
INFORMATIQUE THÉORIQUE ET APPLICATIONS

S. DUBE
Fractal geometry, Turing machines and divide-
and-conquer recurrences
Informatique théorique et applications, tome 28, no 3-4 (1994),
p. 405-423
<http://www.numdam.org/item?id=ITA_1994__28_3-4_405_0>

© AFCET, 1994, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1994__28_3-4_405_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Informatique théorique et Applications/Theoietical Informaties and Applications

(vol. 28, n° 3-4, 1994, p. 405 à 423)

FRACTAL GEOMETRY, TURING MACHINES
AND DIVIDE-AND-CONQUER RECURRENCES

by S. DUBE C1)

Abstract.-In thispaper, wesurvey twonew resultsestablishing relaîionshipsbetween the theory of
compuîation and the fractal geometry. Iterated Function Systems (IFS) are used as the tools to define
fractals. First we survey the results which show that simple questions about IFS and their attractors
are undecidable. The proofs are simple and are obtained by reducing the Post Correspondence
Problem and by interpreting strings as numbers and concaténation opération as composition of
affine transformations. These results show that for every Turing machine there exists a fractal set
which can be viewed, in a certain sensé, as geometrically encoding the complement of the language
accepted by the machine. One can build a fractal-based geometrical model of computation which is
computationally universal. Secondly we survey the results which show how fractal geometry can be
fruitfully used to solve divide-and-conquer récurrences. A recursive algorithm possesses temporal
self-similarity and there is a natural connection with spatial self-similar objects (fractal images).
This approach yields a new and gênerai way of solving such divide-and-conquer récurrences.

1. INTRODUCTION

The emerging science of complex (chaotic) Systems has brought
remarkable insights into the nature of universe and life. It breaks across
disciplinary boundaries as complex Systems abound in physical, biological,
mathematical, ecological, economie, meteorological, and many other fields
[10]. Geometrically one can display the working of such complex Systems
as fantastic fractal images. A fractal image can be of ten viewed as a chaotic
set of a dynamical system. This link between fractal geometry and complex
Systems is truly remarkable.

In this paper, the intuitive fact that fractals are complex objects is made
précise from a computational point of view by proving that there do not
exist algorithms to answer simple questions about fractals.
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406 S. DUBE

The notion of undecidability is important in the theory of computation.
The Turing machine is a simple Computing device but can have complicated
behavior. Rice's Theorem states that any nontrivial property of the recursively
enumerable languages which are the languages defined (generated) by Turing
machines is undecidable. Similarly, fractals can be defined (generated)
by rather simple itérative methods. But as we will show these itérative
methods can simulate the working of the Turing machine and hence produce
complicated sets. Hère the Turing machine provides the rôle of a dynamical
System and the fractal image associated with it encodes its "chaotic" set (the
words which are not accepted by the Turing machine and may lead to an
infinité behavior in which the machine never halts).

This paper is motivated by a conjecture by Penrose in his book [14] that
the Mandelbrot set is undecidable under a reasonable model of computation
which allows you to work with real numbers. He spéculâtes that fractals might
be graphical way of looking at non-recursive mathematics. But Penrose in
his book is faced with the problem of dealing with real numbers and still
talk about computabilîty questions. What is a "computable" real number?

There are some inherent philisophical problems in dealing with these
numbers which have infinité description and these problems corne to surface
under a theory of computation over reals when simple questions such as, if a
given computable real number is 0, turn out to be undecidable. A natural and
invariant theory of computation over reals does not exist. Under a recently
developed model of computation over reals which seems to be more natural
than the earlier models, fractal sets have been shown to be undecidable
[3]. But what about answering these questions under the classical model of
computation over integers (rationals)?

The advantage of working under the Turing machine model is that it is
the model in which you can prove that some problem is computationally
unsolvable. And this model is a natural, rigorous and invariant one, unlike
any theory of computation over reals. Any such undecidable problem should
remain undecidable over any satisfactory theory of computation over reals.

We show that even under the classical theory of computation over rational
numbers, in which the Turing machine is the model of computation, one can
prove some problems about fractals to be undecidable.

Fractal geometry was pioneered by Mandelbrot who showed that many
natural objects and phenomena have fractal characteristics [13]. We use
Iterated Function Systems (IFS) as our basic mechanisms to define fractals.
IFS were introduced by Hutchinson [12] and have been further developed
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and applied for image génération and compression by Barnsley [I]. An IFS
is a collection of TV contractive affine transformations. Of course we restrict
the coefficients of these affine transformations to be rational numbers. An
IFS defines a unique set which is the fixed point of a mapping obtained by
applying these N affine transformations and then taking the union. Using an
itérative method one can obtain this fixed point in the limit and therefore
the fixed point is also called the attractor of the IFS. It is the fractal defined
by the IFS. In 2-dimensional real space it would be an image. The itérative
method is called the Deterministic Algorithm for IFS.

In this paper, a number of simple problems about IFS are shown to be
undecidable. For example, given an IFS defined on the unit square [0, l ] 2 ,
there is no algorithm to test if its fractal intersects the diagonal Une segment
between the 2-D points (0, 0) and (1, 1). This also proves the problem of
testing the emptiness of intersection of fractals defined by two given IFSs
is undecidable. Another undecidable problem is testing whether a given IFS
is totally disconnected.

The proofs are quite straightforward. The basic idea is to interpret
strings as numbers and to implement concaténation opération as composition
of affine transformations. The proofs are obtained-by reducing the Post
Correspondence Problem (PCP) and its variants. These results allow one to
build a simple "geometrical" model of computation based on IFS which is
computationally universal.

The results in this paper show how the fractal geometry and the
computability theory are inter-related. And since the fractal geometry has
strong links with the theory of complex Systems, one is pleased to see
these three scientifically rich disciplines conveying the same basic message,
that finitely describable and seemingly simple Systems have complex and
provably unpredicatable behavior and such Systems occur everywhere.

The second aim of the paper is to surevy results which show how fractal
geometry can be fruitfully applied to solve divide-and-conquer récurrences.
The analysis of the time complexity of algorithms is of fundamental
importance to computer scientists. A great number of useful algorithms
use Divide-and-Conquer approach, in which the original problem is reduced
to a number of smaller problems [4]. In this paper, we consider a new
fractal geometry based approach to analyze such algorithms, in which the
size of a smaller problem is related to that of the original problem by a
multiplicative factor.

vol. 28, n° 3-4, 1994
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The problem of analysis of such recursive algorithms reduces to solving
divide-and-conquer récurrence relations. A number of methods have been
developed for solving such récurrence relations, and also for gênerai
récurrence relations.

In [4] the Master method to solve divide-and-conquer récurrences is
discussed. The Master Method is based on the Master Theorem, which is
adapted from [2]. We use fractal geometry to corne up with a technique
to solve the divide-and-conquer algorithms which generalizes the Master
Theorem.

At a conceptual level, the notion of self-similarity is not limited solely to
images but can be used to describe many natural phenomena like distribution
of noise of a channel, Brownian motion of particles in air. In this paper,
we show that a divide-and-conquer algorithm is also "self-similar" as it is
made of its smaller "copies". Hère self-similarity is temporal while in case
of a natural object it is spacial.

This natural connection between fractal geometry and divide-and-conquer
récurrences yields a new and gênerai way of solving such récurrences. We
use Mutually Recursive Function Systems (MRFS) for this purpose. MRFS
are generalization of IFS. In this paper, we state a theorem which shows
how divide-and-conquer récurrences can be modelled by MRFS, and the
solution of the récurrences is closely related to the fractal dimension of the
attractors of the MRFS.

For details of the results surveyed in this paper, see [7, 8].

2. PRELEMINARIES

2.1. Undecidability

We assume that the reader is familiar with the basic theory of computation
[11].

We briefly describe the notations for u;-strings and u;-languages. An
cj-language is a set of infinité strings (cj-strings). The symbol co informally
means infinité répétition. Thus the w-string 001w = 001111... The
u;-language 0* lw is the set of ail u;-strings which have finitely many
01s followed by infinitely many l's (this language is also an u;-regu-
lar language). Similarly, one can work with u;-relations. For example,
{(0, 1) + (1, 0)}w is an u;-relation which contains ordered pairs of u;-strings
({ai (72 0*3 . . . , 7i 72 72 ...}) where a», 7» G {0, 1} and ai ^ 72 for all L

Informatique théorique et Applications/Theoretical Informaties and Applications
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The sets of all finite words and cj-strings over an alphabet E are E* and
E" respectively and S°° dénotes E* U f f .

A well-known undecidable problem is the Post Correspondence Problem
(PCP):

Given lists A and B of k strings each from E*, say

A = wu W2,..., wk and B = xu x2,. * -, xki

does there exist any séquence of integers i\, %2,..., im with m ^ 1 such that

WilWi2...Wtrn =XilXi2...Xirn?

The séquence i\%2 . -im is called a solution of this instance of PCP.
To prove that PCP is undecidable one first proves that a modified version

of the PCP (which we would refer to as M-PCP) can be reduced to PCP.
M-PCP is stated as follows:

Given lists A and B of k strings each from E*, say

A = wu W2>..., Wk and B = xu x2,..., xk,

does there exist any séquence of integers i\, i2,..., im with m > 1 such that

where one is required to start with the first string on each list and these strings
are not used again i. e. ij ^ 1 for all 1 < j ^ m. Note that the condition
ij ^ 1 is not given in [11] but it can be implied from the same proof.

2.2. Iterated Function Systems
An IFS is given by N contractive transformations w\, W2,..., WN on a

complete metric space (X, d). lts notation is:

{X] W\, W2, . . . , WN}.

Typically, X is the fc-dimensional Euclidean real space and the
transformations are affine. We will restrict X to be [0, l]k.

A 2-dimensional affine transformation w : R2 —» R2 is defined by

- i i = r ° u a - i i i +

where a^'s and ö '̂s are rational numbers (since we will be working under
the classical theory of computation therefore we don't allow the coefficients
to be reals). Similarly, a 1-dimensional affine transformation w : R —> R is
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defined by w (x) = ax + b. Likewise, we can define an affine transformation
on Rn for ail integers n > 2.

An IFS defines a unique set A which is the fixed point of the mapping
W : H (X) -> H (X) where H (X) is the set of nonempty compact subsets
of the complete metric space (X, d) and W as defined as:

W (B) = wi (B) U w2 (B) U ... U wN (B)

for ail B e H (X). For the proof of existence and uniqueness of A see [1],
This invariant set A is called the attractor of the IFS and is the fractal set

defined by i t It is a fractal since it is union of its own smaller copies:

A = w\ (A) U w2 (A) U . . . U wN (A).

This attractor A can be characterized as follows. Consider the alphabet

by treating w% as a "symbol". Consider a mapping <f> : Y? —> X defined as:

(j> (a) = lim ai (Ö"2 (... (a,* {x)) ...))

where a = ai a2 . . . and a i , a2 , . . . G S and x is any point in X. The fact
that the above limit is independent of x follows from the contractivity of
the transformations [1]. If (j>(a) = a then a is called an address of a. In [1]
it is shown that <f> maps S^ onto A.

Consider the IFS {[0, 1] ; u>i, w2i..., WJV} where tui, W2,. • •, WN are
N contractive affine transformations mapping the unit square [0, l]2 into
itself. The attractor A can be described as the output of the following
itérative algorithm:

1. Initialize a set S = {U} of parallelograms where U is the unit square
[0, l ] 2 .

2. Exécute an infinité loop consisting of the following step:
• Apply the N affine transformations on all the parallelograms in S to get

a new set which replaces the old one.
The limiting value of 5 is the fractal defined by the IFS. The above algorithm
is called the Deterministic Algorithm for IFS. One could have initialized S
to be {B} where B is any nonempty compact subset of [0, 1] , see [1],

The attractor A can be equivalently defined as
oo

A = O The set S at n-th itération

n=l

Informatique théorique et Applications/Theoretical Informaties and Applications
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At the n-th itérative step we have all the parallelograms obtained by applying
all the séquences of transformations of length n on the unit square L e.
wn (wi2 (• • * (win (U))...)) for all séquences wix W{2 . . . w%n. Note that each
parallelogram at an itérative step is a proper subset of some parallelogram
at the previous step and a superset of some parallelogram at the next step.
Every point in the attractor is the limit point of some séquence of such
nested parallelogram [6].

Example 1: In Figure 1 we show the first 3 steps of the Deterministic
Algorithm on the IFS {[0, l]2 ; w\, ÏI/2, ̂ 3} where

wi(x, y) = (0.5 x, 0.52/)

w2(x, y) = (0.5x + 0.5, 0.5 y)

W3 (x, y) - (0.5x, 0.5^/ + 0*5).

The attractor is also shown and is the well-known Sierpinski Triangle. For
examples of IFS which generate images of ferns, trees, clouds, mountains,
forests etc. see[l]. One can also generate grey or color images by associating
probabilities with the affine transformations. D

3. UNDECIDABLE PROBLEMS ABOUT IFS

One can use PCP and M-PCP problems to show that a number of other
variants are also undecidable.

THEOREM 1: Given two lists {X\,X2,.**,XN) and (2/1, ?/2, •• •, VN) °f
strings in E*, the following problems are undecidable:

I-PCP: It is undecidable to test ifPCP has an infinité solution i. e. to test
if there exists an infinité séquence i i , i2, . . - such that

MI-PCP: It is undecidable to test if PCP has an infinité solution 1,
il, Z2,... and ij ^ 1 for ail j > 1.

TI-PCP: // is undecidable to test if there exist two différent infinité
séquences i i , ^2, . . . and j i , J2- • • • such that

X{1 Xi2 . . . = Xjx Xjx . . .

Vit yi2--- = Vh Vh • • •

vol. 28, n° 3-4, 1994
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w3(u)

w,(U)

B :

w2(U)

o w3(U)

O Wi(U) U/3 O

W2{U) O tüj(i7) W2

(a)

B

B

B

I

B

hJSv hvls^&^feklSvrkbs.&KlS.gv^w^rkgk

(c)

Figure 1- - Dlustration of the IFS Deterministic Algorithm. (a), (b) and (c) show the
parallelograms after the first, second and third itérations, respectively, and a B dénotes a
blank région which is not going to be a part of the attractor. Note how each parallelogram
"splits" into three smaller parallelograms during each itération, (d) shows the attractor which
is the classic Sierpinski Triangle. By judiciously choosing transformations one can generate
images of feras, trees, mountains, clouds, flowers etc. By allowing transformations more gênerai
than affine transformations IFS can also generate Julia sets.

Proof: Both MI-PCP and I-PCP are well-known undecidable problems.
For réduction of I-PCP to TI-PCP, see [7]. D

By reducing the Halting Problem for the Universal Turing machine one
can prove the above problems to be undecidable for fixed lists.

Informatique théorique et Applications/Theoretical Informaties and Applications
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THEOREM 2: There exist two lists (#2, # 3 , . . . , XM) and {y\y ?/2> > VN) such
that for a given string x\, PCP, M-PCP, I-PCP, MI-PCP, TIPCP are
undecidable.
We would refer to the versions of MI-PCP and TI-PCP for the Universal
Turing machine case as U-MI-PCP and U-TI-PCP.

The undecidability proofs for IFS are quite straightforward. The basic
idea is to interpret strings as numbers in the unit interval [0, 1], A string
u ; e E = { l , . . . , d - l } (note that 0 is not in E) is interpreted as a rational
number by putting the radix point to the left and interpreting the string in
base-d notation. Thus if E = {1, 2} the string 2112 is interpreted as the
ternary number 0.2112. Similarly we can interpret u;-strings as real numbers.
We define I{e) = 0 where e is the null string. Formally we define an
interprétation fonction I:

I : S°° -> [0, 1]

where E°° dénotes the set of finite and a;-strings over E.
The following lemma shows how concaténation of strings can be carried

out as composition of affine transformations.

LEMMA 1: Let E = {1, 2 , . . . , d ~ 1}. Let I : E°° -» [0, 1] be
the interprétation fonction as defined above. Then I is injective and non-
surjective.

For every string w G S* define al-D affine transformation fw : [0, 1] —>
[0, 1] as

Then the following hold:
1. Let w e E* and let x € S°°. Then

2. Let ui, U2,. • •, Ui E E* where i > 0. Then

3. Let ui, U2, W3,.. • E E + . Then

I (ui «2 us ...) = lim .T1 (fU2 (•.. (fUi (*))...))
1—*oo

where x is any real number.

vol. 28, n° 3-4, 1994
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4. Let u\, u2,.. •, UN e E+. Let R = {ui + u2 + . . . + lijv}" g Sw /or
5ome iV > 1. Lef A be the attractor ofthe IFS {[0, 1]; / U l , ƒ"=,. . . , / W ; v } .
TTien / : i? —> A zs a bijection.

Example 2: Let S = {1, 2 , . . . , 9 } . Thus numbers are in décimal notation.
Let p = 124, q = 4 and r = 91845 be three strings. Then,

/p(or) = 10"3x +0.124

/^ (:r) = 10"1 x + 0.4

f {x) = 10"5 x + 0.91845

One can check that Lemma 1 holds. For example, pick any string s in S°°,
say 5 = 4276. Then

I(ps) = 7(1244276) = 0.1244276 = f (0.4276) = f{I{s)).

Look at IFS {[0, 1]; gp, / 9 , f r } . Its attractor consists of precisely theose
numbers which have représentations of the form:

0 • u\ U2 ̂ 3 t£4 . . .

where Ui G {124, 4, 91845} for ail L But this is exactly I (R) where
i2 = {124 + 4 + 91845}w. D

We can generalize the above lemma to higher dimensions. In 2-D case,
we have ordered pairs of strings which are interpreted as a point in the
unit square L e.

I: E°° x S°° -> [0, l]2

is defined as

I(u,v) = (I(u),I(v)) forall u, v € S°°.

For the sake of completeness we generalize Lemma 1 for 2-dimensions.

LEMMA 2: Lef E = {1, 2 , . . . , d - 1}. Létf / : E°° x E°° -> [0, l]2 te
//îe interprétation function as defined above, Then I is injective and non-
surjective.

Letixu yi). (x2, 02), (rc3, jfe)... G E+ x Yt+.Letgi : [0, l]2 -> [0, l]2

èe ö 2-D affine transformation defined as

-M 0

Informatique théorique et Applications/Theoretical Informaties and Applications
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Then the following hold:

1. Let (r, s) e E°° x E°°. Then for all i ^ 1,

(xi, Vi) -(r, s)) =gi(I(r, s)).

2. For a// i ^ 0,

3. Lef 2 èe an;y point in the real plane. Then

) = lim
2/1 2/2 2/3

4. Le/ iï = {(arx, w ) + (x2, y2) + . . . + (xNi VN)}" ^ S W X E W where
N*tl. Let A be the attractor of the IFS {[0, l ]2 ; pi, g2,..., Piv}. T/ẑ n
I : R ^ A is a bijection.

Now we can notice why certain problems on IFS would be undecidable.
Lemmas 1 and 2 show that there is exact correspondence between the strings
and the concaténation opération, and the application of the corresponding
affine transformations. Thus one can reduce questions of strings obtained by
concaténation to questions on numbers obtained by application of affine
transformations. Since the attractor of an IFS is nothing but a set of
numbers obtained by the application of affine transformations, one can
reduce undecidable problems on strings to undecidable problems on IFS.

First we state that there is a semi-procedure to test if the attractor of an
IFS does not intersect a given line segment.

LEMMA 3: Let {R2; w\, IÜ2, • . . , WN} be an IFS (affine transformations
have rational coefficients). Let L be a line segment specified by its two end-
points (specified by rational numbers). Then there is a procedure which will
terminate iff the attractor A of the IFS does not intersect L.

However there does not exist any semi-procedure which would terminate
if the attractor intersects a line segment.

THEOREM 3: Given an IFS, it is undecidable to test ifits attractor intersects

the diagonal line segment between points (0} 0) and (1, 1).

Proof: Consider an instance of I-PCP. Let the two lists be

(si , X2,.. . , xN) and (yu j / 2 , . - . , VN)-

vol. 28, n° 3-4, 1994
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Consider the IFS

{[0, l ] 2 ; gu 3 2 , . . . , 9N}

Let gi : [0, l ] 2 —» [0, 1] be a 2-D affine transformation defined as

- w o

Then our claim is that there exists an infinité solution of the I-PCP iff the
attractor of the IFS intersects the diagonal line segment.

Let R = {(a?i, y\) + (x2, î/2) + • •. + (a;jv, VN)Y* Let A be the attractor
of the IFS.

There exists an infinité solution of the I-PCP iff there exists a € Ew such
that (a, a) G iî. And A intersects the diagonal line segment iff there exists
a G [0, 1] such that (a, a) G A.

Since from Lemma 2 1: R —• A is a bijection, therefore

(3 a) (a, a)eR iff (3 a) (a, a) G A.

Thus there exists an infinité solution of I-PCP iff A intersects the diagonal
line. This complètes the proof. •

THEOREM 4: Let M be a Turing machine. Then there exist an IFS with its
attractor A Q [0, l]2 and two fixed mappings </>, 6 : E* —• Q H [0, 1], such
that for any word w G S*, the following holds

w e L (M) iff A n i = (ji

where L is a Une segment in the unit square with slope ip (w) and intercept
0(11/).

Proof: By considering how MI-PCP is reduced from the Halting Problem
of Turing Machines, one can prove this theorem. See [7]. D

Theorem 3 and Theorem 4 imply that it is undecidable to test if the
intersection of the attractors of two given IFSs is empty. This is because for
every line segment there exists a simple IFS with 2 transformations which
defines the line segment as its attractor.

Now we prove another interesting undecidability resuit about IFS. Let

{[0, l ] 2 ; u/i, W2,..., wN}

Informatique théorique et Applications/Theoretical Informaties and Applications
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be an IFS with attractor A. It is called totally disconnected iff each point in
its attractor has a unique address. Equivalently, it is totally disconnected iff
for all i, j 6 { l , 2 , . . . , N}, % ^ j9

ui (A) fi WJ (A) - <f>.

Note that being totally disconnected is a property of the IFS and not its
attractor. A set is called totally disconnected if its only nonempty connected
subsets are singletons. A totally disconnected attractor of an IFS is also
referred to as a Cantor set. Only when IFS has 2 affine transformations,
then if it is totally disconnected it implies that its attractor is a Cantor
set, and if it is not totally disconnected then it implies that its attractor
is connected [1]. A Julia set is defined by an IFS with 2 transformations
(which are not affine) and therefore a Julia set can be either a Cantor set
or connected. However this is not true in gênerai. An EFS with more than
2 transformations might have an attractor which is neither a Cantor set nor
connected.

There exists a semi-procédure for testing if a given IFS is totally
disconnected.

LEMMA 4: There exists a procedure which given an IFS would terminate
iff the IFS is totally disconnected.

The problem of testing if a given IFS is totally disconnected is undecidable
i. e. there does not exist a semi-procedure which will terminate if a given
IFS is not totally disconnected.

THEOREM 5: Given an IFS, it is undecidable to test if it is totally
disconnected.

The proof follows from réduction of TI-PCP, see [7]. One could have
proved Theorems 4 and 5 by reducing U-MI-PCP and U-TI-PCP respectively.

Consider Theorem 4. Let the Turing Machine be the Universal Turing
machine. One can call the IFS constructed to be "universal" IFS as it
encodes working of the Universal Turing machine. Let its attractor denoted
as Au. Consider the set

H = {[m, b] e (Q x Q) H [0, l]2 | Av intersects the line y = mx + b}.

Clearly H is undecidable or otherwise the Halting Problem for the Universal
Turing machine would be decidable.

vol. 28, n° 3-4, 1994
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Algorithm A (B[l. . .n])

Array B;

if n = 1 then . . . , print (hello);

ebecaUA(B[l...n/2]),

caUi4(B[n/4...3n/4]),

call>l(B[n/2...n])ï

end A;

Figure 2. - Dynamic Structure of a Recursive Algorithm Captured by Sierpinski Triangle.

Similarly consider Theorem 5 in which we are reducing U-TI-PCP. Let
the instance of U-TI-PCP be the string x. Let A - I (w) and dénote the IFS
constructed in the proof of the theorem as IFS (A). Consider the set

M = {A G Q n [0, 1] IFS (A) is not totally disconnected}.

M is also undecidable. It can be viewed as a map of parameterized family
of IFSs. Note that M is defined in the spirit of the Mandelbrot set:

The Mandelbrot set = {c G C \ J (c) is connected}

where J (c) is the Julia set for the dynamical system ƒ (z) = z2 + c. The
above could have been written as:

The Mandelbrot set = {c G C | IFS (c) is not totally disconnected}

where

IFS(c) = {C; Vz^c, -VT^c}.

4. DIVTOE-AND-CONQUER RECURRENCES

Consider a recursive algorithm A as shown in Figure 2. The algorithm A
calls itself 3 times and at each recursive call the input size is halved. The
system of récurrence relation is:

= 3T(n/2)

Note that we assume that all computation is done at the "trivial-case" n = 1.
Therefore, T(n) = 0(n l o g 3 3 ) .

Now A can be modeled by an IFS which générâtes the well-known
Sierpinski Triangle, see Figure 1. lts fractal dimension is log2 3. This is no
coincidence as can be intuitively deduced as follows:
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Consider the intuitive définition of fractal dimension of a self-similar
image O which implies that if O has fractal dimension D then

(1) (number of self-similar copies) « C (magnification factor)1*

where C is some positive constant. Now consider the recursive algorithm A
such that at each of its recursive calls the size of the input is reduced by a
multiplicative factor. Each such calls créâtes a "copy" of A on smaller input.
Since we assume that the only computation is done at the "trivial-case" when
the size of the input is 1, the total time taken by A on an input of size n
is the total number of recursive calls made with input size equal to 1. How
many such trivial-case recursive calls are made? For this, we rewrite (1) as

(2) (number of recursive calls) « C (magnification factor)^

In our case

. c . _ size of the original input n
magnification factor = — ;—— : = — = n.

size of the tnvial-case input 1

Therefore, from (2) the time complexity of the algorithm A is

Now this interrelationship between divide-and-conquer récurrences and
fractals can be generalized: to a System of récurrences and in which the
multiplicative factor is any real number. Also one can easily handle the case
in which computation is done at other recursion levels besides the trivial-case.

Consider a group A of n mutually recursive algorithms and let one
algorithm be distinguished as the main algorithm (main "routine" in the
terminology of programming languages) which is called first. An algorithm
may call itself or any other algorithm. In such a recursive call the size of
input is reduced by a multiplicative factor.

Now A can be modeled as an MRFS A4 defined on n variables, such
that the exécution of A corresponds "graphically" with the séquence of
images generated while executing the Deterministic Algorithm on M.
Let the attractor of M (the fractal image defined by Al) be O. Then
the theorem states the mathematical relationship between the Hausdorff-
Besikovitch dimension D and the Hausdorff D-dimensional measure of ö
and the time complexity of A.
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THEOREM 6: Let A be a group of muîually recursive algorithms. Let hA
be a condensation MRFS modeling A and having Ö as its attractor. Let the
Hausdorff-Besikovitch dimension of O be D and its HausdorffD-dimensional
measure be k. Let T (n) be the time complexity of A on input ofsize n. Then,

T(n) = &(nD log" n)

where p is the length of the longest path in the order structure DAG of
A l Furthermore, if p = 0 (equivalently, k < ooj then k is the constant
of proportionality by which two algorithms with same value of D can be
compared.

This theorem is interesting because:
1. It provides a mathematically rigorous method to analyze mutually

recursive algorithms.
2. It generalizes the known methods to solve récurrence relations.
3. It pro vides another link between discrete mathematics and continuous

mathematics.

For details of the results mentioned in the section, see [8].

5. CONCLUSIONS

This paper showed a link between computability and fractal geometry
motivated by some interesting spéculative conjectures of Penrose. This
paper suggests a number of challenging but seemingly difficult mathematical
problems:

1. Are there algorithms for membership, inclusion and équivalence
problems for IFS? Is there any algorithm to test if the attractor of a given
IFS is totally disconnected L e. is a Cantor set? Is there an algorithm to
test if it is connected? Can we test if fractal dimension of the attractor
of a given IFS is less than a given rational number? Can we test if the
Hausdorff distance between the attractors of two given IFSs is less than a
given rational number? The last problem would be trivially undecidable if
équivalence problem for IFS turns out to be undecidable. Our conjecture is
that all non-trivial properties of fractals should be undecidable.

2. For recreational mathematics, it would be interesting to actually generate
actual pictures of the images of sets Ajj, H and M discussed in this paper
by judiciously choosing the transformations. Would such pictures express
the complexity of the behavior of the Universal Turing Machine? It is also
possible that they might turn out to be quite ordinary, since there is nothing
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Given: Any Turing machine M
and any input word w.

Fractal set A
, , , , ,, photo detector

Screen
Figure 3. - A fractal-based "sun-computer"; for every Turing machine M there exists such

a fractal set A which graphically "encodes" the behavior of M on all inputs. The slope of the
sun rays and the position of the screen depend on the input word w.

special about the structure of the Universal Turing Machine. While generating
these pictures, one may use the semi-procedures in Lemmas 3 and 4 to color
a point depending on how f ast the procedure terminâtes.

3. Finally can we characterize a fractal corresponding to a Turing machine
in terms of the properties of the latter? Of particular interest would be
to investigate the time-space complexity properties. How fractals encoding
Turing machines solving NP-complete problems will be different from those
encoding Turing machines solving P problems?

In conclusion, the three important disciplines - computability, fractal
geometry and complex Systems are closely related. This paper présents
one more évidence in the support of this belief. Clearly there is an almost
unlimited scope for research aimed at understanding complexity so commonly
found in physical as well as mathematical world.

Finally, the author would like to take liberty in presenting the results of
this paper in an informai and rather graphie way by proposing a model of
computation in which DFS is the machine. Somehow the "sun-computer"
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described below reminds one of the interesting suggestion of building a
digital sun-dial by projecting shadows of a fractal set [9].

Let M be a Turing Machine. Consider a fractal set A, a source of light
such as the sun, a screen and a photon detector as shown in Figure 3.
The fractal set A has the following intriguing property. Take any word w.
Compute two rational numbers ip (w) and 9 (w) where ip and 6 are some
fixed effective mappings. Now project parallel light rays onto the fractal set
A where the slope of the light rays is ip(w). Make a hole in the screen
at position 9 (w). Near the hole place the photon detector. The interesting
property of the set A is:

A photon is detected iff w G L (M).

Fuithermore suppose ^ (w) dépends only upon the length of the word w and
approaches zero value as the length becomes arbitrarily large. Thus one can
enumerate all the words in L (M) (and in its complement) by letting the sun
go down in appropriate steps. At each stage, we use the same screen but
with hole at different locations (alternatively one may keep the hole fixed
but move the screen up or down). When the sun will finally set, one would
have enumerated all the words in lexicographie order!

Lemma 3 suggests a fractal-based model of computation. The classical
models of computation proposed by Post, Turing, Church, Kleene, and the
others, are all symbol manipulation Systems. Under our model of computation
one can work in a different abstract domain - of geometrical shapes and of
geometrical opérations on them. Absolutely no symbols are allowed.

We will build an IFS-like machine. Call such a machine M. lts program
is nothing but N contractive geometrical opérations which let M scale,
translate and rotate an object (which will be a parallelogram). The machine
just exécutes the IFS Deterministic Algorithm with these transformations
and has an added capacity for receiving input and for "looking" at the
arrangement of the objects:

1. The input to M is a line segment L.

2. M starts with a set S = {U} of parallelograms where U is the unit
square [0, 1] . It then enters an infinité loop of the following two steps:

Copying: M performs the N geometrical opérations on all the
parallelograms in S to get a new set which replaces the old one just as
in the IFS Deterministic Algorithm.

Testing ("Looking"): M tests if any parallelogram in S intersects L. If
none intersects, it accepts L and stops.
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Of course, in order to show the équivalence of the above geometrical
model of computation to the Turing Machine model, we need to interpret
strings as geometrical entities and vice-versa and work with line segments
and affine transformations which are specified by rational numbers. But the
point is that this IFS-based model of computation can be viewed in pure
geometrical sense. And each such machine defines a fractal in the limit of
its infinité computation which is graphical encoding (in some sense) of what
is not in the language.
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