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DECIDABILITY OF EQUIVALENCE FOR A CLASS
OF NON-DETERMINISTIC TREE TRANSDUCERS (*)

b y Yves ANDRÉ C1) a n d M a x DAUCHET ( T )

Communicated by A. ARNOLD

Abstract. - In this paper, we consider non-deterministic tree transducers in the letter to letter
case, that is to say tree transducers for which trees which appear in the rules are reduced to one
letter in the right-hand side as in the left one. We establish the decidability of équivalence for linear
and non-deleting top-down transducers. These results are valid in the bottom-up case.

Résumé. - Nous considérons des transducteurs non déterministes d'arbres dans le cas lettre à
lettre. Nous établissons la décidabilité de Véquivalence pour les transducteurs descendants linéaires
et complets. Ces résultats s'étendent au cas des transducteurs ascendants.

1. INTRODUCTION

Tree transducers which are a generalization of rational transformations in
the word case (see [1], [3] for a synthesis), were introduced by W. C. Rounds
[15] and J. W. Thatcher [17]. They have been widely studied. The authors
have chosen either the algebraic point of view ([2], [9], [4]), or the machine
point of view ([7], [8], [16]). Naturally, the question arises whether or not the
results obtained for transformations in the word case can be transferred to tree
transducers. The situation is different. For instance, we have to distinguish
two main classes of tree transducers: top-down transducers which process
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the input trees from the root to the leaves and bottom-up transducers for
which, on the contrary, the computations begin at the leaves and finish at
the root. In 1975, J. Engelfriet proposed a comparison between these classes
of tree transformations [7].

In this paper, we investigate the équivalence problem for a particular class
of tree transducers. Two transducers are called equivalent if and only if they
deflne the same transformations, that is to say if every input tree has the
same set of output trees in both transducers.

In the word case, équivalence is undecidable in the non-deterministic case
(Griffiths 1968) and it is decidable in the deterministic one (Bird 1973,
Valiant 1974) (see [10]).

For trees, équivalence is in gênerai undecidable in the non-deterministic
case and it is decidable for deterministic transducers in the bottom-up case
(K. Zachar 1978, [19]) and in the top-down one (Z. Esik 1979 [11]).
More recently, in 1990, H. Seidl showed that équivalence is decidable for
finite-valued bottom-up fini te state transducers [16].

Linear and non-deleting letter to letter transducers (in the non-deterministic
case) are studied here. Informally, these transducers only modify the label
of the nodes of the trees and for every node can make a permutation (called
here torsion) of the subtrees (précise définitions can be found in section 2).

First, torsion-free letter to letter top-down tree transducers are introduced
and investigated (section 3). These transducers, which are only relabelings,
preserve the skeleton of the trees. Using a classical coding (couples of trees
are encoded in trees by "superposition"), we can associate a recognizable
forest with the tree transformation we consider and so we easily prove that
équivalence is decidable. Then, we show that the équivalence problem for
linear and non-deleting letter to letter top-down transducers can be reduced
to the équivalence problem for relabelings (section 4). The main problem,
which is illustrated in the following example, is: even if T and T' are
equivalent transducers, for some trees, computations with the same torsions
cannot be realized in T and in T'.

Example: Let T and T' be two linear and non-deleting letter to letter
top-down tree transducers defined by:

T: q(*(x,y))^6(qi (x),q2(y))

Ql ( a O ) ) -> a (<7l 0*0) qi (a) -> a

Ç2 (a (x)) -» a (<?2 (x)) 42 (a) —> a
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T ' : k (a (x, y)) -> 8 (k[ (ar), fe2 (»)) Ar (<r (ar, »)) -> 5 (*n (ar),

fc ( a (x, y)) -> 5 (fe3 (y) , fc4 (x))

fel ( a ( x ) ) —• a (fei (x)) fel (a) —» a

^2 ( a (x)) —• a (fe2 (x)) fe2 ( a ) - » ûf

fci (a (s)) -> a (feu (ar)) fe'2 (a (x)) -> a (fe22 (x))

kn (o> (x)) —> a (feu (x)) kii (a) —̂  ^

fe22 (a (x)) -> a (fe22 (x)) fe22 (ût) -> a

ks (a) —> a k\ (a) —> a

T and T' are equivalent transducers because they realize the same
transformations : f = T = {(o-(an, a m ) , 5(an , a m ) ) , n, m G N}. But
for (a (a, a), 8 (a, a)) différent torsions are used in the first step of the
computations: for T, the rule used initially is q (a (x, y)) —> 8 (qi (x), q2 (y))
when, for T \ k (a (x, y)) —> 5 (fe3 (y), fe4 (x)) is used.

The key part of our proof consists in showing that this phenomenon is
of "bounded depth" (lemmas 4.1, 4.2). So, we can encode the transducers
we consider in torsion-free transducers. For technical reasons, infinitary
transducers (that is to say transducers for which from each state an infinité
number of trees can be transformed) are first studied (section 4.3). The resuit s
we obtain are valid in the gênerai case (section 4.4). Finally, we extend the
previous resuit to bottom-up transducers (section 4.5).

2. PRELIMINARIES

Main définitions and results about tree transducers can be found in
J. Engelfriet's papers ([7], [8], [10]) and in the book of F. Gecseg and
M. Steinby [13]. In this section, we just give basic définitions and properties
used in the paper.

2.1. Trees
A ranked alphabet is a pair (S, p) where E is a finite alphabet and p

is a mapping from S to N. Usually, we will write S for short. For any
a in S, p (a) is called the rank of a, The subset E m of E is the set of
letters of rank m.

For p ^ 1, we dénote by Xp the set {xi, • • •, xp} of variables. XQ is
the empty set.
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Given a ranked alphabet S and a set Xp of variables, the set of all
trees over S and indexed by Xp, denoted by Ts (-Xp), is inductively
defined by Xp C T^(XP) and if a E E n and t i , • • - , ( „ G T^{XP)
then a (£i, • • •, t n ) G Ï £ (X p ) . For short, T s (Xo) is written T s .

The depth of a tree t e T^ (Xp), denoted by TT (t), is defined by
TT (t) = 0 if t G Eo or t G Xp and TT (t) = 1 + maxjvr ( t i ) , • • • , TT ( tn)}
if t = er ( t i , ••- , t„) .

For any p G N (p > 1), [p] dénotes the set {1, • • •, p} .

A torsion 9 from [p] to [g] is a mapping from [p] io [q]. We dénote it by
(g; 9 (1), • - •, 9 (p)). Especially, id^ will dénote the identity on [ra].

2.2. Letter to letter top-down tree transducers

DÉFINITIONS: A top-down tree transducer is a 5-tuple T = (E, A, Q, J, i2)
where E and A are ranked alphabets of respectively input and output
symbols, Q is a finite set of states, / is a subset of Q of initial states
and R is a finite set of rewriting rules of the form q (a (xi , • • •, xn)) —»
T(*?i (#0(1))» ••-, ft? (^ (p ) ) ) w i t h er e E, r G TA (-Xp), g, gi, •••, qp

states of Q, and 9 mapping from [p] to [n] (if n = 0 we have a rule of the
form g (a) —> r ) . ö is called a torsion.

A top-down transducer is torsion-free if, for every rule, the torsion 9 is
the identity.

A top-down transducer is letter to letter if, for every rule, r belongs to A.

t i—> t ; if and only if there exist to G Ts(-Xi), a G E n ,

t i , ••• , tn E T s , 6 G A m , g, gi, •••, gm G Q, a rule g (a (xi , • • •, i „ ) ) -^

^(gi (#0(1))> •••» 9m (^ (m) ) ) i n -K and t = t o ( g ( a ( t i , ••- , t n ) ) ) ,

t7 = to(S(qi (t^(i)), •-•, gm ( t^(m)))). ^ dénotes the reflexive and

transitive closure of i-».

For any state q in Q, Tq dénotes the transformation realized from state g.

Formally, fq = {(t, u) G T E x TA/q(t) A u } .

T dénotes the tree transformation associated with T : T = M Tg.

The domain of a tree transformation T, denoted by dom(T) , is the set
{t G T^/3u G T A , (t, u) E f1}.

The range of a tree transformation T, denoted by im (T), is the set
{n G T A / 3 t G T E , (t, u) G f } .

Informatique théorique et Applications/Theoretical Informaties and Applications



DECIDABILITY OF EQUIVALENCE FOR TREE TRANSDUCERS 451

A state of a transducer is infinitary (resp. finitary) if and only if an infinité
(resp. a finite) number of trees is transformed from this state. A transducer
for which all States are infinitary is said to be infinitary.

A top-down tree transducer is deterministic if and only if the set of initial
states is a singleton and there are no two rules with the same left-hand side.
A transducer is linear (respectively non-deleting, torsion-free) if and if for
each rule the torsion 6 is injective (respectively surjective, the identity).

Two transducers T and T1 are equivalent if and only if the tree
transformations T and T' associated with these transducers are equaL

PROPERTY 2.1 : For every non-deleting letter to letter top-down tree
transducer T, for every (t, u) E T, n (t) = TT (u).

Notations: A torsion-free to letter transducer is also called a relabeling.
T-LAB dénotes the class of all top-down relabelings. LCT-LL (resp.
LCB-LL) dénotes the class of linear and non-deleting letter top-down (resp.
bottom-up) transducers. REC is the class of recognizable forests.

3. EQUIVALENCE OF TORSION-FREE LETTER TO LETTER TOP-DOWN
TRANSDUCERS

In this section, torsion-free letter to letter top-down transducers (called
here relabelings) are considered. To establish the decidability of équivalence
for the so defined class, we use a coding introduced by Doner [6] in the
sixties and used in the Rabin's theorem (in the case of in finite trees) [14]. In
the word case this construction was chosen by C. Frougny and J. Sakarovitch
[12] to study rational relations with bounded delay, and in the tree case by
M. Dauchet and S. Tison to prove the decidability of the theory of ground
rewrite Systems [5], [18].

For any relabeling T, for any couple of trees (£, u) E T, t and u have
the same skeleton. So, to encode (£, u) in a tree, denoted by [£, u], we just
"superpose" the trees. For instance, [£, u] = [&, (3} ([a, a] ([a, a]), [c, 7]) is
the code of (t, u) = (6 (a (a), c), / ? (a (a) , 7)).

With every relabeling T = (£, A, Q, / , R), we associate the automaton
AT = <r, Q, / , B!) where r = S x A and R' is defined as follows:

q ([a, 6] (xi, • • •, xn)) -> [a, 8} (qi (#1), - • •, qn (xn)) is a rule of R!

if and only if q (a (x\, •••, xn)) —> S (gi (x\), • • -, qn (xn)) is a rule of R.

It is easy to show that [t, u] e F (AT) O {t, u) e f (where F (AT)
dénotes the forest recognized by the automaton Ax) and so it is possible
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to associate a recognizable forest with the tree transformation we consider
and conversely. Thus, we inherit the good closure and decidability properties
of recognizable forests.

PROPERTY: The class REC of recognizable forests is effectively closed
under union, intersection and complémentation and emptiness is decidable
[13].

Closure of T-LAB under union.

Let T\ and T2 be two relabelings. With T\ and T2 we associate the
automata Ai and A2 (as defined before). So

fi U T2 = {(*, u)/[t7 u] G f i or (t, u) G f2}

= {(*, «)/[*, u] EF(A1) or [*, u] GF(A2)}

= {(*, u)/[t, u]eF(A1)UF(A2)}.
As REC is closed under union, there exists an automaton A such that

F (A) = F{AX)UF(A2). S0TÏUT2 = {(t, u)/[i, u] ƒ F(A)}. Now, let
T be the relabeling associated with A then we obtain T\ U T2 — {(£, w) E
T} = T and T-LAB is closed under union.

In the same way, we show that T-LAB is closed under intersection and
différence. Emptiness is decidable. So we obtain,

THEOREM 3.1: Equivalence in T-LAB is decidable.

Proof: We use the fact two relabelings T\ and T2 are equivalent if and
only if (fi - f2) U (f2 - fi) = 0. •

Remark: The following example illustrâtes the fact that we lose, in the
case of transducers of LCT-LL, the closure under intersection.

Example:

f i ={(b(an, om), 6 (a?, a?1)), n G N, m G N}
and

f2 = {(b(an, am) , 6 (aj", a?), n G N, m G N}.
We obtain f i nf2 = {(& (a71, an),& (aï, af)), n G N} which is not realizable
by a top-down transducer because its domain is not recognizable [13].

4. EQUIVALENCE OF LINEAR AND NON-DELETING LETTER TO LETTER
TRANSDUCERS

4.1. Preliminaries
In this part, we first establish the decidability of équivalence in LCT-LL.

The main problem was illustrated in the example of the introduction.

Informatique théorique et Applications/Theoretical Informaties and Applications
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First, we show that for two equivalent transformations the same torsions
are used except for a finite number of trees (lemmas 4.1, 4.2). Next, for any
integer A we built the A-normalized form T§ of a transducer T such that:

1. équivalence of A-normalized forms is easy to décide: these A-norma-
lized forms are relabelings and so we use the resuit of section 3;

2. if T and Ty are equivalent transducers then there is some integer A
such that TQ and TQ" are equivalent (we use the fact that if T and T' are
equivalent then the same torsions are used except for a finite number of trees).

As équivalence of TQ and TQ* is decidable (part 3), équivalence of T and
T' is semi-decidable. Because non-equivalence is obviously semi-decidable,
we conclude that équivalence is decidable (theorem 4.1). As a corollary, we
obtain the same resuit for bottom-up transducers (theorem 4.2).

DÉFINITIONS: TWO sets of states {q\, • • •, qn} and {ki, • • •, km} are globally
equivalent if and only if |J (fqi) = (J (fkj).

ie[n] j€[m]

Let T be a computation on t ~ a (ti, • * •, tn) from state q.

T : q(a(ti, • • - , tn)) i-> S (qi ( * Ô ( I ) ) Î - ^ Qn

The initial transformation on t from state q is the triple (a, £, Ö).

Notation: TQ{a s Q) dénotes the transformation realized from state q by
using the initial transformation (a, 8, 6).

Remark: Results to be discussed below are described for letters of rank
less than or equal to 2. They are easily transferred to the gênerai situation.

Furthermore, for technical reasons, in sections 4.2 and 4.3, we will only
consider infinitary transducers. LCT-LLj will dénote the subclass of infinitary
transducers of LCT-LL. These results are valid for LCT-LL (section 4.4).

4.2. Initial transformations realized from two globally equivalent sets of
states of a transducers of LCT-LL;

4.2.1. Case of trees of the form a{t\, £2) with 7r(*i) / ^(^2)

LEMMA 4.1: From two globally equivalent sets of states the same initial
transformations are realized on trees of the form o~{t\, £2) for with
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Proof: Let E and F be two globally equivalent sets of states of a transducer
T of LCT-LLj, q be a state of E and (cr(£i, £2), <5(^i, ^2)) be a couple
of trees of Tq{cr6$) with TT (ti) / ?r(£2). Let 0 — id[2] (the other case
is similar) then, by property 2.1, -K (U\) — ?r(£i), n (u2) = ^(£2) and so
T T O I ) / 7r(n2).

Suppose that there exist k in F and JJL ^ 0 (hère, /i = (2; 2, 1))

such that (cr(ti, £2), <5(wi, U2)) G Tfe(ffifi)/i). Therefore, we would have

fc (a ( t i , £2)) •—> <5 (fci (£2), &2 (£1)) ^ 6 (xti, 112) and then ?r (£2) would be

equal to TT (U\) which contradicts the hypothesis. So, because E and F are

globally equivalent sets of states, there exists at least one state k G F such

that ( a ( t i , £2), 5 ( « i , u2)) e fk{<rt6i9y D

4.2.2. Case of trees of the form <r(£i, £2) WZY/Ï 7r(£i) = ^(£2)

The example of section 1 illustrâtes the fact that, from two equivalent
states, initial transformations with different torsions can be realized for trees
of the form a (£1, £2) with TT (t\) = TT (£2). In the following lemma, we show
that this phenomenon is of "bounded depth".

LEMMA 4.2: From two globally equivalent sets of states the same initial
transformations are realized on trees of the form a (£ i , £2) with TT(£I) —
7T (£2), except for a finite number of trees.

Proof: Let E and F be two globally equivalent sets of states of a transducer
T of LCT-LLi. We consider the différence fE{^ 6t 9) - fF{tr%, 9) (the problem
is analogous if we consider fF{^6Q) - f E { a j 5 e)).

Let 6 — id[2] (the other case is similar).

With every couple (a (tu £2), S (uu u2)) G fE{tr%St9) ~ fF(^6 B) we
associate the set C\ = {(fci, ^2) such that 3k G F, k(a(xi, X2)) -^
5(Jki(xi), ^2(0:2)) is a rule of T and (£1, m) £ Tkl} and the set
C2 — {(h, k2) such that 3k e F, k(a (x\, x2)) —> 6 (k\ (xi), k2 [x2)) is
a rule of T and (£2, u2) £ f k 2 } .

If TE{9 6 e) — TF{<7 6 was infinité then, because T is a finite state

transducer, there would exist (a (t\, £2), 6 (u\, u2)) and (a (t[ ,t2),6 (u[, u'2))

in TE;(CT 6 ö) - T> (CT 6 e ) associated with the same sets Ci and C2 and such that

7T (£i) ^'TT (£'2). Then (a (tu t'2), ë (uu uf
2)) would be m fE{v^9) -fF^0)

which contradicts lemma 4.1. Thus the différence TE{v 8 — fF{a s e) is
finite. D
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4.3. A-Normalized form of a transducer of LCT-LLj

For any integer A, we associate with any transducer T of LCT-LLi its
A-normalized form built in two steps.

First, for every state q, for every couple of trees (£, u) G Tq, such that
TT (t) < A, we add a rule of the form g<A (t) —> u if TT (£) < A or of the
form qA (t) —• u if TT (t) — A, where t and u are identified with new letters.
We also adapt the "non-ground" rules of T so that the computation (£, u) is
not possible otherwise. We obtain TA with is called the A-semi-normalized
form of T. We show that (lemma 4.4) if A is large enough then, from sets
of globally equivalent states, transformations with the same torsions can be
realized for all trees.

Then, we remove the torsions in the right-hand side of the rules of the A-
semi-normalized form TA, an indication of the torsion being encoded in each
letter, and we obtain the A-normalized form denoted by T Q . For instance,
with the rule q(a(xi, x2)) —• 6(qi (#0(1))» q2 (#0(2))) we obtain the rule
q(a Oi , x2)) -> (5, 6) (?0-i(i) (xi), q9-^2) O2)) ((*, Ö) is a new letter).
4.3.1. A-semi-normalized form: définition and construction

Let T = (E, A, Q, / , R) be a transducer of LCT-LLj. For any integer A,
we associate with T the transducer TA = (E U EA, A U AA , QA, / A , i?A)
where EA and AA are new alphabets, the letters of which can be interpreted
as trees of dom (f) and im (f) of depth less than or equal to A, and QA,
IA and RA are defined by

- q<A and qA are states of QA if and only if q is a state of Q and they
are in IA if and only if q is in / .

- q<A (t) -> u (resp. gA (t) -+ u) is a rule of i2A, t is a letter of EA and
u is a letter of AA if and only if (t, it) G Tg with t e T^ and TT (i) < A
(resp. 7T (*) = A).

~qA(a(x)) -+ ë(qA{x)) is a rule of RA if and only if q(a(x)) -^
6(qi (x)) is a rule of J?.

- g A ( o - ( x i , x2)) - • * ( g ^ ( ^ ( i ) ) , gA(xö (2))),
A < A A and

gA {a (xi, a;2)) -> * (<?A (a:^)), ç<A (^ ( 2 ))) are rules of RA

if and only if q (a (xi, x2)) -> 5 (g« (xe^), q3 (^0(2))) is a rule of R.

Example: Let T and T7 be the transducers defined in section 1. For A = 1,
for instance, their A-semi-normalized forms TA and T"A are defined by:
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Ground rules of TA .

Non-ground rules of

dA

Y. ANDRÉ, M.

Si<A (a)

qt(a(a))

TA.

(a(x, y)) ->£(

(a(x, y)) -> 6(

DAUCHET

—> a

—> a

—> a ( a )

—• a ( a )

9 A (*) , « (y))

Ground rules of T /A.

fcfA (a) ->

4 A («) -
fcA(a(a))-.

*li (a (a)) -*
fciA(a(a))-

kA (a (a, a) -»

Non-ground rules of T'A .

a

a

a (a)

a (a)

a (a)

5 (a, a)

k<A CM

k<A (a)

kA(a(a))

fcA2 (« (a))

4 A (a (a))

—» a

-,a(a)

—> a (a )

—» a (a )

kA(a{x, yïï^ôih'fix), kA(y))
kA(a(x,y))^6(k'<A(x),kA(y))

kA(a{x,y))^6(k'A(x),k<A(y))

kA{a(x,y))^6(kA(x),k'2
A(y))

kA(a(x,y))^6(k<A(x),k'A(y))

kA(a(x,y))^6(kA(x),k'<A(y))
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kA

kA (a (x)) - a (kA (x)) kA (a (x)) - a {kA (x))

k'A (a (x)) - a (A& (x)) klA (a (x)) -> a {kA
2 (x))

Remark: Identification of T and TA.

For every computation q(t) £* u in T, with TT (t) < A, we have in TA one

rule of the form q<A (t) —> u if ?r (t) < A, or of the form q<A (t) —> n if
7T (t) £ A. Here, in fact, we identify ground trees of depth less than or equal
to A with new letters and thus it is unique computation for (£, u) in TA .

For every couple of trees (t, u) in T with TT (t) > A, there exists a unique
décomposition of t and u in t — to (ti, • * •, tn) and u = UQ (UI, • • •, un)
where:

- for any i in [n], ?r (tt) ^ A and there exists no subtree of t, of depth
less than or equal to A, for which t% is a proper subtree

- and such that the computations

Q {to {tl : • * ' , tn)) A no (q

and

(for any z in [n], gj is either gz
<A or gA) are analogous, that is to say they

only differ from one another in the label of the states (^<A, or gA, is used
in TA if q% is used in T).

So, for any A, we identify T and TA and, for any (£, u) in T^usA, TT (t)
will dénote the depth of the "corresponding tree" of T%.

In the next lemmas we show that, from two equivalent sets of states, if A
is large enough then transformations with the same torsions can be realized
for all trees in the A-normalized form.

LEMMA 4.3: When A is large enough, from two globally equivalent sets of
states ofTA the same initial transformations can be realized for all trees.

Proof: Let E and F be two globally equivalent sets of states of TA and
let (£, u) be a couple of trees of f£ = f$.
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From lemma 4.2 we deduce that, if À is great enough, ?r (t) > A implies
that the same initial torsions can be used in the computation of (t, u) from
E and F. In the case TT (t) ^ A we get obviously the same resuit. D

LEMMA 4.4: When A is large enough, from two globally equivalent sets
of states of TA transformations with the same torsions can be realized for
all trees,

Proof: The proof is by induction on the depth of the computations.

A computation such as g (<o (*i, • • •, tn)) A u0 (gi (tyi)), • • •, qn (%«)))
is said to be of depth p if and only if each state q% (for i G [n]) is obtained
after exactly p — 1 steps of rewriting.

We consider, hère two equivalent states q and k. The resuit we obtain can
be generalized without difficulties to globally equivalent sets of states.

Let (t, u) be a couple of trees of T^ — T^, with ?r (t) > A (in the case
^ (*) = A t is in fact a letter).

Suppose property true up to depth p. We show it is true again at depth p+1.
• First case: p < TT (t) — A.
We consider the transformations realized from states q and k with the

same torsions up to the depth p:

q (t) = q (t0; • • • , tn)) A ^0 (?1

H-• Uo (ifcl, * * • , Un) — U

and k(t) = fc(to(*l, ••-, *n)) A ^0 (fel

With 7T

Let i G [n] and let us consider the sets

and in the same way

xi,-", Xn))

(kJl

Suppose that from the sets of states Ci and Di the transformation
cannot be realized with the same initial torsion. Then Ci and Di would not
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be globally equivalent (lemma 4.3) and there would exist at least one couple
of trees (£, u) and fc% ~ TD%.

So for (to (ti, • • •, £, • • •, *n), u0 {u\, • • •, ü, • • •, ü„)) with £#w = t
we would have

when for any computation

where ^ G i?i, (f, w) is not transformed from fcj.
Now, g and fc are equivalent states and so

(to (ti, • • • ,* , - • - , t n) , uo(iii, " - , 0 , •••, %)) G fk,

Thus, we would have a computation from state k whose torsions are
different from the torsions applied in the computation from state q before
depth p. That contradicts the hypothesis. Consequently, the same torsions
can be used at depth p + 1.

• Second case: p = ?r (t) — A.
We have the same transformations at depth p + 1 because, in this case,

trees which are transformed are in fact letters of EA. D
4.3.2. K-normalized form o f a transducer of LCT-LLi

Let T = (E, A, Q, ƒ, #) be a transducer of LCT-LLi and TA =
(E U SA , A U AA, QA, IA , EA) be its A-semi-normalized form.

We associate with T the transducer 7$ = (S U SA , A 0 , QA, 7A, Re)
where A e and RQ are defined by

- q (a) -^ (5, id) is a rule of i?e and (6, id) is a letter of Ae if and
only if q(a) ~* 6 is a rule of i?A.

- q (a (x)) —> {6, id) (^ (a;)) is a rule of i?e and {<$, id) is a letter of Ae
if and only if q (a (x)) —»• 5 (^ (x)) is a rule of i?A.

-g(cr(rri, x2)) ~^ (8, 6) {qB-i{l){x\), (qe-i(2) (^2)) is a rule of
i?(9 and (5, ö) is a letter of Ae if and only if q(a(xi, ^2))) —•

i s a rule of RA.

Remark: The A-normalized form of any transducer of LCT-LLi is a
transducer of T-LAB.
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Example: We consider the transducers T and T' defined in section 1 and
whose A-semi-normalized forms were constructed in 4.3.1 for A = 1. To
obtain their 1-normalized forms, we just remove the torsions which appear
in the right-hand side of the raies; an indication of the torsion being encoded
in each letter. We dénote by id the identity and by n the torsion defined
by /Lt(l) = 2 and /i(2) = 1.

Ground rules of Ï Q .

q<A(a)^{a, id) q<A (a) - (a, id)

^ ( a ( a ) ) - (a (a), id) qA (a (a)) - (a (a), id)
qA(a{a, a))-* (S(a, a)), id)

Non-ground rules OÎ.TQ.

qA(<j(x,y))^(6,id)(qA(x),qA(y))

qA(a(x,y))^(6,id)(q<A(x),qA(y))

qA(a(x,y))^{6,id)(qA(x),q<A(y))

qA{a(x))^(a,id)(qA(x))

Ground rules of Tg

k<A (a) -

k<A(a)-

kA(a(a))-

&11 (a(a)) -

k[A (a (o)) -

kA(a(a, a ) -

Non-ground rules of

kA{a

kA{a

kA(a

•

-> (a, id)

-> (a, id)

-»<o(o),

-> (o(a) ,

-> (o(a) ,

-*• (<5(a, (

(aï. v)) -

(», 2/)) -

id)

id)

id)

^2< A (« )

A:fA (a)
fcA (ce (a))

kA
2(a(a))

k'2
A(a(a))

ï ) , id)

-<«, id) (A;iA (x), kA

id) (k'<A(c),k

- <a, id)

-» (a, id)

-> <a(a),
-» (a(a),

-»(a(a),

(y))
A (y))

id)(k'A(x),k<A(y))

id)

id)

id)
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kA

kA

kA

kA

kA

kA

kA(a(x))->
k'A(a(x))->

^ ( a f a ) ) ->

(o" fa,
(a(x,

(afa,

(a(x,

(^fa,
(o-fa,

(a, id)

(a, id)

(a, id)

1/))

y))
2/))

v))
v))
y))

)(ki

>(ki
){k{

-+(6,

-»(«,

Lfa))
ifa))
li fa))

id ) (A;A (a;), A

i^^fa),
id)(fcA(a:), A

, M) ( ^ fa), h
, M) ( ^ fa), k
,»)(kïA(x),

kA(a(x))
klA(a(x))

kA2 («fa) )

4A (2/))
4 A (»))

>2<A (y))

;A (y))
•<A Mi
'3 (>i/^
4 (3/))

^(a,id)(kA(x))
-^(a,id)(kA

2(x))

^ \^ i IQ.) {f^oo 1 JJ

4.4. Decidability of équivalence in LCT-LL
The results obtained in the previous sections are easily transfered to the

gênerai situation. Obviously, for any À, the A-normalized form of any
transducer of LCT-LL can be computed in the same way. Moreover, if
NJP is the number of finitary states of a transducer T then the depth of
any tree of dom (T) is at most Np and then as soon as A is greater than
Np> we will only have infinitary states. So lemmas 4.3 and 4.4 are valid
in the gênerai case.

LEMMA 4.5: Let T and T' be two transducer s of LCT-LL. T and T'
are equivalent if and only if for some A the relabelings TQ and T^ are
equivalent.

Proof: With lemma 4.4, it is obvious that if E and F are globally
equivalent sets of TA then, when A is large enough, TQ and TQ are equal.
To conclude, we use the sets of initial states of T and T', D

Lemma 4.5 states that équivalence is semi-decidable (because équivalence
of relabelings is decidable). As non-equivalence is semi-decidable we get:

THEOREM 4.1: Equivalence of linear and non-deleting letter to letter
top-down transducers is decidable.

4.5. Decidability of équivalence for bottom-up transducers
In this section, we show that the results obtained in the previous section

are valid for the class of linear and non-deleting letter to letter bottom-up
transducers (denoted by LCB-LL).
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In [7], J. Engelfriet showed (theorem 2.9) that the class of linear and non-
deleting bottom-up transducers is equal to the class of linear and non-deleting
top-down transducers.

Let B\ and B% be two linear and non-deleting letter to letter bottom-up
transducers and T\ and T<i be the linear and non-deleting letter to letter
top-down transducers which realize the same transformations. Because T\
and T2 are deduced from B\ and B2 by reversing the rules (see proof of
theorem 2.9 in [7]), T\ and T2 are letter to letter transducers. It is obvious
that B\ and B2 are equivalent if and only if T\ and T% are equivalent. Now
équivalence is decidable in LCT-LL, therefore it is in LCB-LL.

THEOREM 4.2: Equivalence of linear and non-deleting letter to letter
bottom-up transducers is decidable.

5. CONCLUSION

In this paper we investigated the problem of the decidability of équivalence
for a particular class of non deterministic tree transducers. We showed that
équivalence is decidable for linear and non-deleting letter to letter transducers,
in the top-down case and in the bottom-up one.

We conjecture that équivalence is decidable in the non-linear case as in
the deleting one.
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