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DECIDABILITY OF EQUIVALENCE FOR A CLASS
OF NON-DETERMINISTIC TREE TRANSDUCERS (*)

by Yves Anpré (1) and Max Daucrer (1)

Communicated by A. ARNOLD

Abstract. — In this paper, we consider non-deterministic tree transducers in the letter 1o letter
case, that is to say tree transducers for which trees which appear in the rules are reduced to one
letter in the right-hand side as in the left one. We establish the decidability of equivalence for linear
and non-deleting top-down transducers. These results are valid in the bottom-up case.

Résumé. — Nous considérons des transducteurs non déterministes d’arbres dans le cas lettre a
lettre. Nous établissons la décidabilité de I’ équivalence pour les transducteurs descendants linéaires
et complets. Ces résultats s’étendent au cas des transducteurs ascendants.

1. INTRODUCTION

Tree transducers which are a generalization of rational transformations in
the word case (see [1], [3] for a synthesis), were introduced by W. C. Rounds
[15] and J. W. Thatcher [17]. They have been widely studied. The authors
have chosen either the algebraic point of view ([2], [9], [4]), or the machine
point of view ([7], [8], [16]). Naturally, the question arises whether or not the
results obtained for transformations in the word case can be transferred to tree
transducers. The situation is different. For instance, we have to distinguish
two main classes of tree transducers: top-down transducers which process
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the input trees from the root to the leaves and bottom-up transducers for
which, on the contrary, the computations begin at the leaves and finish at
the root. In 1975, J. Engelfriet proposed a comparison between these classes
of tree transformations [7].

In this paper, we investigate the equivalence problem for a particular class
of tree transducers. Two transducers are called equivalent if and only if they
define the same transformations, that is to say if every input tree has the
same set of output trees in both transducers.

In the word case, equivalence is undecidable in the non-deterministic case
(Griffiths 1968) and it is decidable in the deterministic one (Bird 1973,
Valiant 1974) (see [10]).

For trees, equivalence is in general undecidable in the non-deterministic
case and it is decidable for deterministic transducers in the bottom-up case
(K. Zachar 1978, [19]) and in the top-down one (Z. Esik 1979 [11]).
More recently, in 1990, H. Seidl showed that equivalence is decidable for
finite-valued bottom-up finite state transducers [16].

Linear and non-deleting letter to letter transducers (in the non-deterministic
case) are studied here. Informally, these transducers only modify the label
of the nodes of the trees and for every node can make a permutation (called
here torsion) of the subtrees (precise definitions can be found in section 2).

First, torsion-free letter to letter top-down tree transducers are introduced
and investigated (section 3). These transducers, which are ouly relabelings,
preserve the skeleton of the trees. Using a classical coding (couples of trees
are encoded in trees by “superposition”), we can associate a recognizable
forest with the tree transformation we consider and so we easily prove that
equivalence is decidable. Then, we show that the equivalence problem for
linear and non-deleting letter to letter top-down transducers can be reduced
to the equivalence problem for relabelings (section 4). The main problem,
which is illustrated in the following example, is: even if 7' and 1" are
equivalent transducers, for some trees, computations with the same torsions
cannot be realized in T and in 7".

Example: Let T and T’ be two linear and non-deleting letter to letter
top-down tree transducers defined by:

T:q(o(z, y) = 6(ar (z), @2 ()
q1(a(z)) = a(q1 (%)) q1(a) —a
@ (a(r)) — alg (z) g (@) — a
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T : k(o (x, y)) — 6 (k1 (z), k2 (v)) k(o (z, y)) = (k1 (2), k3 (v))
k(o(z,y) — 6(ks (y), ka(z))
ki (a(z)) — a(k (2)) k1(a) — a

kz (e () — a(kz (z)) ky (@) — a

k1 (a(z)) — a (ki (2)) ky (a () — o (k22 (z))
k11 (a(z)) — a (ki (z)) k11 (a) — a
kaa (a (z)) — o (k22 (2)) ka2 (a) — a
ks (o) — a ks(a) —

T and T’ are equivalent transducers because they realize the same
transformations : 7 = 7" = {(o (a®, ™), §(a", a™)), n, m € N}. But
for (o (a, @), 6 (a, a)) different torsions are used in the first step of the
computations: for 7', the rule used initially is g (o (z, y)) — 6 (q1 (z), ¢2 (v))
when, for T/, k (o (z, y)) — 6 (k3 (y), ka (z)) is used.

The key part of our proof consists in showing that this phenomenon is
of “bounded depth” (lemmas 4.1, 4.2). So, we can encode the transducers
we consider in torsion-free transducers. For technical reasons, infinitary
transducers (that is to say transducers for which from each state an infinite
number of trees can be transformed) are first studied (section 4.3). The results
we obtain are valid in the general case (section 4.4). Finally, we extend the
previous result to bottom-up transducers (section 4.5).

2. PRELIMINARIES

Main definitions and results about tree transducers can be found in
J. Engelfriet’s papers ({7], [8], [10]) and in the book of F. Gecseg and
M. Steinby [13]. In this section, we just give basic definitions and properties
used in the paper.

2.1. Trees

A ranked alphabet is a pair (2, p) where ¥ is a finite alphabet and p
is a mapping from 3 to N. Usually, we will write 3 for short. For any
o in X, p (o) is called the rank of o. The subset ¥,, of ¥ is the set of
letters of rank m.

For p 2 1, we denote by X, the set {1, ---, z,} of variables. Xy is
the empty set.
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450 Y. ANDRE, M. DAUCHET

Given a ranked alphabet > and a set X, of variables, the set of all
trees over ¥ and indexed by X,, denoted by Tx (X,), is inductively
defined by X, € Tx(Xp) and if 0 € £, and ¢1, ---, t, € Tx(Xp)
then o (t1, --+, tn) € Tx (X,). For short, Ty (Xp) is written Tx.

The depth of a tree t € Ty (Xp), denoted by = (¢), is defined by
w(t)=0if t € Bg or t € Xp and 7 (t) = 1 + max{n (t1), -+, 7 (tn)}
if t = o(t, -+, tn).

For any p € N(p 2 1), [p] denotes the set {1, ---, p}.

A torsion 6 from [p] to [g] is a mapping from [p] o [¢]. We denote it by
(g; 6(1), ---, 6(p)). Especially, id|,] will denote the identity on [n].

2.2. Letter to letter top-down tree transducers

DEFINITIONS: A top-down tree transducer is a 5-tuple T = (X, A, Q, I, R)
where ¥ and A are ranked alphabets of respectively input and output
symbols, ¢ is a finite set of states, I is a subset of @ of initial states
and R is a finite set of rewriting rules of the form ¢ (o (21, -, zn)) —
T(Ql (wG(l))7 ctty dp ($0(p))) with o € 27 T E TA (Xp)’ q, 91, - Qp
states of ), and § mapping from [p] to [n] (if n = 0 we have a rule of the
form g (o) — 7). 0 is called a torsion.

A top-down transducer is torsion-free if, for every rule, the torsion 8 is
the identity.

A top-down transducer is letter to letter if, for every rule, 7 belongs to A.
t — t if and only if there exist typ € Ty (X3), o € I,

t1, o tn €15, 6 € Am, q, q1, -+, gm € Q, arule g (o (21, -+ -, Tn)) —
6(‘11 (1"0(1))7 Ty Gm (we(m))) in R and t = to (Q(U(tla Tt tn))),
t = to(6(q (tg1))s -5 am (to(m))))- > denotes the reflexive and

transitive closure of +.

For any state ¢ in @, fq denotes the transformation realized from state q.
Formally, T, = {(t, u) € Ts x Ta/q(t) = u}.

T denotes the tree transformation associated with 7' : 7' = U T, a
g€l
The domain of a tree transformation 7', denoted by dom (), is the set
{t € Ts/3u € Ta, (t, u) € T}.

The range of a tree Umsfognaﬁon T, denoted by im (T), is the set
{u € Ta/3t € Tx, (t, u) € T}.

Informatique théorique et Applications/Theoretical Informatics and Applications
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A state of a transducer is infinitary (resp. finitary) if and only if an infinite
(resp. a finite) number of trees is transformed from this state. A transducer
for which all states are infinitary is said to be infinitary.

A top-down tree transducer is deterministic if and only if the set of initial
states is a singleton and there are no two rules with the same left-hand side.
A transducer is linear (respectively non-deleting, torsion-free) if and if for
each rule the torsion § is injective (respectively surjective, the identity).

Two transducers T and T’ are equivalent if and only if the tree
transformations 7" and 7" associated with these transducers are equal.

PropERTY 2.1: For every non-deleting letter to letter top-down tree
transducer T, for every (t, u) € T, 7 (t) = 7 (u).

Notations: A torsion-free to letter transducer is also called a relabeling.
T-LAB denotes the class of all top-down relabelings. LCT-LL (resp.
LCB-LL) denotes the class of linear and non-deleting letter top-down (resp.
bottom-up) transducers. REC is the class of recognizable forests.

3. EQUIVALENCE OF TORSION-FREE LETTER TO LETTER TOP-DOWN
TRANSDUCERS

In this section, torsion-free letter to letter top-down transducers (called
here relabelings) are considered. To establish the decidability of equivalence
for the so defined class, we use a coding introduced by Doner [6] in the
sixties and used in the Rabin’s theorem (in the case of in finite trees) [14]. In
the word case this construction was chosen by C. Frougny and J. Sakarovitch
[12] to study rational relations with bounded delay, and in the tree case by
M. Dauchet and S. Tison to prove the decidability of the theory of ground
rewrite systems [5], [18].

For any relabeling 7', for any couple of trees (¢, u) € 7', t and u have
the same skeleton. So, to encode (¢, u) in a tree, denoted by [¢, u], we just
“superpose” the trees. For instance, [t, u] = [b, 8] ([a, o] ([a, a]), [c, 7]) is
the code of (¢, u) = (b(a(a), ¢), B(a(a), 7))

With every relabeling T = (2, A, @, I, R), we associate the automaton
Ar =(T, Q, I, R') where I' = ¥ x A and R' is defined as follows:

2([0, 811, 20)) — [0, 61(q1 (1), -+ qn (5)) s & rule of B!

ifand only if g (o (21, -+, zn)) = 8 (@1 (z1), - -+, gn (zn)) is a rule of R.

It is easy to show that [¢, u] € F (A7) © (t, u) € T (where F (Ar)
denotes the forest recognized by the automaton A7) and so it is possible
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452 Y. ANDRE, M. DAUCHET

to associate a recognizable forest with the tree transformation we consider
and conversely. Thus, we inherit the good closure and decidability properties
of recognizable forests.

ProperTY: The class REC of recognizable forests is effectively closed
under union, intersection and complementation and emptiness is decidable
[13].

Closure of T-LAB under union.

Let 77 and T be two relabelings. With 77 and 75 we associate the
automata A; and Ay (as defined before). So

Ty U Ty ={(t, w)/[t, u] € T} or (¢, u) € T3}
= {(t w)/[t; ul € F (A1) or [t, u] € F (42)}
={(t w)/lt, u] € F (A1) U F (A2)}.

As REC is closed under union, there exists an automaton A such that
F(A)=F (A1) UF(Ay). So Ty UTy = {(t, w)/[t, u] € F (A)}. Now, let
T be the relabeling associated with A then we obtain 71 UTy = {(t, u) €
T} = T and T-LAB is closed under union.

In the same way, we show that T-LAB is closed under intersection and
difference. Emptiness is decidable. So we obtain,
ToeOREM 3.1: Equivalence in T-LAB is decidable.
Proof: YVe use the fact two relabelings 77 and 7% are equivalent if and
only if (T —)U (T, - T3)=0. O
Remark: The following example illustrates the fact that we lose, in the
case of transducers of LCT-LL, the closure under intersection.
Example:
Ty = {(b(a™, a™), b(a}, a")), n €N, m € N}
and .
To = {(b(a™, a™), b(aT", a3), n € N, m € N}.
We obtain 71Ty = {(b(a”, a™), b (a2, a5*)),n € N} which is not realizable
by a top-down transducer because its domain is not recognizable [13].

4. EQUIVALENCE OF LINEAR AND NON-DELETING LETTER TO LETTER
TRANSDUCERS

4.1. Preliminaries

In this part, we first establish the decidability of equivalence in LCT-LL.
The main problem was illustrated in the example of the introduction.
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First, we show that for two equivalent transformations the same torsions
are used except for a finite number of trees (lemmas 4.1, 4.2). Next, for any
integer A we built the A-normalized form T(f)\ of a transducer 1" such that:

1. equivalence of A-normalized forms is easy to decide: these A-norma-
lized forms are relabelings and so we use the result of section 3;

2.if T and T’ are equivalent transducers then there is some integer A
such that Té\ and TéA are equivalent (we use the fact that if T and 1" are
equivalent then the same torsions are used except for a finite number of trees).

As equivalence of T(é} and TéA is decidable (part 3), equivalence of 7" and
T’ is semi-decidable. Because non-equivalence is obviously semi-decidable,
we conclude that equivalence is decidable (theorem 4.1). As a corollary, we
obtain the same result for bottom-up transducers (theorem 4.2).

DerINITIONS: Two sets of states {q1, - -, gn } and {k1, - - -, ki } are globally
equivalent if and only if |J (Ty,) = U (Tkj).
i€ln] j€lm]
Let 7 be a computation on t = o (t1, - - -, tp) from state g.

T: Q(O'(tl, Ty tn)) = 6((]1 (t0(1)), s On (ta(n))) ’—*_) 6('“17 T Un)'

The initial transformation on t from state g is the triple (o, 6, 6).

Notation: Tq(m&,a) denotes the transformation realized from state g by
using the initial transformation (o, 6, 6).

Remark: Results to be discussed below are described for letters of rank
less than or equal to 2. They are easily transferred to the general situation.

Furthermore, for technical reasons, in sections 4.2 and 4.3, we will only
consider infinitary transducers. LCT-LL; will denote the subclass of infinitary
transducers of LCT-LL. These results are valid for LCT-LL (section 4.4).

4.2. Initial transformations realized from two globally equivalent sets of
states of a transducers of LCT-LL;

4.2.1. Case of trees of the form o (t1, t2) with 7 (t1) # 7 (t2)

Lemma 4.1: From two globally equivalent sets of states the same initial
transformations are realized on trees of the form o (t1, t2) for with

7w (t1) # 7 (t2).
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454 Y. ANDRE, M. DAUCHET

Proof: Let E and F' be two globally equivalent sets of states of a transducer
T of LCT-LL;, g be a state of E and (o (t1, t2), 6 (u1, uz)) be a couple
of trees of Ty, ,,, with m(t1) # 7 (t2). Let § = idpy (the other case
is similar) then, by property 2.1, 7 (u1) = 7 (¢1), 7 (u2) = 7 (¢2) and so
7 (u1) # 7 (ug).

Suppose that there exist k in F and p # 6 (here, p = (2; 2, 1))
such that (o (t1, t2), 6 (u1, u2)) € Tk, , ,,- Therefore, we would have
k(o (t1, t2)) — 6 (k1 (t2), k2 (t1)) ¥ & (u1, ug) and then 7 (t2) would be
equal to 7 (u1) which contradicts the hypothesis. So, because E and F' are

globally equivalent sets of states, there exists at least one state k& € F such
that (o (¢1, t2), 6 (u1, ug)) € Ti(y 5.6 U

4.2.2. Case of trees of the form o (11, t2) with 7 (t1) = 7 (t2)

The example of section 1 illustrates the fact that, from two equivalent
states, initial transformations with different torsions can be realized for trees
of the form o (¢1, t2) with 7 (¢1) = 7 (t2). In the following lemma, we show
that this phenomenon is of “bounded depth”.

Lemma 4.2: From two globally equivalent sets of states the same initial
transformations are realized on trees of the form o (t1, t2) with 7 (t1) =
7 (t2), except for a finite number of trees.

Proof: Let E and F be two globally equivalent sets of states of a transducer
T of LCT-LL;. We consider the difference TE( 5.0) TF(,,, 5.5 (the problem

is analogous if we consider TF( 5.0) TE(a,é.ﬂ))

Let § = zd[z] (the other case is similar).

With every couple (o (t1, t2), 6 (u1, ug)) € ’f“ -
associate the set C1 = {(k1, k2) such that 3k € F,
6 (k1 (z1), ko(z2)) is a rule of T and (t1, u1) &
Cy = {(k1, k2) such that 3k € F, k(o (z1, z2)) — 6 (k
a rule of T' and (%2, ug) ¢ Tkz}'

— TF(, sey WE
k(o (21, 22)) —
T, } and the set
1 (.1,‘1) kz (332)) is

5,8

If TE(U 5.0) TF( 5.0y Was infinite then, because T is a finite state
transducer, there would exist (o (£1,%2), 6 (u1,u2)) and (o (¢} Jth), 6 (u,uhy))
in TE(, 56 Tp(a 5.5, associated with the same sets C7 and Cj and such that
7 (t1) # 7 (¢3). Then (o (¢1, t5), 8 (u1, u)) would be in TE( 5.0) TF(O 5.0)
which contradicts lemma 4.1. Thus the difference T Eo.5,0) TF(U'M) is
finite. O
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4.3. A-Normalized form of a transducer of LCT-LL;

For any integer A, we associate with any transducer 1" of LCT-LL; its
A-normalized form built in two steps.

First, for every state g, for every couple of trees (¢, u) € Tq, such that
7 (t) < A, we add a rule of the form ¢<* (t) — w if 7 (t) < A or of the
form ¢* (t) — w if 7 (£) = A, where £ and u are identified with new letters.
We also adapt the “non-ground” rules of T' so that the computation (¢, ) is
not possible otherwise. We obtain T* with is called the A-semi-normalized
form of 7. We show that (lemma 4.4) if A is large enough then, from sets
of globally equivalent states, transformations with the same torsions can be
realized for all trees.

Then, we remove the torsions in the right-hand side of the rules of the A-
semi-normalized form 7", an indication of the torsion being encoded in each
letter, and we obtain the A-normalized form denoted by Té\‘. For instance,
with the rule ¢ (o (z1, 72)) — & (q1 (z4(1)); g2 (To(2))) We obtain the rule
g (o (z1, 2)) — (6, 0) (g-1(1) (z1), g9-1(2) (72)) ({6, ) is a new letter).
4.3.1. A-semi-normalized form: definition and construction

Let T = (X, A, Q, I, R) be a transducer of LCT-LL;. For any integer A,
we associate with 7" the transducer 74 = (XU A AuAr QA TA RY)
where ©* and A/t are new alphabets, the letters of which can be interpreted
as trees of dom (1") and im (T') of depth less than or equal to A, and QA,
IM and RM are defined by

— ¢<A and ¢ are states of Q® if and only if ¢ is a state of Q and they
are in I if and only if ¢ is in I.

~g<M () — u (resp. ¢* (t) — u) is a rule of RA, ¢t is a letter of 4 and
u is a letter of A® if and only if (¢, u) € T, with t € T and 7 (t) < A
(resp. 7 (t) = A).

— ¢! (0 (%)) — 6(g" (2)) is a rule of RM if and only if ¢ (o (z)) —
6(gi(z)) is a rule of R.

- q" (o (31, 32)) — 8 (¢ (wo(1)), ¢ (To(2)))>

¢* (o (21, 32)) — 8 (7" (wo(1)), 6 (g2 (zg(2))) and
¢ (o (21, 22)) — 6(ql‘-\ (zo1))s qJ<A (zg(2))) are rules of RA
if and only if g (o (z1, 22)) — 6 (¢i (ze(1)): @ (To(2))) is a rule of R.

Example: Let T and T” be the transducers defined in section 1. For A = 1,

for instance, their A-semi-normalized forms T2 and T'A are defined by:
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Ground rules of 7.

" (a) - a
" (@) = a
gt (a(a)) — a(a)
7 (a (@) = a(a)
¢* (o (a, @) = 8(a, @)

Non-ground rules of 7.

7" (o (z, ) = 6(a (), &2 (v))
¢* (o (=, 1)) = 6 (67" (z), & (v))
¢* (o (z, v)) = 8(a} (), & ()
gt (a(z)) - (¢ ()
@ (o (z) — ald ()

Ground rules of T'A.

k< (a) - a kA (@) - o
k5 (@) - A (@) - o
k5 (a) - a KA @) - a

Ky (a(a)) — a(a) k3 (@ (@) = a(a)

k11 (a(a)) — a(a) kgs (a (@) = a(a)

ki (a(a)) — a(a) k3 (o (@) = a(e)
K (o (a, @) = 6(a, a)

Non-ground rules of 7',

K (o (z, y) = 6 (K1 (2), kb (v))
Y (o (2, 1)) = § (k7" (2), k2 (1))
kN (o (2, y)) = 6 (K" (z), k5 ()
K (o (z, ) — 6 (k1 (z), k5 ()
Y (o (z, ) — 6 (k7" (z), K5 ()
K (o (2, y)) — 6 (k1 (2), k52 ()
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kY (0 (z, y)) — 6 (k8 (), kf (z))
K (0 (2, y)) — 8 (k5™ (y), k2 (z))
K (0 (z, y)) — 8 (kS (y), k5™ (2))

K (a(@) — a(kf (2)) kY (a(2)) = a (k) (z))
ki (a(2)) = a(kiy (2)) K (a(2)) — (k2 ()
ki (a()) = a(kfy (2)) Kby (a (@) — a (kD (2))
Remark: Identification of T and T*.
For every computation g (t) v v in 7', with 7 (£) < A, we have in T one
rule of the form ¢<A (t) — w if 7 (t) < A, or of the form ¢</ (t) — w if

7 (t) £ A. Here, in fact, we identify ground trees of depth less than or equal
to A with new letters and thus it is unique computation for (¢, u) in T2,

For every couple of trees (¢, u) in 7" with 7 (£) > A, there exists a unique
decomposition of ¢ and uw in ¢t = ¢ (¢1, -+, tn) and u = up (v1, -, Un)
where:

— for any ¢ in [n], 7 (¢,) £ A and there exists no subtree of ¢, of depth
less than or equal to A, for which ¢, is a proper subtree

— and such that the computations

q(to (t1, -+, tn)) ¥ uo (g1 (toy)s -~ @n (to(my)) in T

and
g* (to (1, -+, tn)) ¥ w0 (dh (tor))s *++» @ (to(ny)) in T

(for any ¢ in [n], ¢/ is either qu or qZA) are analogous, that is to say they
only differ from one another in the label of the states (g%, or ¢?, is used
in T4 if ¢, is used in T).

So, for any A, we identify T and T and, for any (¢, u) in Txysa, 7 (t)
will denote the depth of the “corresponding tree” of T%..

In the next lemmas we show that, from two equivalent sets of states, if A
is large enough then transformations with the same torsions can be realized
for all trees in the A-normalized form.

Lemma 4.3: When A is large enough, from two globally equivalent sets of
states of T™ the same initial transformations can be realized for all trees.

Proof: Let E' and F be two globally equivalent sets of states of TA and
let (¢, u) be a couple of trees of Th = T4.
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From lemma 4.2 we deduce that, if A is great enough, 7 (t) > A implies
that the same initial torsions can be used in the computation of (¢, u) from
E and F'. In the case 7 (t) £ A we get obviously the same result. [

LemMma 4.4: When A is large enough, from two globally equivalent sets
of states of T transformations with the same torsions can be realized for
all trees.

Proof: The proof is by induction on the depth of the computations.
A computation such as g (to (t1, -+, tn)) ™ uo (q1 (teqr)), -~ an (to(n)))

is said to be of depth p if and only if each state ¢; (for 7 € [n]) is obtained
after exactly p — 1 steps of rewriting.

We consider, here two equivalent states ¢ and k. The result we obtain can
be generalized without difficulties to globally equivalent sets of states.

Let (¢, u) be a couple of trees of T‘é\ = T,?, with 7 (¢) > A (in the case
w(t) £ At is in fact a letter).

Suppose property true up to depth p. We show it is true again at depth p+1.

* First case: p < 7 (t) — A.

We consider the transformations realized from states ¢ and & with the
same torsions up to the depth p:

q(t) =q(to, -+, tn)) ™ w0 (q1 (ta(1))s -+ n (to(m)))
s ug (1, -y Un) = w

and  k(t) =k (to (t1, -+, ta)) > uo (k1 (taqr)), -+ kn (tom)))
»Luo(ul, ey Up) =W

with 7 (t9) = p.
Let ¢ € [n] and let us consider the sets
Ci={aqi/q(to(z1, -+, zn))
= uo (g5, (za(1))s > @ (Tagi))s > @ (Tom)))}
and in the same way
D;={ki/k (to(z1, -, zn))
= g (kj, (Tae))s -5 ki (Togi))s -5 ki (Ba(m))) }-

Suppose that from the sets of states C; and D; the transformation (¢4 (i) Ui)
cannot be realized with the same initial torsion. Then C; and D; would not
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be globally equivalent (lemma 4.3) and there would exist at least one couple
of trees (t, ) and T, — Tp,.

So for (to(tl, a1 cee tn), uo(ul, N T ’U,n)) with tg(i) =1
we would have

q(to) (b1, -+, &, -+, tn)) 'LU'O (@1 (t9(1))7 g (), s (tG(n)))
FLUO(UJ, Ty Uyt un)

when for any computation

k(to(tr, =+, ¢ -+, ta)) - uo (ky, (tt‘)(l))’ o ki(t), e, k;., (te(n))),

where k, € D;, (t, u) is not transformed from k;.
Now, ¢ and k are equivalent states and so

(to(th e t_, e tn)7 UO(Ul, R TR ﬂn)) ng.
Thus, we would have a computation from state k whose torsions are
different from the torsions applied in the computation from state g before

depth p. That contradicts the hypothesis. Consequently, the same torsions
can be used at depth p + 1.

s Second case: p = 7w (t) — A.

We have the same transformations at depth p + 1 because, in this case,
trees which are transformed are in fact letters of XA, O
4.3.2. A-normalized form of a transducer of LCT-L1;

Let T = (¥, A, Q, I, R) be a transducer of LCT-LL; and T* =
(TUTh AuAD, QM TN, RM) be its A-semi-normalized form.

We associate with T the transducer T = (XU YA Ag, QA TN, Ro)
where Ag and Rg are defined by

—q(o) — (6, id) is a rule of Rg and (6, id) is a letter of Ag if and
only if ¢ () — & is a rule of R:.

- g (o (z)) — (6, id) (¢; (z)) is a rule of Rg and (6, id) is a letter of Ag
if and only if ¢ (o (z)) — 6 (g; (z)) is a rule of R™.

—q(a(z1, 32)) — (6, 0)(g-1(1)(71), (go-1(2)(w2)) is a rule of
Ry and (6, 0) is a letter of Ag if and only if g¢(o(z1, z2))) —
§(q1 (zp1))s @2 (To(2))) is a rule of RA.

Remark: The A-normalized form of any transducer of LCT-LL; is a
transducer of T-LAB.
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Example: We consider the transducers 7" and 7" defined in section 1 and
whose A-semi-normalized forms were constructed in 4.3.1 for A = 1. To
obtain their 1-normalized forms, we just remove the torsions which appear
in the right-hand side of the rules; an indication of the torsion being encoded
in each letter. We denote by id the identity and by p the torsion defined
by #(1) = 2 and p(2) = 1.

Ground rules of Té\.

g (a) — (a, id) o (@) — (o, id)
¢ (a(a)) — (a(a), id) g8 (e (@) = (a(a), id)
¢* (0 (a, @) = (6 (a, a)), id)

Non-ground rules of TA.

¢* (o (z, v)) — (6, id) (¢ (), a5 (v))
qA( (z, ) — (6, id) (7" (2), ¢ (v))
¢* (0 (z, v)) = (6, id) (a7 (2), 3" ()

at* (a(x)) = (a, id) (¢} (x))

@ (a(z)) — (o, id) (¢ ())

Ground rules of T’A

A
2
A

k<A (a) — (a, id) kst (@) = (o, id)
k3t (a) — (a, id) ks (@) = (o, id)
ks (@) = (a, id) ka (a) = (o, id)
kK (a(0) = (ala), id) K} (a(a) — (a(a), id)
k4 (a(a)) — (a(a), id) ké‘z (@ (a)) = (a(a), id)
K (a(a)) = (a(a), id) (o (a)) = (a(a), id)
KA (o(a, a) — (6 (a, a), id)

Non-ground rules of T/

K (0 (2, 9)) = (6, id) (k" (2), k2 ()
kY (0 (2, ) = (6, id) (k=" (0 ), K2 (9))
k4 (0 (2, ) = (6, id) (k" (2), k5 ()
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KA (o (z, ) — (6, id) (b (), &5 (v))
Ao (z, y) = (6, id) (k74 (z), k5 (v))
K (0 (2, ) — (6, id) (K (2), K< ()

Mo (z, y)) — (6, uy (kg (z), K5 ()
KA (o (2, y)) — (8, w) (k2 (2), k5 (v))
kY (0 (2, y)) = (6, ) (k3™ (), k5 (y))

K (a(2)) = (o, id) (K (2)) k2 (a(2)) = (o, id) (K} (2))
K (a(2)) = (o, id) (Ky (2)) k5" (@(2)) = (a, id) (k3 ()
ki (a (@) = (a, id) (b (@) kD (@ (2)) = (@, id) (k3 ()

4.4. Decidability of equivalence in LCT-LL

The results obtained in the previous sections are easily transfered to the
general situation. Obviously, for any A, the A-normalized form of any
transducer of LCT-LL can be computed in the same way. Moreover, if
Np is the number of finitary states of a transducer 1" then the depth of
any tree of dom (T) is at most Np and then as soon as A is greater than
Np, we will only have infinitary states. So lemmas 4.3 and 4.4 are valid
in the general case.

Lemma 4.5: Let T and T' be two transducers of LCT-LL. T and T’
are equivalent if and only if for some A the relabelings Té\ and TéA are
equivalent.

Proof: With lemma 4.4, it is obvious that if £ and F are globally
equivalent sets of T then, when A is large enough, ff’(ﬁ)\E and T(f)\F are equal.
To conclude, we use the sets of initial states of T and 7". [

Lemma 4.5 states that equivalence is semi-decidable (because equivalence
of relabelings is decidable). As non-equivalence is semi-decidable we get:

TueoreM 4.1: Equivalence of linear and non-deleting letter to letter
top-down transducers is decidable.

4.5. Decidability of equivalence for bottom-up transducers

In this section, we show that the results obtained in the previous section
are valid for the class of linear and non-deleting letter to letter bottom-up
transducers (denoted by LCB-LL).
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In [7], J. Engelfriet showed (theorem 2.9) that the class of linear and non-
deleting bottom-up transducers is equal to the class of linear and non-deleting
top-down transducers.

Let B; and B3 be two linear and non-deleting letter to letter bottom-up
transducers and 77 and 73 be the linear and non-deleting letter to letter
top-down transducers which realize the same transformations. Because 77
and 7, are deduced from B; and B; by reversing the rules (see proof of
theorem 2.9 in [7]), 71 and I are letter to letter transducers. It is obvious
that By and B3 are equivalent if and only if 77 and T3 are equivalent. Now
equivalence is decidable in LCT-LL, therefore it is in LCB-LL.

Tueorem 4.2: Equivalence of linear and non-deleting letter to letter
bottom-up transducers is decidable.

5. CONCLUSION

In this paper we investigated the problem of the decidability of equivalence
for a particular class of non deterministic tree transducers. We showed that
equivalence is decidable for linear and non-deleting letter to letter transducers,
in the top-down case and in the bottom-up one.

We conjecture that equivalence is decidable in the non-linear case as in
the deleting one.
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