £ G Fand ƒ? G F} > 0 for (not necessarily
measurable) subsets E, F ÇX" then La (F U E) = La (F) + La (E).

2. La is a measure on the Borel subsets of Xu.

From Property 1 one easily infers the following useful identity.

PROPERTY 2: Let V Ç X* be a prefix-free language and (Fv)vev be a
family of subsets of Xu. Then

L (\ \ v F ) - V r " a 'H • L (F)

Proof: Since V is prefix-free, for every pair v, w G V, v =£ w it holds
mi | p (ç ,p ) : ç G v • X A p G w • A } ^ maxjr ' ', r • '} > U.
Thus by Property 1 La ( [ J u • Fv) = ^ r~a'lul • La (Fv) for every

finite subset Vf oï V. If V is infinité, taking limits on both sides yields
La(\JvFv) = Y,La(v-Fv)

vev vçv
The proof is finished by the easily verified identity La(y • F) =

r-°W • La (F).

Q.E.D.

Now, consider La (F) as a function of a. Then there is an a (F) G [0, oo]
such that

o, if a<a(F),

if a>a(F).

Informatique théorique et Applications/Theoretical Informaties and Applications



FRACTALS, DIMENSION, AND FORMAL LANGUAGES 365

This number a (F) is called the Hausdorff dimension dim F of F, that is,
the Hausdorff dimension of F is given by

d i m F = : s u p { a : L a ( F ) = 00} = inf {a: La(F) ^ 0}.

Remark: It should be noted that, since our metric p does not coincide with
the usual metric in Rd, our measure La differs from the usual a-dimensional
outer measure Ha in Rd. Since diam w • X" is the edge length of the r-ary
subcube [ t i - r - H , (»I + 1 ) T - H ] X - - - X [id-r-W, (id + 1 ) - r - H ] , our
measure La is up to certain ambiguities due to double expansions of numbers

/ /—\a A

% • T~3 a scaled by ( 1/vdJ version of the net measure Ma in [0, 1] (cf.
Section 5 in [Fa85]). Thus, in particular, dim F = dim {p (£) : £ e F } .

Note that dim is monotone and countably stable, that is,
F Ç F' g Xu -> 0 ^ dim F £ dim F ' < d,

and
dim I J Fj = sup dim Fj

for any countable family of sets F% Q Xu.

Next we shall introducé the entropy of languages (cf. [Ku70]) which has
close relations to the Hausdorff dimension of subsets F Q Xw.
Let sy (n) := card {v : v G V A \v\ = n} for n G N and V Ç X*. The
entropy of a language F Ç X* is defined as follows.

{ °' if V is finite,

limsup - logr sy (n), otherwise.
For F g Xw let s^ := s ^ m and

In order to relate the entropy of languages to the Hausdorff dimension of
subsets F Ç Xu (so-called u;-languages) we need opérations transforming
languages to o;-languages (for some examples of those opérations and their
gênerai properties, see e, g. [LS77] or [St87]) and, thereby, yielding estimâtes
of the Hausdorff dimension of the transformed a;-language via the entropy
of the original language.

The following two opérations prove to be useful in this respect (cf. also
[St89/93]). The first one introduced in [SW74] and [LS77], usually called
adhérence of languages (cf. [BN80]), is defined as follows

(1) Is W := {£ : £ G X" A A (£) Q A {W)}.

vol. 28, n° 3-4, 1994



3 6 6 W. MERZENICH, L. STAIGER

The second one, Davis' [Da64] 5-limit of V C X* is

Vö := {£ : ^ e I w A ( has infinitely many préfixes in V}.

It is well-known that a subset F of Xu is closed iff F = Is W for some
language W Q X*, and that E Ç Xu is a countable intersection of open
sets [a so-called G^-set in (XÜJ

1 p)] if and only if there is a V Q X* such
that E = V6.

In connection with these topological properties we mention still that
Is A (F) = (A(F))S = {£ : A({£}) C A (F)} is the closure of the set
FgX^X (F), in the space (Xw, p), that is C {F) - Is A (F) = (A (F))6

is the smallest closed subset of (Xu, p) containing F.
We obtain our first result.

LEMMA 3: ([St89/93]) dim F = in£{Hw : W6 2 F}> in particular
dim V6 < Hv, and dim Is F ^ jffA(V)-

Then Is A (F) = (A (F))0 = C ( F ) 3 F implies the following.

COROLLARY 4: ƒƒ F C Xw rten dim F < HF.
In order to formulate the next results, we define W* := {IÜI • • • wn :

n € N A Wi € W} as the set of all finite products of words from W,
and lfw := {it;i • • -wn * • • : TJÜÏ € W^\{e}} as the set of infinité strings
formed by concatenating words in W. The opérations A, Is and 6 share
some cornmon properties:

Let op be one of the opérations A, Is or ö. Then

(2) op (W U V) = op( W) U op (F),

(3) op (W-V) = op(Wr) UW- op(F) if e e y ,

(4) op(W*) = Ww U W* . op W if op =3 Is or op = ó

and

(5) A (W*) = {e} U W* • A

THEOREM 5: ([St89/93]) For every W Ç X* /f totas dim
dim (W*)€ = fTw, anJ (ƒ a = dim Ww r/ren L

C1) In fact, the last assertion of was proved in Proposition 6.6 of [St89/93] only for La (W"),
but a simple modification of the proof given there works also in the case of La

 6
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FRACTALS, DIMENSION, AND FORMAL LANGUAGES 367

THEOREM 6: Let V Ç X* be a regular language. Then La((V*)6) =
La (C (Vu)) for all a e [0, 4 If moreover, V is prefix-free then La(V

u) =
La (C (Fw)) for all a E [0, d].

Proof: Since C (V") = lsV* = (A(V)*)6 = C((V*)6)9 it suffices to
show that for regular languages V the inequality dim (lsV*\(V*) ) <
dim (V*)6 = Hv* holds.

To this end we recall for V* the well-known représentation of regular
languages by prefix-free regular languages:

for suitable n E N, regular and prefix-free languages Vi, W% where W% ̂  0 .
Thus using the above Equations (2), (3), (4) and (5), and taking into account
that U6 — 0 if U is prefix-free we obtain

and

* = \J Wi -V? u ( j Wi-V*-\sVi U IJ lsWJ.
2 = 1 i - 1 Z = : l

Since dim in countably stable, it suffices to show that dim Is Wi, dim Is Vi
(y*)* = Hv** In virtue of Lemma 3 we have dim Is U ^ i?A(£/) f° r

U Q X*. Utilizing the fact that iJA(t/) = Hu < Hu*, if U is prefix-free
and regular (see e. g. Property 2.7 of [St89/93]) we obtain our assertion from
the obvious inclusions Wi Ç W* Q V*, Wi • VJ g (Wi • VJ)* g V* and
the inequality H^i.yi _t Jïy..

The second assertion follows from the first one and (4), because Ve = 0.

Q.E.D.

2. FEVITE STATE w-LANGUAGES AND ADJACENCY MATRICES

As we have seen in the previous section there are several relations between
the Hausdorff dimension of subsets of X^ (so-called o;-languages) and the
entropy of languages. In order to compute dimF or La (F) for an u;-language
F Q Xu exactly we have to specify the u;-language F in a constructive way.
Here we use the spécification via Systems of équations which resembles in
some way the subdivision of sets in Rd into r-ary subcubes. The following
example illustrâtes this fact.

vol. 28, n° 3-4, 1994



368 W. MERZENICH, L. STAIGER

Example A: (to be continued) Consider the fractal in Figure 1.

Figure l.

The northeast (NE) and the southwest (SW) of its binary subsquares are
both similar to the fractal itself (denoted by Si), whereas the northwest
(NW) and southeast (SE) subsquares and the original fractal are pairwise
different (denoted by S2 and S3, respectively). This yields the first équation.

S1 = SE • S3 U SW • Sx U NE • S1 U NW • S2

If we consider the northwest and southeast subsquares in the same way
we obtain that the first one has subsquares similar to itself (SE), to the
original fractal (SW and NE) and to the southeast subsquare of the original

Informatique théorique et Applications/Theoretical Informaties and Applications



FRACTALS, DIMENSION, AND FORMAL LANGUAGES 369

fractal (NW) and the second one has subsquares similar to itself (NW)
and to the original fractal (SE), whereas its remaining subsquares are empty
(completely white). Thus we may write the System of équations for the
fractal Si in the following way:

51 = SE - S3 U SW • Si U NE - Si U NW • S2

52 = SE • S2 U SW - Si U NE • S3 U 7VW • S3

5 3 = SE • Si U NW • S3 D

In gênerai those Systems of équations correspond to certain normal form
grammars (or deterministic automata) specifying o?-languages. Here we are
dealing mainly with finite Systems of équations.

Therefore, for a word w and a set P C I * u X" we call P/w := {p :
w 'P G P} the state of P derived by the word w, and we call a set P finite-
state provided {P/w : w G X*} is a finite set. Finite-state languages are also
known as regular languages (languages accepted by finite automata), whereas
finite-state u;-languages form a larger class than cj-languages accepted by
finite automata. The interrelations between both classes are investigated in
more detail in [St83].

Since F/w = (F n w • Xu)/w> the state of F derived by the word w is
the rM-fold magnification of the r-adic subcube of F specified by the word
w, F D w • Xw . Thus the equality of states F/w = F/v is equivalent to the
similarity of the corresponding subcubes F n w • X^ and F n v • Xe0.

As in the example above finite-state subsets of Xw can be characterized
as solutions of Systems of linear équations of the form:

(6) Si= (J x-Sj{ijX) 0yéXtQX, l^i<k

where j maps { 1 , . . . , k} x X to { 1 , . . . , &} (cf. [LS77]). Observe that
Sj(iiX) = Si/x. In order to avoid unnecessary équations in (6), we require
that for every % G { 1 , . . . , k} there is a w G X* such that Si — S\/w.

A System of the form (6) is closely related to a finite automaton, but it
may have many solutions. 2 If we, however, confine to solutions which are
closed subsets of (Xw , p) we have the following.

LEMMA 7: ([LS77]) If we require that every Si ^ 0 then for k ^ 1 a
system (6) has a unique nonempty closed solution S\. Moreover, Si is the
maximum solution of (6).

(2) In fact, already the simple system S - X • S has 22* ° solutions (cf. [St83]).
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3 7 0 W. MERZENICH, L. STAIGER

The next lemma shows another connection between Hausdorff dimension
and the entropy of languages (cf. Corollary 4 above).

LEMMA 8: ([St85/89]) If F Q Xu is finite-state and closed then
dim F = Hp.

Now the result of Lemma 8 reduces the computation of dim S to
the calculation of the entropy of the corresponding languages of finite
préfixes, £?A(S)- This latter problem can be reduced to the computation
of the maximum eigenvalue Amax of the adjacency matrix of A ( J S ) ,

As = {dij)i<i,j<k where aij := card {x : j (i, x) = j} (cf. [Ku70],
[LS77] or [St85]). 3 It turns out that dim S = logr Amax.

Related results concerning so-called graph directed constructions in Rd

involving more complicated cases of similarities (not only those of r-ary
subcubes) were obtained by Bandt ([Ba88] and [Ba89]) and Mauldin and
Williams ([MW88]).

As a final result in this section we recall a relation between the structure
fonction sp (n) of a finite-state o;-language F and the maximum eigenvalue
of AF, Amax, which is derived in Lemma 7 through Corollary 9 of [St85],

LEMMA 9: Let F Q Xw be an ui-language having k states. Then
F1 :— F\ U w • X^ has at most k states and the structure fonctions

HF/W<HF

sp and SF1 satisfy

(7) sp' (w) ̂  c a r d {w : \w\ = n A Hp/w = Hp}

(8) sF (n) > sF> (n) ^ ^ l x ) k ^max for all n G N .

3. THE COMPUTATION OF THE MEASURE La

In this section we are going to show that for finite-state closed cj-languages
5 their Hausdorff measure La (S) (a — dim 5) is also computable.
First we apply the mapping La to the system (6) and we obtain the following
System:

(9) La (Si) = £ r~a • L

i Since As is a nonnegative matrix, it has a nonnegative eigenvalue of maximum modulus
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FRACTALS, DIMENSION, AND FORMAL LANGUAGES 371

Thus the vector La (S) :— (La (S i ) , . . . , La (Sn))
T solves the équation

In other words, La (S) is an eigenvector of the nonnegative matrix As
corresponding to the eigenvalue ra = Amax. From the Perron-Frobenius-
Theory of nonnegative matrices (see e. g. [Ga58], [La69]) we know that
As has at least one nonnegative eigenvector corresponding to Amax. The
difficulties in solving our problem, however, consist in the following items:

1. The Perron-Frobenius-Theory is not fully applicable here, because
La (S) may contain infinité entries.

2. The eigenspace of As corresponding to Amax may have dimension
> 1, and

3. even if the eigenspace is one-dimensional, we do not know which one
of the nonnegative eigenvectors is our solution.
Our approach to get the actual solution La (S) consists in deriving some
bounds on the entries of the vector La (£), that is, on the values La (S/w),
where w G A (S).

The first result excludes the all-zero-vector as solution for La (S).

LEMMA 10: ([Ba89], [MW88], [St89]) If F Q X" is nonempty, finite-state
and closed then La (F) > 0.

The next result gives a lower bound to the maximum entry of La(S).

THEOREM 11: Let La (F) > 0. Then for every e > 0 there is a w G A (F)
such that La (F/w) > 1 - e.

We use the following auxiliary lemma.

LEMMA 12: Let E Ç X" satisfy La (E) > 0 and La (E) > La (E/w) - e
for some e > 0 and all w E X*. Then La (E) ^ 1 - e.

Proof: Let e1 > 0 and let W Q. X* be a prefix-free language such that
E g W • Xw and L*{E\ W) = ^ r~a\w\ <La (E) + e'. According to

Property 1 we have

La(E)= J2 r~aH-La(E/w)^ £ r"a^ • (La{E)+e).

Consequently, La (E) ^ (La (E) + e1) • (La (E) + e). Since e1 can be made
arbitrarily small, the assertion follows.

Q.E.D.

vol. 28, n° 3-4, 1994



3 7 2 W. MERZENICH, L. STAIGER

Proof of Theorem 11: If c\— sup {La (F/w) \ w E X*} > 1 we are done.
Assume now c < 1. Then for every e > 0 there is a u E X* such that
La (F/u) ^1 c — e. Thus F/u satisfies the hypothesis of Lemma 12 and
hence La (F/u) ^ 1 - e.

Q.E.D.

For finite-state o;-languages we obtain immediately.

COROLLARY 13: If F Q Xw is finite-state and La (F) > 0 then there is a
w E A (F) such that La (F/w) *£ 1.

Consequently, our vector La (S) contains an entry > 1.

Utilizing Corollary 13 we obtain a gênerai lower bound on the nonzero
measures La(F/w).

COROLLARY 14: If F Ç Xu has at most k states and La (F) > 0 then for
allweA (F) such that La (F/w) > 0 we have La (F/w) ^ r " " ^ " 1 ) .

Proof: If La (F/w) > 0 then according to Corollary 13 there is a v E X*
such that L a (F/tu • v) ^ 1. Using well-known techniques from automata
theory we get such a v E X* having |t> | ^ fc — 1. Then the assertion follows
from the obvious inequality La (F/w) ^ r~

a'\v\ • LQ, (F/ IÜ • v).

Q.E.D.

To obtain a gênerai bound from above on the entries of La (S) other than
La (Si) S °° is n o t possible. Therefore, we confine to a particular case of
u;-languages from which we can combine the gênerai solution.

We call an u;-language F Q X^ strongly connected provided for every
w E A (F) there is a v E X* such that F/w • v = F. Observe also that every
state F/w of a strongly connected w-language F Q Xu is again strongly
connected. In order to characterize strongly connected a;-languages F we
introducé an auxiliary language Up as in [St83]. 4

UF:={u:ueA(F)\{e}AF/u = F

AVw(e\Zw\Zu^ F/w ̂  F}

Clearly, Up is prefix-free, and Up is regular provided F is finite-state.

Strongly connected finite-state closed u;-languages can be represented by
prefix-free regular languages in the following way.

(4) Remark that there is a slight change in the définition. In contrast to [St83] we have here
UF = 0 if F = 0 .
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LEMMA 15: Let an uj-language 0 ^ F Ç. X^ be finite-state and closed.
Then the following conditions are equivalent:

1. F is strongly connected.

2. F = C(Uf)
3. The matrix AF is irreducible.
Now from the identity La (Ve0) - La (C (V")) (cf. Theorem 6) we obtain

via Theorem 5 the following.

THEOREM 16: If F Ç X^ is strongly connected, finite-state and closed then
for all w e X* we have La {F/w) ^ 1.

Our theorem bounds the entries in La (5) from above by 1 provided S
is strongly connected. This yields the following procedure for calculating
La (S) when S is strongly connected.

PROCEDURE 1: Ifthe adjacency matrix As of the closed u-language S given
by the system (6) is irreducible then La (S) is the positive eigenvector with
maximum entry 1 correspnding to the maximum eigenvalue 5 Àmax.

Example A: (continued) Consider again the fractal given in the previous
section. lts adjacency matrix is obtained as:

(2 1 1
As, = 2 1 1

\ 1 0 1

lts maximum eigenvalue is Amax = 2 + V2, hence dimSi = log2 (2 + \/2),
and the measure vector results in

I « ( 5 i ) = 1 D

In order to treat the gênerai case we introducé the décomposition of an
u;-language F with respect to its connected part en (F) := F D C (Ujr).

(11) F = cn(F) U (J wF/w

(5) According to the Perron-Frobenius-Theory, for an irreducible matrix As, this eigenvector
exists and is unique.
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where TJ% : = A ( e n (F)) . X \ A (en (F)) = {w:\fv (F/w -v
Vu(uElw—>3v (F/u * v — F))}9 into pairwise disjoints parts en (F)
and w • (F/w) (w G £/£)•

Observe, that en (F) is closed if F is closed, and en (F) is finite-state if
F is finite-state. From Property 2 and the obvious fact that La (F/w) = 0
implies L a (F/iw • u) = 0 we obtain immediately.

PROPERTY 17: Let F C Xw. 7*OT L a (F) = 0 iff La (en (F)) = 0

La (F/w) = 0 /or ail w G £/£.
Moreover, for the sake of convenience, we assume the states Si numbered

according to the following rules:

1. Si = S.

2. The states in strongly connected components (SCCs) Cj := {Si :
3w 3v(Si/w = Sià A S%Jv = Si)} have consécutive numbers. (Observe
that, since Si3 /e = Si3, we assume every state Si to be contained in some
SCC.)

3. Otherwise, Si/w = Sj implies j ^ i.

If we dénote by C h C' the accessibility of SCCs, that is, C h C' iff
C £ 0 and 3 ^ 3 5 3 5 ' (S G C A S7 G C1 A S/w = S') then C h C'
means that states in C1 have higher numbers than states in C. Let fy be the
number of the first state Sk3 in the SCC Cj. Using these rules, As will be
in upper block diagonal form, that is,

/Ai . . . Ai,

0 •. !

where K is the number of SCCs, and the square matrices on the main
diagonal, Aj, correspond to the strongly connected components Cj. Note
that each matrix Aj is of size (card Cj x card Cj), and is zero or irreducible.
In particular, AK ^ O and if Aj — O then it is a (1 x l)-matrix.

Moreover, one easily observes, that Aj is the adjacency matrix of en (5^) ,
and that the nonzero entries of the matrices Ajj* correspond to words
w G U$ . Let further dénote Xj the maximum eigenvalue of the matrix Aj,
and observe that Xj ^ Amax.

Now, décompose our solution La (S) of Equation 9 as
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where x.j is a column vector of size card Cj. Then Equation 9 splits into
K équations

(12) Arxi+ J2 Ai " X; = Amax • x/, l e {1,. . . , «}

We show that this System can be uniquely solved according to the constraints
given by the structure of S and the properties of the measure La proceeding
in the following way in a bottom up direction.

We start with l — K and observe that, since AK ^ O is irreducible, in
case AK = Amax our Procedure 1 is applicable to the set SkK, and we obtain
the partial solution xK. In case A*; < Amax we have dim S&K < dim 5,
hence xK = Ö. 6

We may now assume that the system (12) be already solved for j < l, that

is, ^ Aij. x3 is a vector b with entries in [0, oo], and we may further

assume that XJ = o or ij > o. 1

If Ai = O then x/ = A^ax • b and, since A\ is a 1 x 1-matrix, x; = 0
or x/ > 0.

If Ai 7̂  O then .4/ is irreducible, whence x/ > o or x/ = 66 whenever x/
contains an entry xm > 0 or xm = oo, respectively. If A/ < Amax> that is,
dim en (Sfc, ) < dim 5 the matrix Amax -2 —At is invertible 8, and the unique
solution xi is readily obtained from Equation 12. It should be mentioned

K

that x/ ^ ^ ^ j • XJ ^ o.

Now, it remains to deal with the case A/ = Amax.

If b :— J2 Ai j - Xj ^ o then according to the Perron-Frobenius-

Theory of nonnegative matrices (see [Ga58] or [La69]) the équation
Ai * x + b = Amax • x has no solution o < x < 66. Hence, following
the above remark concerning the irreducibility of Ai, we have x = óo.

(6) We dénote by Ö and do the vectors having all entries 0 or oo, respectively, of appropriate
size.

(7) As usual, by > or > we dénote the fact that > or ^ holds for all entries of the vectors
or matrices.

(8) Here J is the unity matrix of appropriate size.
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Consider the case b = o. This means that Aij • Xj = o, that is, Skt /w £ Cj
for w G Ugk, if Aij — O, or if Aij ^ O then, since XJ ^ o implies x, > Ö,
we have XJ = o, that is La (S^Jw) = 0 for all w G U§ . Consequently

Property 17 proves La (5fe£) = La (en (SfcJ) and hence x/ = LQ, (en (SfcJ).
So we may again apply Procedure 1 to obtain x/ > o.

This procedure can be presented in a more concise manner. To this end
we recall that nonzero entries in the vector La (S) appear only either as a
resuit of the application of Procedure 1 or if the vector b is nonzero. Thus
it holds the following.

FACT 18: Let Si 6 C. We have La(Si) = 0 iff the maximal eigenvalue
X of the diagonal matrix A corresponding to the SCC C is smaller than
Amax eind for every C" such that C \- Cf and every Sj G C" the identity
La {Si) = 0 holds.

In the same way one observes that infinité entries in La (S) appear only
if b 7̂  o and the corresponding matrix Ai has eigenvalue À; = Amax-

FACT 19: Let Si G C. We have La (Si) = oo iff there are SCCs Cf,
C" such that C = C" or C \- C, and Cf / C" A C ' h C" and the
square matrices A! and A!! corresponding to Cf and Cn, respectively, have
maximum eigenvalues À' = À" = Amax*

In particular, if La (Si/w) = oo then La (Si) = oo.
This yields the following procedure.

PROCEDURE 2: Compute for every SCC Cj the maximal eigenvalue Xj of
the corresponding matrix Aj.

L We start with terminal SCCs, that is, SCCs Cj for which there is no Cl

satisfying Cj h G1 : For all terminal SCCs Cj do:

(a) If Xj < Amax then set La(Si) := 0 for every Si G Cj.

(b) Otherwise solve the équation Aj • x = Amax * x in such a way that
x is positive and has maximum entry 1. Insert the entries of x into the
corresponding places of La (S).

2. Complete as much of the entries of La (S) according to Facts 18 and
19 as possible. (The resulting incomplete solution to the vector La (S) will
be called x j

3. Solve the matrix équation As • x*= Amax * x for the remaining entries
of La (5).
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From our above considération it follows that throughout the first items we
had gained enough information in order to solve this last équation.

4. BLACKNESS AND DENSITY

In this last section we dérive a connection between topological density
and Hausdorff dimension. It turns out that density and dimension are closely
related for finite-state and closed o?-languages F having finite and locally
positive a-measure La (F) (a = dim F).

The result obtained indicates that for fractals represented by finite-state
and closed cj-languages F the blackness of the picture (in a sufficiently high
resolution) increases as Hausdorff dimension a — dim F and Hausdorff
measure La (F) increase. The fractals presented in the appendix give
évidence of this fact. For these fractals dimension and measure vector
were computed using the procedures of the previous section.

We recall that a set F Ç Xu has finite a-measure iff La (F) < oo,
and F has locally positive a-measure iff 0 < La (F n w • Xu) whenever
F Pi w-Xu / 0 . Clearly a set F having finite and locally positive a-measure
has Hausdorff dimension dim F = a. Moreover those sets allow for a simple
dérivation of an upper bound to their structure function sp.

PROPERTY 20: Let F Q Xu be closed and have locally positive a-measure.
If F has no more than k states then sp (n) < T

a(n+k-1) . La (p).

Proof: According to Corollary 14, since F has locally positive a-
measure, we have ^C1-*) < La{F/w) for every w G A (F). Then
La (F) ;> sF (n) • r~an • r 0 ^"*) for ail n G N.

Q.E.D.

Taking into account Eq. (8) in Lemma 9 we obtain the following property
of the structure function of finite-state closed sets F having both finite and
locally positive a-measure.

(13) 3c i ,C2(0<c i < c 2 A ¥ n ( n G N ^ c r r a n < s F (n) ^ c 2 - r a n ) )

After deriving these simple properties we proceed to the main resuit relating
topological density and Hausdorff dimension.

Topological density is based on the following notion. A set E is nowhere
dense in F Q X" provided C (F\C (E)) = C (F), that is, if C (E) does not
contain a nonempty subset of the form F n w - X".
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THEOREM 21: Let F Q Xu be a nonempty, finite-state and closed u-
language having both finite and locally positive a-measure. Then for every
finite-state and closed subset E Q F thefollowing conditions are equivalent:

L E is nowhere dense in F,

2. La (E) = 0,

3. dim E < a = dim F, and

4. limsup (SE (n)/sjr (n)) — 0
n—>oo

Proof: In virtue of Lemma 10 conditions 2. and 3. are equivalent for
arbitrary finite-state and closed o;-languages.

If dim E < dim F then according to Lemma 8 we have s# (n) < r7n <
Sf (n) for 7 = (dim F — dimE)/2 and large n E N. Thus 3. implies 4. also
in case of arbitrary finite-state and closed u;-languages.

If 4. holds and F has finite and locally positive a-measure then Property 20
implies that s^; (n) ï> e * ran cannot hold for e > 0 and infinitely many
n G N. Now Eq. (8) and Lemma 8 prove that dim E < a.

It remains to show that 1. is equivalent to one of the conditions 2., 3. or 4.

If E is not nowhere dense in F then E 2 F n w • X^ ^ 0 for some
w E X*. Consequently, La (E) > La(F f) w • Xu) > 0.

Now assume E to be nowhere dense in F, and let m :=
max{lim sup (sE/v(n)/sF/v(n)) '• v € A (F)}. (The maximum exists,

n—»-oo

because E and F are finite-state.) In the sequel let w £ A (F) be chosen
such thatat

r *E/wip) L S£/t,(n) \
limsup —-—T-^- = max < limsup —-—T-^ : v E A (F) >.

n-*oo &F/W \n) I n-*oo S^/^ (n) J

Since F is nowhere dense in F, there is a u such that E/wu = 0 and
F/wu / 0 . Set C/ := {v : \v\ = \u\Av e A( F)} and C/; := {v : |v| =
\u\Av e A (E)}. Then C/; Q U and « € t/\C//

In virtue of the gênerai identity SM (n) = ^ sM /v (n - fe) we obtain
\v\=k

the following:

m = lim sup ^— — lim sup
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where s(n) = l/card*/' * ^ sF/wv(n)-
veU\U>

Since u E U\Uf and La (F/wu) > 0 we have 5 (n) ^ e • ra'n for some
e > 0.

Thus
^ 11- s£/™uK) r r / l ^ m

m S max < limsup 7—r ^ ^ : Ü G L / > S < m.
[ n—00 sF/u jü (n) + 5 (n) J ~ 1 + e[ J

This contradicts the assumption m > 0.
Q.E.D.

Finally, we will provide examples showing that the requirements
concerning the finiteness and the local nonnull behaviour of the a-measure
of F are really essential. Throughout the examples let X := {a, b, c, d}
where a, 6, c, d are shorthands for (0, 0 ) , . . . , (1, 1) (or SW,..., JVS),
respectively.

EXAMPLE B: Let F := {a, 6, c}* • d - {a, 6, c}w and £ := d • {a, 6, c}w .

Then condition 4. is fulfilled, but since E = F f) d- Xu none of the other
conditions is true. Observe that La (F) = 00 for a = dim F. •

EXAMPLE C: Consider F := {a, 6, c}w U {o, 6, c}* • d • {a, 6}^, E :=
{a, 6, c}w and Ef := d • {a, 6}w. Then E1 is nowhere dense in F, because
Vw (it; G A (E) —> wd - X^ n E = 0 ) , but none of the other conditions
is true.

In contrast to this, E1 is not nowhere dense in F, but dim E1 < dim F.
Here we have L a (F) < 00 but L a (F n d-X w ) = L<*(d{a, 6}w)

- 0. D

EXAMPLE D: Let F := {a, 6, c}w U |J w • dlwl • {a, 6, c}w and
U?€{Ö,&, c}*

£?:= {a, 6, c}^. One easily checks that 3" = sE (n) ^ s F (n) < 3 n + 1 and
accordingly 1 = L a (E) ^ L a (F) ^ 3 for a = dim E = dim F = log2 3,
but F is nowhere dense in F. Here F is not finite-state though closed. D
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System Table Adjacency Matrix

1

2

3

SE

2

2

2

SW

0

2

0

NE

3

0

2

NW

1

3

1

1 1 1
0 2 1
. 1 2 0

Hausdorff dimension:
Measure vector:

3.0000
1.5850
[1.000, 1.000, 1.000]

Figure 2.
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System Table

1

2

3

4

SE

3

2

2

3

SW

2

2

3

0

NE

0

4

0

4

NW

1

0

3

3

Hausdorff dimension:
Measure vector:

3.0000
1.5850
[1.000, 1.000, 1.000, 1.000]

Figure 3.

Adjacency Matrix

ri i i o
0 2 0 1
0 1 2 0

Lo o 2 ij
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System Table

1

2

3

SE

2

3

3

SW

2

2

0

NE

1

3

3

NW

2

1

3

'vmax-

Hausdorff dimension:
Measure vector:

3.0000
1.5850
[6.000, 4.000, 1.000]

Figure 4.

Adjacency Matrix

1 3 0
1 1 2
.0 0 3
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System Table

1

2

3

SE

3

0

3

SW

3

1

0

NE

2

3

3

NW

1

2

2

Hausdorff dimension:
Measure vector:

3.1479
1.6544
[1.000, 0.783, 0.682]

Figure 5.

Adjacency Matrix

1 1 2
1 1 1
.0 1 2
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System Table

1

2

3

4

5

6

7

SE

7

3

2

4

5

5

7

SW

1

3

2

4

7

6

7

NE

2

4

3

4

6

5

0

NW

1

2

3

5

6

6

7

'Mnax-

Hausdorff dimension:
Measure vector:

Adjacency Matrix

" 2 1 0 0 0 0 1
0 1 2 1 0 0 0
0 2 2 0 0 0 0
0 0 0 3 1 0 0
0 0 0 0 1 2 1
0 0 0 0 2 2 0
0 0 0 0 0 0 3

3.5616
1.8325
[oo, oo, oo, 1.390, 0.781, 1.000, 0.000]

Figure 6.
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