
INFORMATIQUE THÉORIQUE ET APPLICATIONS

TONY W. LAI

DERICK WOOD
Updating approximately complete trees
Informatique théorique et applications, tome 28, no 5 (1994),
p. 431-446
<http://www.numdam.org/item?id=ITA_1994__28_5_431_0>

© AFCET, 1994, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1994__28_5_431_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications

(vol. 28, n° 5, 1994, p. 431 à 446)

UPDATING APPROXIMATELY COMPLETE TREES (*)

by Tony W. LAI (l) and Derick WOOD (2)

Communicated by C. CHOFFRUT

Abstract. - We define a k-incomplete binary search tree to be a tree in which any two external
nodes are no more than k levels apart; we say that it is approximately complete. Whereas we
show that 1-incomplete binary search trees have an amortized update cost ofQ (n), we demonstrate
that 2-incomplete binary search trees have an amortized update cost of O(log 2 n) . Thus, they
are an attractive alternative for those situations that require fast retrieval (that is, log n + O (1)
comparisons) and have few updates.

Résumé. - Nous définissons un arbre de recherche k-incomplet comme un arbre dans lequel
les hauteurs de deux nœuds quelconques ne diffèrent pas plus de k: nous disons qu'il est
approximativement complet Alors que nous montrons que les arbres de recherche 1-incomplets
ont un coût amorti de mise à jour en © (n), nous prouvons que les arbres binaires de recherche
2-incomplets ont un coût amorti de mise à jour en O (log2 n). Ainsi, ils représentent une alternative
attrayante dans les situations qui exigent une récupération des données rapide (c'est-à-dire
log n + O (1) comparaisons) et peu de mises à jour.

1. INTRODUCTION

Many kinds of binary search trees have been devised to guarantee that the
worst-case search and update cost is O (log n); for example, red-black trees
[6], height-balanced trees [1], and weight-balanced trees [11], Ho wever, none
of these data structures ensure that the worst-case search cost is log n+O (1).
If searches are performed much more frequently than updates, it may be

(*) Received June 6, 1991, revised March 4, 1992, accepted July 28, 1994.
The work of the first author was supported under an NSERC Postgraduate Scholarship while he

was studying at the University of Waterloo and that of the second was supported under a Natural
Sciences and Engineering Research Council of Canada Grant No. A-5692 and under an Information
Technology Research Centre Grant while he was at the University of Waterloo. A preliminary
version of this paper appeared in STACS'90 [9].

(*) Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
(2) Department of Computer Science, University of Western Ontario, London, Ontario, Canada.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/94/05/$ 4.00/© AFCET-Gauthier-Villars

4 3 2 T. W. LAI, D. WOOD

advantageous to employ a slower updating algorithm that ensures the search
cost is log n + O (1).

Gerasch [5] devised an insertion algorithm for minimum internai path
length binary search trees, or 1-incomplete trees. The use of 1-incomplete
trees ensures that searches make [log (n+1)] comparisons in the worst case,
but the worst-case and amortized cost of his insertion algorithm is 0 (n) .
A deletion algorithm analogous to Gerasch's insertion algorithm can be
devised, but the amortized cost of updating a 1-incomplete tree is still © (n).

We consider updating algorithms for binary search trees in which any
two external nodes are no more that two levels apart; we call them 2-
incomplete trees. Such trees have two advantages: their worst-case search
cost is 1 + [log (n + 1)], and their amortized update cost is O (log2 n).

The schemes we propose are types of dynamization [16]. In particular, they
are partial rebuilding schemes in the terminology of Overmars [12]; we have
a balance criterion and we reconstruct subtrees that become unbalanced with
respect to our criterion. Other partial rebuilding schemes have been devised
by Overmars and van Leeuwen [13] using a weight balance criterion, and
by Andersson [2] using a height balance criterion. However, both schemes
ensure only that the height of a tree is O (log n) rather than 1 + [log (n+1)].

We propose a simple, novel technique for updating 2-incomplete trees
called k-layering. One interesting aspect of this scheme is that it requires no
additional balance informatin and that it needs to compute only subtree sizes.
We also discuss a variant of &-layering called level-layering that achieves
an amortized update cost of O (log2 n). Lai and Wood [8] also achieved
the same amortized bound for updating 2-incomplete trees by modifying
Overmars and van Leeuwen's weight-balance scheme, but the resulting
scheme is considerably more complicated than fc-layering or level-layering.

Recently, Andersson and Lai devised algorihms for updating 4-incomplete
trees in O (log n) amortized time [3] and algorithms for updating 2-
incomplete trees in O (log n) amortized time [4, 7]. However, the algorithms
are complex and are basically of only theoretical interest.

2. DEFINITIONS AND NOTATION

Recall that an (extended) binary tree consists of internai nodes with two
children and external nodes with no children. We define the level of a node
x of a tree to be the number of edges in the root-to-a; path; the level of
the root is 0. The height, h (T), of a tree T is the maximum level of any

Informatique théorique et Applications/Theoretical Informaties and Applications

UPDATING APPROXIMATELY COMPLETE TREES 433

external node in T. A tree T is complete if all external nodes in T are
on the same level.

In the following, we consider the class of approximately complete trees.
A tree is k-incomplete, or in the set AC [k], if every two external nodes
are no more than k levels apart. Clearly iC[fci] C AC [̂ 2] if and only
if fci < &2. Observe that a O-incomplete tree is a complete tree, and a
1-incomplete tree is a tree of minimum internai path length.

A tree T is perfectly balanced if for each node p in T, the numberslof
nodes in p's left and right subtrees differ by at most one. We use |T|Uo
dénote the number of nodes in T and use n (T, r) to dénote the size of
the subtree rooted at r.

To discuss Gerasch's insertion algorithm, we introducé some more
terminology. Intuitively, to obtain a slot-extension of a tree T, we add
the minimum positive number of specially marked nodes necessary to obtain
a complete tree containing T. More precisely, a slot-extension of T is a
tree T' such that:
1. The nodes of T' are partitioned into T-nodes and T-slots. The T-nodes
are the nodes of T and the T-slots are the additional, specially marked nodes;
2. T' is O-incomplete or complete;

3. If T is O-incomplete, then h (T') = h (T) + 1; otherwise, h(Tf) = h (T);
and
4. If all T-slots of T' are removed, then T' = T.
Observe that the slot-extension of T is unique. When discussing Gerasch's
algorithm, we always refer to the slot-extension T' of T; we refer to T-nodes
of T' as nodes of T and to T-slots of T' as slots of T.

3. 1-INCOMPLETE BINARY SEARCH TREES

Gerasch [5] showed that insertions can be performed in 1-incomplete
binary search trees in O (n) time in the worst case. For a binary tree of
height h, his scheme maintains a window at level h if the tree is complete,
otherwise at level h — l; we refer to it as the insertion window. Gerasch's
scheme uses one bit for each node to indicate whether the node has a slot
descendant in the insertion window. To insert some value x, first search for
x in the tree; then insert x by sliding data values in the subtree rooted at
the lowest node on its root-to-frontier path that has a slot descendant in the
insertion window. Finally, adjust the flags of the binary tree appropriately
and move the insertion window if the tree has become complete.

vol. 28, n° 5, 1994

434 T. W. LAI, D. WOOD

We can obtain an analogous deletion algorithm in a straightforward manner.
We consider only the case where a node without internai children is deleted,
since we can easily transform the deletion of any internai node into a similar
deletion. For a tree of height h, we position the deletion window at level
h — 1. We maintain an additional bit for each node to indicate whether the
node has a node descendant in the deletion window, as shown in Figure 1.
To delete a node with value x, first search for x in the tree; then delete x by
sliding data values in the subtree rooted at the lowest node on the root-to-rr
path that has a node descendant in the deletion window. Finally, adjust
the flags of the binary tree appropriately and move the deletion window if
necessary. This deletion algorithm requires O (n) time in the worst case.

insertion window
and deletion window

Figure 1. - Gerasch's scheme for updating 1-incomplete trees. The superscript n of a node
label indicates that the node has a node descendant in the deletion window. The subscript
5 of a node label indicates that the node has a slot descendant in the insertion window.

These two algorithms give us a fully dynamic 1-incomplete binary search
tree structure. Unfortunately, not only is the worst-case update cost of any
1-incomplete binary search tree O (n), but also the amortized update cost
is 6 (n) .

THEOREM 3.1: The amortized update cost of a \~incomplete binary search
tree is Ö (n).

Proof: If is sufficient to show that the amortized update cost is Q (n), for
infinitely many n. Consider a complete binary searh tree of size n — 2k — 1,
for some arbitrary integer k > 1. If we delete the maximum element and
insert an element smaller than any element in the tree, then all éléments in
the tree must be moved to maintain the total order of the binary search tree.
This pair of opérations requires 6 (n) time and can be repeated indefinitely.
Therefore, the amortized update cost is fi(n). D

Informatique théorique et Applications/Theoretical Informaties and Applications

UPDATING APPROXIMATELY COMPLETE TREES 435

The simplicity of Gerasch's scheme is seductive, yet its cost is prohibitive
in almost all situations. Ian Munro [10] suggested that by allowing more
incomplete levels, the resulting elasticity could lead to polylogarithmic
update costs. The key restriction is that the number of incomplete levels
is fixed for all n. This is in contrast to the scheme of O vermars and van
Leeuwen, who allow a number of incomplete levels proportional to log n.
In their scheme, the larger the value of n, the more incomplete levels there
are. We partially validate Munro's conjecture for 2-incomplete trees, by
presenting a novel scheme that supports updates in 2-incomplete trees in
polylogarithmic amortized time.

4. 2-INCOMPLETE TREES AND fc-LAYERING

We propose a class of schemes for updating 2-incomplete trees called
k-layering schemes. In the /c-layering scheme, where k is some positive
integer, we allow subtree reconstructions on only k distinct levels of the
tree. As an example of fc-layering, we first describe the 3-layering scheme,
before discussing the genera! scheme.

4.1. An example: the 3-layering scheme
To maintain a 2-incomplete tree, we maintain a two-level update window

at the bottom of the tree and ensure that the tree is complete if the nodes in
the window are excluded. Hence, we guarantee that the tree is 2-incomplete
by ensuring that all insertions and deletions take place inside the update
window. Note that we assume that only nodes without internai children are
deleted, as before.

In the 3-layering scheme, we allow subtrees to be reconstructed only if
they are rooted on levels 0, /i/3, or 2/i/3, where h is the height of the
tree. (In gênerai, h/3 and 2 h/3 are not integers, so we actually allow
reconstructions on levels 0, \h/3\, and \2h/3\.) A schematic diagram is
shown in Figure 2. Observe that a subtree rotted on level 0 is of size n,
a subtree rooted on level h/3 is of size approximately n2/3 , and a subtree
rooted on level 2 h/3 is of size approximately n1/3.

We claim that updates in the 3-layering scheme have an amortized cost
of (^(n1/3), assuming that we have an O (n) worst-case time perfect
rebalancing algorithm. To show this, we consider the amortized cost of
reconstructions at levels 2/i/3, /i/3, and 0. To simplify the analysis, we
assume that the update window is positioned on levels h - 1 and h9 and
that only insertions are performed.

vol. 28, n° 5, 1994

4 3 6 T. W. LAI, D WOOD

update window

Figure 2. - A schematic diagram of 3-layering.

To compute the amortized cost, we first count the minimum number,
m (T), of insertions that we can perform in a subtree T before being forced
to reconstruct a proper supertree of T. Observe that m(T) is approximately
the number of nodes of T that can lie in the update window. Because the
update window is two-leveled and is placed at the bottom of T, the number
of nodes of T that can lie in the update window is 0 (| T |) . Therefore,
m(T) = ft(|T|).

The amortized cost of reconstructing a subtree rooted on level 2 h/3 is
O(n1^), since the size of the subtree is O(n1^), and we may have to
perform a reconstruction after each update. The cost of reconstructing a
subtree rooted on level h/3 is O (n2/3), but it is necessary only when we
cannot update a subtree rooted on level 2 h/3. Since a subtree on level
2 h/3 allows « n 1 ' 3 insertions before it is too large or « n1/3 deletions
before it is too small, fl (n1/3) updates must have occurred previously, so the
amortized cost is again O (n1/3). Finally, the cost of reconstructing a subtree
rooted on level 0 is O (n), but it is required only when we cannot update
a subtree T rooted on level h/3. Q (| T |) = Q (n2/3) updates must have
occured previously, which implies that the amortized cost of reconstructing
the entire tree is O f 1 / 3

An update simultaneously affects subtrees rooted on levels 2 h/3, h/3,
and 0, which implies that the total amortized cost is the sum of amortized
costs at each level, which is O (n1/3) + O (n1/3) + O (n1/3) = O (n1/3). In
gênerai, for any fixed, positive integer k, the amortized cost of the fc-layering
scheme that we use is O(kn1fk) — O(na/ fc).

Informatique théorique et Applications/Theoretical Informaties and Applications

UPDATING APPROXIMATELY COMPLETE TREES 437

From the above analysis, it appears that the cost of the fc-layering scheme
is O (kn1^), so that we have an amortized cost of O (log n) when we set k
to be O (log n). However, our time bound is actually a factor of k too low.
The problem is that if we reconstruct a proper supertree of some subtree S
only when we are forced to, then we may have the pathological situation,
depicted in Figure 3. Suppose we allow subtrees rooted on any Ie vel to be
rebuilt, and we have a tree T of height h that has a complete left subtree TL
of height h — 1 and a complete right subtree of height h — 3. If we delete the
largest element of TL and insert an element less than any element in T, then
the smallest subtree we must reconstruct is TL- If we reconstruct TL and
not T, then we can perform the above pair of updates repeatedly to obtain
an amortized update time of iï(n). To avoid this difficulty, we introducé
a balance criterion to ensure that Q(\S\/k) updates have occurred since
the last time a proper supertree of S was reconstructed. In Section 4.2, we
discuss the fc-layering scheme more formally to obtain an exact analysis.

h-l

Figure 3. - A pathological situation.

4.2. The gênerai scheme
In Section 4.1, we neglected the problem of choosing the location of

the update window. For a binary tree of height /i, we choose the levels
of the update window as follows. If the size of the tree is no less than

2
2h~1 - 1 + - • (2h~l + 2h), then we position the window at levels h-l and
h\ otherwise, we position it a levels h — 2 and h-l. Suppose that the have
placed the window at levels l and l + 1. Since the size of the tree is at least
2h~l and at most 2h — 1, it is possible to show that the size of the tree is no
less than 2 / - l - [? . (2 / + 2 / + 1) l andnogreater than 2 / + 2 - l - [- - (2 / + 2 / + 1) l .
This way, we ensure that the update window is neither too full nor too empty.
We note that our update algorithms only depend on the f act that the size of the

vol. 28, n° 5, 1994

438 T. W. LAI, D. WOOD

tree is initially between 2l - 1 + \e - (2' + 2l+1)~\ and 2*+2 - 1 - \e • (2l + 2l+1)],
for some constant e > 0. Ho we ver, we choose e to be as large as possible to

2
minimize the amortized update time, and it can be proved that e is at most - .

In the fc-layering scheme, where k is some positive integer constant, we
choose constants p\ — 0 < p2 < * * * < Pk = 2/9 and functions Li, • • -, L&
such that / > Li (I) > L2 (0 > - • • > Lk (l) - 0. Note that we require
l^Lk. The functions Li, L2, • • -, L& détermine the levels on which we may
reconstruct subtrees, and the constant pi détermines the balance criterion
applied to subtrees on level L ,̂ for i = 1, 2, • • -, k.

We define the update window density p(Ty r', /) of a subtree T of
T rooted at node r' to be the proportion of T7's nodes in the update window
to the maximum possible number of nodes; more properly, if r' is on
level /', then we define

(T ' rt - n{T,r>)-{21-1' -1)

For example, in Figure 4, we have l — 2, n (T? y) = 6, n (T, z) = 3, and

n (T, x) = 10, which implies that p(T, y, l) = - , p (T, z, /) = - , and
• 7 •

p (T, x, l) — — . Note that if the update window is empty and we perform

a deletion above the window, then we get p(T, r', ï) < 0. Similarly, if
the update window is full and we perform an insertion below the window,
then we get p(T, r'\ l) > l.

update
window

Figure 4.

Our imbalance criterion is: For any subtree Tf rooted on level Li(l), the
update window density of T1 is restricted to the interval [pi, 1 — pz], for
« = 1,2, — A;. This interval is smaller for subtrees rooted on levels higher in
the tree, so that costly reconstruction high in the tree ensures that subséquent

Informatique théorique et Applications/Theoretical Informaties and Applications

UPDATING APPROXIMATELY COMPLETE TREES 439

updates are inexpensive. To delay reconstruction as much as possible, we
rebuild a subtree T' only when we cannot handle an update in a proper
subtree of T'. More precisely, we reconstruct a subtree if it satisfies the
following imbalance criterion.

1. Any update destroys the balance of the subtree rooted at level Li (Z)
in which the update takes place.

2. A subtree rooted at node r on level Li (Z), where i > 1, is imbalanced
if there exists some unbalenced subtree rooted at a descendant r«_i of r on
level L2_i (l) such that p(T, rz_i, Z) £ [pj-i, 1 - p«-i], or, equivalently,
n (T, r ^ i) £ [2'"L*-i « - 1 + p ^ . 3 • 2l'L^ « , 2l'L^ «+2 __ j _ p ._1 #

3. 2'-L<->«].

We emphasize that this imbalance criterion is used solely to reduce the
overall update time. During updates, we directly ensure 2-incompleteness by
examining path lenghts,

The imbalance criterion yields straightforward insertion and deletion
algorithms. As an example, suppose we want to insert some key x into T.
We first insert x naively. Let r% be the ancestor of depth L{ of x. We
détermine the highest node V{ such that p(T, n , /) £ 1 — pi and, for all
j < i, p (T, ry, Z) > 1 - pj, and then reconstruct the subtree rooted at r«,
since Ti is imbalanced. If we reconstruct the entire tree, then we reposition
the update window.

The insertion and deletion algorithms are as follows. In the deletion
algorithm, we assume that only nodes without internai children are deleted,
as before. For brevity, in the following we refer to L% (Z) as L2, for
i = 1, 2, • • -, fc.
insert (T, x)\

i <— 1;

insert x;

r <~~ ancestor of x on level Li in T;

while « < fc and n (T, r) > 2l~L^2 - 1 - ^ • 3 • 2'"L< do

i <— i + 1;

r <— ancestor of r on level L̂

end;

reconstruct the subtree of T rooted at r;

if i = fc, then reposition update window

end insert

vol. 28, n° 5, 1994

4 4 0 T. W. LAI, D. WOOD

delete (T, x)\

i <- 1;

r <— ancestor of x on level Lj in T;

delete #;

while i < fc and n (T, r) < 2Z~Z" - 1 + pi • 3 * 2l~L* do

i <— i + 1;

r <— ancestor of r on level L%

end;

reconstruct the subtree of T rooted at r;

if i = fc, then reposition update window

end delete
To reconstruct a tree T, we use a perfect rebalancing algorithm, such as

Stout and Warren's algorithm [15]. To détermine n (T, r), we can use brute
force without increasing the running time of our algorithms by more than
a constant factor, since the total time for counting the size of a subtree is
proportional to the time taken to reconstruct the subtree.

In Section 5, we prove that the amortized update cost is O (k2 n1^) in the
/c-layering scheme, for any positive integer k, if we choose Li = [(1 — i/k) l\

and pi — -y-—-!- , for i = 1, 2, . . . , k. By choosing L% and pi to be evenly
9 (/ — 1)

r 2i
distributed in the intervals [0, ï) and 0, - , respectively, we minimize the

L ^J
amortized cost of our update algorithms. A conséquence of the above result
is that if we allow reconstructions on every level and choose Li — l — i
and pi — —j- r , for i = 1, 2, . . . , / , then the amortized update cost is

9 (/ — 1)
O (log n). We call this latter scheme the level-layering scheme.

Observe that with the above choice of pi and Lj, only the parameters
k and l need be kept in the fc-layering scheme, since pi and L% can be
computed from i9 k, and l in constant time. Similarly, only l need be kept
in the Z-layering scheme.

5. ANALYSIS

To perform an amortized analysis we first prove two technical lemmas.
The first lemma bounds the number of nodes in the window in an updated
subtree after reconstruction of one of its layered ancestors. The second

Informatique théorique et Applications/Theoretical Informaties and Applications

UPDATING APPROXIMATELY COMPLETE TREES 441

lemma bounds the number of updates that must have occurred since the last
reconstruction of a layered subtree.

LEMMA 5.1: If after some update, the tree T3 rooted at node TJ at level
Lj is the largest subtree of T reconstructed, where j > 1, then after the
reconstruction, for any k < j and any node r^ at level L&,

n (T , rib) e [2l'Lk - 1 + [_^ . 3 - 2l~Lk\, 2l~Lk+2 - 1 - ^ . 3 - 2 z " L f c J] .

Proof: Tr ivial . D

LEMMA 5.2: If a subtree T% of T rooted at node Ti on level Li is
reconstructed, where i > 1, then at least {pi — p%~\) • 3 * 2l"L%~1 — 1 updates
must have occurred since the last time a supertree ofTt was reconstructed.

Proof: If Ti is reconstructed, then there must have been an update
performed in some subtree T2_i of Ti rooted at node TÏ-\ on level L;_i.
There are two cases to consider.

1. A deletion has caused the reconstruction of Tj.
Immediately before the reconstruction we know that

n (T, n-i) < 2l'L— - 1 + p2_! • 3 • 2*-1"-1.

Lemma 5.1 implies that immediately after the last time some supertree Tj
of T% rooted at r3 on level Lj was reconstructed, we have

n (T, n-i) > 2l~L^ - 1 + ^ . 3 - 2 / - L - 1 J.

Since j ^ i, we must have performed at least

2'"L '-i - 1 + [pi . 3 • 2 /~L-1J - [2'"'*-1 - 1 + pt-i • 3 • 2l~L-1]

> p% • 3 • 2'-'*-1 - p,_i • 3 • 2 '-1"-1 - 1

updates.
2. An insertion has caused the reconstruction of T%.
Immediately before the reconstruction we know that

n (T, r,--i) > 2 ' - L - 1 + 2 - 1 - A- i • 3 • 2l~L-K

Lemma 5.1 implies that immediately after the last time some supertree Tj
of Ti rooted at TJ on level Lj was reconstructed, we have

n, (T, r._i) < 2* - L - 1 + 2 - 1 - [pj • 3 - 2 /-L*-1 J.

vol. 28, n° 5, 1994

4 4 2 T. W. LAI, D. WOOD

Since j ^ i, we must have performed at least

updates. D

THEOREM 5.3: For any 1 ^ k i£ l, the amortized update cost of the k-
layering scheme is O (k2 nllk),for an appropriate choice of parameters pi,
P2i • * -, Pfc*, £ i , ^ 2 Î * * *, L>k- In particular, if reconstructions are allowed on

every level and Ll — l — i and pi — —— , for i — 1, 2, • * -, Z, then

the amortized update cost is O (log2 n).

Proof: Suppose that we have a reconstruction algorithm that requires en
2 i — 1 k — i

time in the worst case. We choose pi = - • and L{ — I —-— • /1, for
9 k — 1 A;

i = 1, 2, •••, A:. Let A be the amortized update cost. For any i, the time to
reconstruct a subtree rooted on level L% is at most c • 2*~Li+2. Also, for any
i > 1, Lemma 5.2 implies that at least max(l, (p* - pi-\) • 3 • 2Î~L*~1 - 1)
updates must be performed between reconstructions of a subtree rooted on
level Li. Moreover, observe that

max(l , {pi — pi-i) • 3 • 2l~L'1-1 — 1) > - (pi — p%-\) * 2î~Li~1

Since an update affects k layers simultaneously, the amortized cost is

2 9 fc-1
fc

2 - 2

Since l ^ log n,
A = O(n1/* + ifc2n

When A; = /, we have A = O (log2 n). D

Informatique théorique et Applications/Theoretical Informaties and Applications

UPDATING APPROXIMATELY COMPLETE TREES 443

The level-layering scheme is attractive because of its simplicity - it is
simpler than Gerasch's scheme, yet it performs better.

6. AN EMPIRICAL COMPARISON OF LEVEL-LAYERED AND AVL TREES

To assess the practicality of level-layered trees, we conducted simulations
of level-layered trees and AVL trees on a MIPS M/2000 running RISC/os
version 4.51. We coded the algorithms in C and compiled them using gcc,
version 1.37.1. Since we were interested only in the update time, we were
interested only in the update time, we performed 50,000 insertions into an
empty tree. We performed two sets of simulations: we inserted keys in
sorted order and in random order. To implement AVL trees, we used the
update algorithms of Reingold and Hansen [14]. To implement level-layered
trees, we used Stout and Warren's perfect rebalancing algorithm [15], and
we counted subtree sizes by converting subtrees into paths of right children.

The results of our simulations are shown in Tables I and IL We measured
the average CPU time per insertion (in milliseconds) and the average number
of pointer dereferences per insertion or, in other words, the average number
of pointers followed per insertion. Note that the CPU time for random
insertions includes the time required to generate pseudorandom numbers.

TABLE I

A comparison of sequential insertions.

Number of
insertions

10,000
20,000
30,000
40,000
50,000

AVL trees

CPU time

0.016
0.017
0.018
0.018
0.020

Dereferences

50.7
52.7
53.8
54.7
55.4

Level-layered trees

CPU time

0.23
0.28
0.33
0.36
0.42

Dereferences

1179.4
1437.9
1639.1
1760.2
1907.5

TABLE II

A comparison of random insertions.

Number of
insertions

10,000
20,000
30,000
40,000
50,000

AVL trees

CPU time

0.020
0.023
0.025
0.027
0.028

Dereferences

47.4
49.4
50.6
51.4
52.1

Level-layered trees

CPU time

0.041
0.050
0.068
0.062
0.060

Dereferences

131.2
134.6
165.9
138.6
133.2

vol. 28, n° 5, 1994

4 4 4 T. W. LAI, D. WOOD

Our simulations show that, for random insertions, level-layered trees take
at most three times more CPU time and four times more pointer dereferences
than AVL trees, and, for sequential insertions, level-layered trees take at most
21 times more CPU time and 35 times more pointer dereferences than AVL
trees. Note that the CPU time for random insertions in an AVL tree is
significantly more than the CPU time for sequential insertions, whereas the
number of pointer dereferences is less. We speculate that this phenomenon
is caused by a poor hit ratio in the processor cache. Also, note that the
average number of pointer dereferences for 30,000 random insertions in
a lavel-layered tree is higher than the number of dereferences for 50,000
random insertions; this anomaly is probably caused by a global rebuilding
between 20,000 and 30,000 insertions. While the cost of insertions in level-
layered trees is much more than the cost of insertions in AVL trees for
sequential insertions, the likelihood of sequential insertions is arguably low,
since a different algorithm would be employed if the insertions were known
in advance to be sequential. Thus, level-layered trees may be a practical
alternative to other balanced trees if the updates are infrequent and real-time
update performance is not critical.

7. EXTERNAL-SEARCH TREES

One problem with the layering scheme is that only nodes with external
children can be deleted, making deletions difficult for tree structures that are
not binary search trees, such as k-d trees. One solution to this problem is to
use external-search trees (that is, we associate keys with external nodes, and
separating vlues with internai nodes), rather than use internal-search trees.

In the layering scheme for external-search trees, we maintain a two-level
update window as before. If we place the window on levels l and l + 1,
then we ensure that ail external nodes are on levels l — 1, l, or l + 1, which
guarantees that the tree is 2-incomplete. We redefine n (T, r) to be the
number of external nodes in the subtree of tree T rooted at r. For a binary
tree of height h, we choose the level of the update window as follows. If

level h (that is, the lowest level) contains no fewer than - • 2h external
nodes, then we position the window at levels h and h + 1; otherwise, we
position it at levels h— 1 and h. Assuming that we have placed the window
at levels / and l + 1, we ensure that the number of external nodes in the

ri 3 ï
window is in the interval - • 2 / + 1 , - • 2 / + 1 .

[4 4 J

Informatique théorique et Applications/Theoretical Informaties and Applications

UPDATING APPROXIMATELY COMPLETE TREES 445

In the fc-layering scheme, where k is constant, we choose constants
px — 0 < p2 < - - • < pk = 1/4 and functions l > L\ (l) > L2 (Z) >
• • • > Lk{l) — 0. Our imbalance criterion is now: A subtree rooted at
node r on level Li-\ (£), where % > 1, is imbalanced if there exists some
imbalanced subtree rooted at a descendant rt-\ of r on level Lt (l) such that
n(Ty r) < p%-x • 2l'L^^+1 orn(T, r) > (1 - p t_i) • 2l~L^^+1. An
update to a subtree rooted on level L\ (l) unbalances that subtree, as before.
The analysis of this modified layering scheme is similar to the analysis for
internal-search trees, and the amortized update cost is O (k2 nl/k) when we

choose Lt (l) = L(l — i/k) l\ and pi — -— , for i = 1, 2, . . . , k. In
4 [k — 1)

the level-layering scheme, we choose the number of layers to be l, and, for
1 i — 1

i = 1, 2, . . . , Z, we choose pi~ - • - — - and L̂ (/) — / — i. The resulting
amortized update cost is O (log2 n), as before.

For tree structures other than binary search trees, we may need to use a
perfect rebalancing algorithm that requires u (n) time in the worst case. The
level-layering scheme yields polylogarithmic amortized update cost when
used with an O (logc n) worst-case time perfect rebalancing algorithm, when
c is constant. In particular, the fc-layering scheme can be shown to take
O (k2 n1/^ logc n) amortized time to update 2-incomplete trees, and the
level-layering scheme can be shown to take O (log2+c n) amortized time.

REFERENCES

1. G. M. ADEL'SON-VEL'SKII and E. M. LANDIS, An algorithm for the organization of
information, Sov. Math. DokL, 1962 3, pp. 1259-1262.

2. A. ANDERSSON, Improving partial rebuilding by using simple balance criteria, In
Proceedings of the 1989 Workshop on Algorithms and Data Structures, Lecture
Notes in Computer Science, 1989, 447, Springer-Verlag, pp. 393-402.

3. A. ANDERSSON, Efficient Search Trees, PhD thesis, Lund University, S weden, 1990.
4. A. ANDERSSON and T. W. LAI, Comparison-efficient and write-optimal searching and

sorting, In Proceedings of the 2nd Annual International Symposium on Algorithms,
Lecture Notes in Computer Science, 1991, 557, Springer-Verlag, pp. 273-282.

5. T. E. GERASCH, An insertion algorithm for a minimal internai path length binary
search tree, Communications of the ACM, 1988, 31, PP- 579-585.

6. L. C. GUIBAS and R. SEDGEWICK A dichromatic framework for balanced trees, In
Proceedings of the 19th Annual IEEE Sympossium on Foundations of Computer
Science, 1978, pp. 8-21.

7. T. W. H. LAI, Efficient Maintenance of Binary Search Trees, Ph. D thesis, University
of Waterloo, 1990.

8. T. W. H. LAI and D. WOOD, Updating approximately complete trees, Technical Report
CS-89-57, University of Waterloo, 1989.

vol. 28, n° 5, 1994

446 T. W. LAI, D. WOOD

9. T. W. H. LAI and D. WOOD, Updating almost complete trees or one level makes
all the différence, In Proceedings of the 7th Symposium on Theoretical Aspects of
Computer Science, Lecture Notes in Computer Science, 1990, 415, Springer-Verlag,
pp. 188-194.

10. J. I. MUNRO, Private communication.

11. J. NIEVERGELT and E. M. REINGOLD, Binary search trees of bounded balance, SIAM
Journal on Computing, 1973, 2, pp. 33-43.

12. M. H. OVERMARS, The Design of Dynamic Data Structures, volume 156 of Lecture
Notes in Computer Science, 1983, Springer-Verlag.

13. M. H. OVERMARS and J. VAN LEEUWEN, Dynamic multi-dimensional datta structures
based on quad- and k-d trees, Acta Informatica, 1982, 17, pp. 267-285.

14. E. M. REINGOLD and W. J. HANSEN, Data Structures in Pascal, Little, Brown and
Company, 1986.

15. Q. F. STOUT and B. L. WARREN, Tree rebalancing in optimal time and space,
Communications of the ACM, 1986, 29, pp. 902-908.

16. J. VAN LEEUWEN and D. WOOD, Dynamization of decomposable searching problem,
Information Processing Letters, 1980, 10, pp. 51-56.

Informatique théorique et Applications/Theoretical Informaties and Applications

