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TOWARD A SEMANTICS FOR THE QUEST LANGUAGE (*)

by Fabio ALESSI (*) and Franco BARBANERA (*)

Communicated by G. LONGO

Abstract. - A model is given for the second order lambda calculas extended with inheritance,
bounded quantification, recursive types, constructors and kinds. This language can beviewed as the
core of the QUEST language defined by Cardelli [7]. Types are interpreted as intervals of partial
équivalence relations. In such a model the meaning of the operator {i, the constructor of recursive
types, turns out to be the natural one Le. the least fixed point operator.

Résumé. — Nous proposons un modèle du second ordre du lambda calcul étendu à l'héritage,
la quantification bornée, les types récursifs, les constructeurs et les genres. Ce langage peut être
vu comme le noyau du language QUEST défini par Cardelli [7]. Les types sont interprétés comme
des intervalles de relations d'équivalence partielle. Dans ce modèle, le sens de l'opérateur fx, le
constructeur de types récursifs, se trouve être l'opérateur naturel de plus petit point fixe.

INTRODUCTION

Because of its relevance in the field of object-oriented programming, the
theoretical computer science community is currently making more and more
efforts in investigating the syntax and sematics of languages extending second
order lambda calculus with notions of subtyping. In [9] second order lambda
calculus was extended in order to support both parametric and subtype
(inheritance) polymorphism by means of bounded quantification.

According to the naïve view of inheritance of ten adopted in the
informai justification of type constraint rules, types are regarded as
standing for collections of values which interpret the run-time behaviour
of programs, subtyping being interpreted by plain set-theoretic inclusion.
A more refined view, in which types are modeled as partial équivalence
relations {Le. relations which are symmetrie and transitive but not necessarily
reflexive), was taken in [6]. The relational approach has several advantages,
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5 1 4 F. ALESSI, F. BARBANERA

one of them being the possibility of overcoming the difficulties caused
by extensional equality betwen terms, which is not achievable by an
interprétation of types as sets of values (see [19]).

Partial équivalence relations are also the basis of other models for
extensions of second order lambda calculus, where the interprétation of
each type is built as a relation over a model D for the underlying language
of untyped terms, as a limit (in a suitable sensé) of a denumerable séquence
of approximate relations built following the structure of D. This method,
introduced in [12, 13] and exploited in [10] and [3] yields an interprétation
not only of bounded quantification and inheritance, but of recursive types as
well. The élégance of the construction finds a limitation in the fact that it does
not support an extension to include the kind level, essentially because of the
non-monotonicity of the type constructor —> (w.r.t. set theoretical inclusion).

In order to overcome this drawback, in [11] a technical tooi was devised:
the intervals and their particular ordering. This device was originally
developed to overcome the difficulty of the non-monotonicity of type
constructors in models where types are viewed as ideals. The particular
ordering among intervais allows us to define monotonie type operators
over intervals out of non-monotonic ones over ideals. The idea of types as
intervals of ideals is used in [14] to interpret a notion of "modal" types in
a type assignment setting. Types as intervals are also used in [18] to model
a language consisting of second order lambda calculus with subtyping,
bounded quantification, existential types and a fixed point operator for terms,
but not types. The model in [18] has the interesting property of being weakly
extensional but not extensional.

What we do in the present paper is to use partial équivalence relations (in
the style of [10] and [3]) and their properties, together with the technical
device of intervals which is proved to be useful even when partial équivalence
relations instead of ideals are considered. We model types as intervals of
partial équivalence relations, managing to produce a model for the second
order lambda calculus with subtyping, bounded quantification, recursive
types, kinds and constructors (higher order opérations on types). We call
this language ^-FunK. It follows from the properties of intervals and their
ordering that in our model of ^x-FunK all the type constructors are continuous
functions: an important conséquence of this is that in the model a kind is
given to each constructor constant present in the System (—•, V< and fï).
Besides, the operator {i is interpreted in a very natural way, Le, as the
minimal fixed point operator over the space of continuous functions.
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An apparently odd feature of this model is that the ordering among
intervals is the one defined in [11], while in order to model subtyping we
use a different ordering, similar to the one defined in [18]. Nonetheless
the Amber rule [8], stating the good behaviour of fx with respect to the
"subtyping relation ordering", turns out to be sound in the model in spite
of the fact that fi is the minimal fixed point operator with respect to the
"ordering for constructors".

As in [18], in order to be able to associate a domain of objects to each
type, we take as "real" types only the maximal intervals, Le. those intervals
that correspond to partial équivalence relations. Ho we ver, in order to obtain
the good properties of the operator \x, we must have the possibility of
interpreting a type even as an interval and not only as a maximal interval.
We overcome this difficulty by extending the syntax with a predicate over
types that is inperpreted as a predicate of maximality over intervals. This
is not a real drawback indeed, since if we can dérive a type for a term we
can always dérive the maximality of it simply by assuming the maximality
of all the free type variables occurring in it.

We can look at ^-FunK as a relevant fragment of the powerful language
QUEST of Cardelli [7], A semantics for this language has also been proposed
in [8]: although Cardelli and Longo succeed in modeling the whole Fu,
inheritance and bounded quantification, they lack an interprétation for fi.

Among the most recent works on modeling significative fragments of the
QUEST language it is worth mentioning [1], which is an elegant categorical
version of a model for a fragment of QUEST. Of course more constructors
could be added to our formai system, and its semantics could be easily
extended to encompass these as well. For instance, records and variant types
can be dealt with in our framework using a type free domain including
summands for records and variants.

Section 1 gives the syntax of /x-FunK and Section 2 the formai définition
of model. The domain over which we define partial équivalence relations,
the basis of our model, will be described in Section 3. The définition of
interval of partial équivalence relations and the interprétation of types and
constructors using intervais are done in Section 4. The model of all //-FunK
is in Section 5. Section 6, 7 and 8 will be devoted to the proofs of some
non trivial theorems. In Section 9 we present a counter-example to a natural
extension of our model to higher order types.

The present paper is an extended version of [2].
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516 F. ALESSI, F. BARBANERA

1. SYNTAX OF

In this section we shall describe the language jz-FunK as an extension
of the second order À-calculus where a (syntactic) relation of subtyping,
denoted by <, is defined between types, and where there are also recursive
types (built using the // operator), bounded quantification and kinds.

As usual, the expression M [N/x] will dénote the term obtained by
replacing the term N for the variable x in M.

DÉFINITION 1.1 (Kinds, Preconstructors and Preterms): The set of Kinds is
defined by the following rules.

K ::=Type\K ^ K.

The set of preconstructors is defined by the following rules.

C ::= i | Top | -> M V^ | At : K.C \C(C)

where t ranges over the set of constructor variables.

The set of preterms is defined by the following rules.

M ::= x | A x : CM \M(M)\At< CM | M (C)

where x ranges over the set of term variables.

In the following we shall abbreviate -^CC with C -> C, V^C(À£ :
Type.C) with V* < C.C and /x(At : Type.C) with //t.C.

We shall call constructors the preconstructors which have a kind. Types
will be the particular constructors which have kind Type. Terms will be the
preterms which have a type.

We define three sorts of judgments:

a) typing judgment F h w : (

stating that the term (constructor) u has type (kind) C- If a judgment of
this sort is about a term (a constructor) it will be called term- (constructor-)
judgment.

b) subtyping judgment T h r ^ a

stating that there exists an subtype relation between the types r and a.

c) totality judgment Y h Max (a)

stating that the type a is maximal.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Remark: Let us give briefly the motivation for the introduction in the
syntax of the predicate on types Max() and of the judgments (c). In our
model, if we wish to associate a domain of objects to a type we have
to model it not with an arbitrary interval, but with a maximal interval. In
such a way it can be assimilated to a profînite partial équivalence relation
(the particular partial équivalence relations we use in our model) and then
be associated to a domain of objects in the standard way. However, if we
forced types to be interpreded directly as maximal intervais we would lose,
as stated in the introduction, the properties of the operator fi. What we do
is then to distinguish at the syntactic level the types as non-maximal and
maximal (the ones for which it is possible to prove that the predicate Max ()
holds). The maximal types will be indeed our "real" types since to them we
are able to associate in the model a domain of objects. It is worth to stress
however that using this syntax machinery is by no means restrictive, since,
as it will be clear from the type formation rules, we can always obtain, given
a dérivation for a type, a dérivation of the maximality of it only by assuming
the maximality of the type variables we use in the dérivation for that type.
Moreover if we use the usual condition of contractiveness of functions on
types, by using on them the fx operator we always get maximal types (see
the remark at the end of this section and Lemma 8.1).

At this point one could wonder why one is forced to distinguish between
maximal and non-maximal types at the syntactic level. Would it not be better
to use the intervals to construct the recursive types and then simply throw
out the non-maximal intervals from the final model?

The motivation for our choice lies in the fact that we wish to model as
wide a fragment of the QUEST language as possible. It would be hopeless
to try and interpret kinds (for instance Type =>Type) and constructors if
we considered Type to be the set of maximal intervais. If we did so the
interprétation of a kind like Type =>Type would have no structure and, due
to this fact, one would have no natural way to interpret in it the constructors.

In the sequel we shall use:

A, A', • • * as metaviables for kinds,

a, r, • * - as metavariables for constructors,

M, TV, • • • as metavariables for terms.

A context of constraints is a set C of type constraints of the form t < a
where t (called the subject of the constraint) is a type variabe and a (called
the type of the constraint and such that t 0 FV (a)) is a type. In a context
of constraints there are no two constraints with the same subject.

vol. 28, n° 6, 1994
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A basis is a finite set B of assumptions of the form Ui : Q where u%
(called the subject of the assumption) is a term- (type-) variable.and Q is
a constructor (kind) and such that no two distinct variables have the same
constructor (kind).

A context of maximality assumptions is a set S of statements (maximality
assumptions) of the form Max(t), where t (called the subject of the
maximality assumption) is a type variable.

If H is a context of constraints (or a basis, a context of maximality
assumptions) and v is a type constraint (or, respectively, an assumption, a
maximality assumption), iï, v will dénote H U {v}.

A context for /x-FunK is a triple F = C; B; S where C is a context of
constraints, B is a basis and S is a context of maximality assumptions.

FV (F) is the set consisting of the subjects which occur in F and of the
type variables in the types of the type constraints in F.

Let us define now what is a valid context.

This définition dépends obviously on the formation rules we shall define
below.

0 valid the empty context is a valid context.

C; B, t : A; S valid if C; B; S valid, C; B; S h A : Kind and
t 0 FV{C- B; S)

C; B, x : a; S valid if C; B; S valid, C; B, Sh cr:Type; Max (a) and
x £ F F ( C ; B; S)

C, t < a; B, t : Type; S valid if C; B; S valid, C; B; S h a : Type
and t g FV(C; B; S)

C, B, S Max(t) valid if there exists A s.t. C; B; S valid, C; B;
S h A :Kind and C; B; S h t : A.

We shall group the rules of our System according to which sort of judgment
they allow to form and according to the sort of terms involved.

In the following F h U] U' will be short for F h U and F h U'.

Axioms and start rules
(Ax-Type) F h Type : Kind if F is a valid context.

(Ax-Top) F h Top : Type if F is a valid context.

(Ax—>) F I- —> : Type =>Type =î>Type if F is a valid context.

(Ax-V<) r h V < : Type ̂ (Type =>Type)^Type if F is a valid context.

( Ax-jji) F h /x : (Type =>Type) ̂ >Type if F is a valid context.
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(Start-C) C, t < a; B; S h t £ a if C, t < a; B; S is a valid context.
(Start-B) C; B, n : C; S I- n : C if C; B, u : C; S is a valid context.
(Start-S) C; B; S, Max (t) h Max (t) if C; B; S, Max (t) is a valid context.

Rules for constructor and kind formation

Th A: Kind T \- Af : Kind
(Kind-form)

-Intro)

r h A ^ A' : Kind

C; B; S h A : Kind; A' : Kind C; B, t : A; S h a >A'

(=» -Elim)

Th Ai: A a : A=> A'

T \- a : A =• Ar; r : A
r h ar : A'

Rules for type constraints

( , . T r a n s )

C; B; S h a £ af C,t<a\ B, t : Type; S h r ; < r
C; B; S h Vt < a'.r' £ W < a.r

C; B, t : Type; S h a : Type

(//i.cr = a [fit.a/t] stands for fit.cr < a[^t.a/t] and a [fit.a/t] ^ fit.a

C; B; S h Max (g); Max(r) C, 5 ̂  t; B; S h g < r
^ m 6r^ C; B; S h /xs.g < //*.r

if 5 ^ FV(T) and t ^ F F {a).
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Rules for maximality

(Max-V^) T h Max (V<;) if T is a valid context.

(Max—>) F h Max (—>) if T is a valid context.

f C; B, t : A; S, Max (t) h a : A'; Max (<r) 1

(Max-abstr) i g g' ̂  f^,f ; ̂  L
v y C; B; ShMax(At : A.a)

r h a : A =» A'; r : A; Max (a); Max(r)

,_ T h a : Type; Max (A 5 : Type.a) . . . .
(Max-jLt) Ajr—;———1— ——- if a is contractive m s (•)v y r t - Max (/x (A s : Type.a)) v y

(*) cr is contractive in 5 /ĵ *
l . ( t € F 7 ( ( r ) = > r h t : Type)1.
2. a is either a type variable different from s or a function type or a

constructor application whose reduced form is contractive in 5 or a recursive
type whose body is contractive in 5 [17].

Term formation rules

C; B; S h a : Type; r : Type C; B, x : a; S h M : r
(-> -Intro)

C; B; S r- Aa; : a.M : a ^ r

C; B; S h Max (a); a : Type; r : Type

1 This condition in the définition of contractiveness is not present in the System of [17], since
in that system it is not possible to have kind variables of kind different from Type.

Informatique théorique et Applications/Theoretical Informaties and Applications



TOWARD A SEMANTICS FOR THE QUEST LANGUAGE 521

r h M : V f < a.r; p < a; Max (p)
(V-Elim)

(Subsump)

T\- Mp:r[p/t]

T h M : cr; a ^ r; Max(r)

Remark: Notice that the restriction of rule (Max-/i) to contractive types
is necessary to obtain the soundness of />FunK with respect to the model
we shall present. In this model it will be possible to apply the \i operator
to all the constructors from Type to Type; for instance it is possible to
model even types like fit.t where t is a variable of kind Type => Type. The
contractiveness is however needed if we want to obtain, using the fi operator,
maximal types, Le, the ones we use as "real" types; in fact the condition
(t € FV (a) =^ F h t : Type) for contractiveness fails trivially for pit.t.

The restriction to contractive types is of no relevance from a practical point
of view. It can cause some problems only in certain higher order Systems,
where it might be difficult to décide whether a type is contractive or not.

2. SEMANTICS OF //-FunK

Let us define now what is the formai semantics for /i-FunK. This will be
given in the style of [6], from which we have taken the following définition.

DÉFINITION 2.1 {Kind frame): A Kind Frame is a tuple
KIND = (Kinds, U : Kinds -> Set, {$A, A' I A Af e Kinds},

Max(-), Type, Top, s* , - » , £ , V^, |JL )
such that

1. Kinds is a set.
2. C/is a total map from Kinds to Set.
3. ^:KindsXKinds—»Kinds.

4. $A,A' ^ U{A^>Af) -» (U(A) —> U(Af)) is an injective map for all
A, A' e Kinds.

5. Type 6 Kinds and Top G U (Type).

6. Max(A) C U(A) for all A G Kinds.

7. =£€ Max (£/(Type =^"Type^ Type)).

8. [Le t / ( (Type^Type)^Type) .

9. V^e Max (U (Type^ (Types» Type)zs* Type)),

vol. 28, n° 6, 1994



522 F. ALESSI, F. BARBANERA

10. < is a partial order over U (Type) with Top as maximum.
The following additional conditions must be satisfied.
Let ƒ?, 7, 6, e G U (Type) and F, G G U (Type=>Type).

(i) If /3«£ 7 and 6<e then 7 —> 8< (5 —> e (soundness of rule (< —>))
(ii)If /3<7 and for ail (p<{3 F{ip)<G{(p) then V<7F<\f<j3G

(soundness of rule (< — V<))

(iii) If a) P< 7 implies F(/3)<G (7) and

b) F, G e Max (Type =|> Type)

then 11F < 11G (soundness of rule (Amber))

( iv)Max(A^A') = {F G Ü7 ( A ^ A') | Va G Max (A) F (a) G
Max (A')}
where

7 ' -+ 5 dénotes $Type,Type (^Type, Type ̂ Type ( - » ) (7)) (^),

Vg7 F dénotes $TyPe ̂  Type, Type (ff) (F)

with

H - $Type,(Type^ Type)^ Type ( V ^ ) (7)

and

fl F dénotes $Type=» Type, Type (P* ) (F ) .

When there will be no ambiguity we shall write Type for (/(Type).

DÉFINITION 2.2 (Kind Interprétation): A kind-interpretation [—] is a function
from kind expressions to Kinds, such that the following conditions are
satisfied:

• iType] = Type

• [A =$> A'] = [AJ^JA'J.
A constructor-environment is a map 77 from constructor variables to
U U(A).

AeKinds
As usual, given a constructor-environment 77, 77 (u | —> t) dénotes the

following constructor-environment

u if 5 = t
7] (s) otherwise.
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DÉFINITION 2.3 (Constructor-Interpretations): A constructor-interpretation
| ] in a given kind frame is a function from derivable constructor-judgments
and constructor environments which satisfies the following conditions:

• [T h t : A] , = V(t)
• p h Top],; = Top
« [r h^: Type => Type => Type]^ = =4

• p h M : (Type => Type) =» Type],, =\L

• [F h V^ : Type => (Type =* Type) => Type],, = V*
• [r h ar : A% = $ [ A ] [A,j ([T h a : A => A'],) ( p h r : A],)

• [C; B; S h Xt : A.a : A => A'] , - S f i U A , , (ƒ),

where ƒ G (tf(|[A]) -> U ([A'])) is defined'by ƒ («) = [C; B, t : A;
S h a

We say that a constructor environment 77 satisfies a context F (77 f= F) iff
a) for ail t : A G F 77 (t) G J7([A])
6; if Max (t) G F and t £ a G F then 77 (t) < [F h a : TypeJ^
Note that this définition is not circular because when we introducé t in

a dérivation t is fresh.

DÉFINITION 2.4: (Kind Models): (i) A quasi-kind model is a kind frame for
which a constructor interprétation is defined.

(ii) A kind model is a quasi-kind model in which rule (Max-^) is sound.

DÉFINITION 2.5 (Frames): A frame for //-FunK is a pair
FRAME= (KIND, DOM) such that
1. KIND is a kind model

2. DOM - { {Domû | a G Max (Type)}, {Xa,b \a,.be Max (Type)},

{Xf\f G Max (Type ^> Type)}, {7a>6 |a, & G Max (Type), a< 6})
such that:

(i) for ail a G Max (Type) Doma is a set.

(ii) for ail a, 6 G Max (Type) there is a set of functions from Doma to
Dom6, denoted by *[Doma —> Dom6]*, such that there exists a bijection

X«,6 : Doma->6 -> *[Doma -+ D o m 6 ] * .

(Notice that —» G Max (U (Type s=̂> Type =^ Type)) and then, since a—» & is
a maximal element, Doma~*6 is defined).
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524 F. ALESSI, F. BARBANERA

(iii) for ail ƒ G Max (Type =^ Type) and for ail b G Max (Type), if
F = $Type^> Type (ƒ) then there exists a subset

*[ I I Dom^W]* g
a€Max (Type), a<6 aGMax (Type), a^b

such that there exists a bijection

Xf. Domv^F^*[ J ] Dom*»]*
a€Max(Type), ag6

(iv) for ail a, & G Max (Type) s.t. a< b we have Ja;& : Doma -> Dom6.

A term environment satisfying a context F with respect to 77 is a map £
which to each term variable x such that a: : a G F (and F h a : Type)
associâtes an element of DomI r i~a:TypeK

An environment satisfying a context F is a pair ( 77, £ ) where 77 is a context
environment and £ is a term environment, both satisfying F.

DÉFINITION 2.6 (Term Interprétations): A term-interpretation \—] in a given
frame is a function from derivable term-judgments and environments which
satisfies the following conditions:

# [ C ; B , i : ( j ; S h a ; : ai(^i) = t(x)

. \Y h MTV : T]{VJ0 = Xa ) /? ([F h M : a -> T ] ( ^ > ) ([F h iV : <T]{JÎ>0)

where a = fF h <r : Type]^ and fi = [F h r : Type]^

•Xa,^([C; B; Sh A ^ : ( r . M : ^ r ] M ) ( p ) -

[C; B, x : a; S h M : ^(^(xl-^))
where a = [F h a : Type],,, fi = [F h r : Type],, and p G Doma

• [F h M p : r [ p / t ] ] M =

Xf ([F h M : Vt ^ a.r]{l|ï{)) (([F h p : Type],)

where ƒ = A7 G tf.[F h r : Type],,(t|-7) and [[F h p : Type]^ G H,

with # = {,9 G Type \fi& [F h a : Type],}

• x/ ([C;-B; S h A t < a . M : V ^ ^ ] { l | i 0 (7) =

[C, *<; a; B, *: Type; S, Max(t) h M : r ] < 7 ? ( t H 7 ) ; 0 for 7 G ^
and ƒ = A G H.fT H r : Type]^^) . , with H = {fi G Type |/3£ [F h
ff : Type],}

• [F h M : M^ïft.O = F h M :

Informatique théorique et Applications/Theoretical Informaties aiid Applications



TOWARD A SEMANTÏCS FOR THE QUEST LANGUAGE 525

Notice that the above définition of term interprétation makes it possible
to prove that equational rules of the calculus like (a), (/3) and (£)• are sound
w.r.t. to any model.

3. A TYPE-FREE STRUCTURE

Our model will be based on a suitable type free model D satisfying the
équation

(•) D = A + [D -* D]

where A is a countable flat domain of atoms (e.g. integers), -hrepresents
coalesced sum and [D —> D] the space of all continuous functions (w.r.t.
Scott topology) from D to D.

For technical reasons we shall assume that the solution of équation (•)
is obtained as an inverse limit of a chain of embeddings of finite cpo's.
This will allow the set of intervais of PPER's, to be defined below,
to be a Scott domain. Thus we take D to be a profinite domain in the
sensé of [15]. Embedding-projection pairs of the form (i G [D\ —> Z^] ,
j G [D2 —• D\] ) are pairs of continuous functions such that for ail d G D\
and e G D2 j (i (d)) = d and i ( j (e)) Q e. The construction is described,

for instance, in [16]. We may define in the usual way a denumerable
family (ipn : Dn '—• D, ipn : D —> Dn)necü of embedding-projection
pairs, where each Dn has finite cardinality. These introducé a notion of
approximation on the domain fl as a denumerable family of continuous
mappings ( - ) n : D —• D, where each (—)n is the composition (pnVipn-

Via embedding-projection pairs we identify each Dn with its isomorphic
image tpn (Dn) Ç Ö. So we get an ascending chain (DQ Ç Di Ç •••••)
of domains. By means of such an identification we manage to simplify our
arguments in several of the following proofs, being it possible to get rid of any
explicit référence to the embedding-projection pairs {(pn o ipn } : Dn —• D.

As a direct conséquence of starting from a finite cpo A we get the
finiteness of each Dn.

The following properties of D and (—)n can easily be verified {see, e.g.,
[4]).

PROPOSITION 3.1: For ail d G D and n, m E u
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1. do —

2- ("njm — \d>m)n = ^min(n.m)

3. d = U{dn\n e u>}

If f e [D ^ D] and d, e 6 D, then

4. f n + i (dk) = fn+i ( d n ) f o r n ^ k

5 . (ƒ&+! (dn))n = / n + i (dn) for n < k

•6.

S.d.e=

These and some other useful properties of the notion of approximation
will be used in the sequel without explicit mention.

4. A KIND MODEL

In this section we shall build a kind model for //-FunK and a constructor
interprétation for it, using the domain D built as in the previous section.

We shall interpret types as intervais of relations over the domain D and
constructors w.hich are not types as functions over such intervals. Some
conditions are needed on the relations we use. As it will be shown in detail
in what follows, the use of intervais is needed only as a technical tool in
order to obtain the continuity (with respect to the Scott topology) of the
type constructors —>, V<, and fi.

From the syntax of /x-FunK it is clear that we can consider only maximal
types (which can be vie wed simply as relations) as real types. This is not
a restriction, as pointed out previously.

The notion of approximation defined on D will turn out to be a fondamental
tool in the proof of a relevant property of intervais, namely that the application
of the operator /xtoa maximal contractive type yields a maximal type. This
property can be proved by induction on the level of each approximation,
following [12], [13], [10] and [3].

A nice feature of our interprétation is that the meaning of the operator [i
is the fixed point operator on a space of continuous functions.

The following définition introduces the class of profinite partial équivalence
relations (in analogy to profinite domains, see [15]), which will be the basis
of our model.
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DÉFINITION 4.1 (Profinite partial Equivalence Relations) : A Profinite
Partial Equivalence Relation (PPER) is a binary relation R over the domain
D such that

1. ( 1 , -L) G R

2. R is symmetrie and transitive

3. R is u)-complete:

if {dijiçu and {ei}ieco are increasing chains in D such that Vi G CJ (dt-, ej) G
i? then (U di, \J ei) e R

i i
4. i? is closed under approximations:

(a;, y)eR=>Vneu) (xn, î/n) e i2.

Notation: From now xn, yn, xm ... for x, y e D will always dénote
the approximations of x, $/ in i?^ (or Dm). X{, yi, Xj will dénote instead
éléments of séquences.

In the previous section we have defined D as the solution of the domain
équation

It is then possible to show that in such a case we case we can characterize
PPER's by replacing conditions 3. and 4. in Définition 4.1 by the following
condition:

3'. (z, y) e R <* Vn G u) (xn, yn) "G R.

On PPER's we can define some standard opérations.

DÉFINITION 4.2: Let R and S be two PPER's.

(i) R -> S =Dei {(x , y)\(u,z)eR^(xmu,yz)€ S}

(ii) Dom (R) =Def {[x]i? | (s, x) G i^} where [z]* = {2/1 (ar, y) G JR}.

DÉFINITION 4.3: Let P, P ' be PPER's and let n G w. We write P<In P '
whenever the following two conditions are satisfied:

1. P Ç P'

2. If (d, e) G P ; then (dn, e„) G P.

In the following Pn will be the relation {(dn, en) | (d, e) G P} =
P n ( f l n x Dn).

Moreover the following abbreviation will be used ( [r, R])n — [rn, i?n],
for [rn, Rn] PPER's.
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Observe that the intersection of an arbitrary family X of PPER's is
profinite, so the set of PPER's is a complete lattice with respect to inclusion.

PROPOSITION 4.4 [10]: For P e PPER and n e u :

(i) Pn<gP
(ii) Pn e PPER

(Üi) Pn<\nPn+l-
Let us consider now the operator which, given two PPER's, returns

the function space between them, as defined in Définition 4.2. It is
straightforward to check that this operator is not continuous with respect
to the Scott topology (it is not monotone in the first argument). It is possible
to gain the continuity of such an operator, beside other things, if we consider
intervals of PPER's and not simply PPER's. This technical tooi will allow
us to have the continuity of the other operators as well.

Let us introducé, in the style of [11], the formai definitiion of what an
interval of PPER's is.

DÉFINITION 4.5 (PPER-Intervals): (i) A PPER-interval [a, A] over D,
where a, A E PPER and a C A g D, is the set of all PPER's P such
that a g P g A .

(ii) Cartwright's ordering g c among PPER-intervals is defined in the
following way:

[ a , A] g c [6, B] iff_ [b, B] g [ a , A] a s s e t s , L e . a Ç b a n d B Ç A .

It is now easy to check that with respect to the ordering Çc the interval
[{(J-, J-)}, D x D] is the minimum, while maximal éléments are all the
intervals of the form [̂ 4, A]. Then there exists a one-one correspondent
between PPER's and maximal PPER-intervals.

PPER-int will dénote the set of all PPER-intervals over D.
It is not difficult to check that a directed set in PPER-int is a set of

intervals {[rt-, Ri]\i G / } such that {ri \i e 1} is a directed family of
PPER's and {Ri\i £ 1} is a filtered family of PPER's, Le, given i, j G I
then there exists k e i such that Rk Ç Ri & Rk C Rja This fact will be
used in the following without explicit mention.

PPER-int with the ordering g e is a Scott domain.

THEOREM 4.6: The partial order PPER-int, = {PPER - int, Qc) is a
Scott domain.
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The proof of this theorem will be the topic of Section 6.

Any function F from PPER-int to PPER-int is naturally associated to a
pair of functions from PPER-int to the set of PPER's, Le. we can associate
F with <F+, F~) where if F ([a, A}) = [6, B] then F+ ([a, A]) = b and
F " ([a, A]) = 5 .

Let us define some relevant opérations over PPER-int.

Let [PPER-int —» PPER-int] be the space of continuous functions from
PPER-int to PPER-int.

DÉFINITION 4.7: (i) [-•] : (PPER-int) x (PPER-int) -> PPER-int is
defined in the following way:

[a, A] [-*] [b, B] = [A -> 6, a -> B], where -> on PPER's is defined in 4.2.

(ii) [V ]̂ : PPER-int -> [PPER-int -> PPER-int] -> PPER-int is defi-
ned in the following way:

[V<] ([b, B]) (F) = [ f i F+ ([a, a]), f | F " ([a, a])]
aQB

where [6, fi] € PPER-int and F G [PPER-int -> PPER-int].

(iii) [/x] : [PPER-int -» PPER-int] - • PPER-int is defined as the fixed
point operator over

[PPER-int -> PPER-int].

THEOREM 4.8: The functions [—•], [V<] anrf [/x] are continuons.

The proof of this theorem will be given in Section 7.

Then by means of the technical device of intervais and of their ordering
ÇzC we manage to obtain the continuity of operators. It is easy to check that
the ordering Qc cannot be used to model also the relation of subtyping.
For this purpose we introducé now a new ordering between intervais similar
to the one defined in [18].

DÉFINITION 4.9 (The Ordering QM)- Let [o, A], [b, B] G PPER-int.

[a, A] gM[b, B] if^aQ
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It possible now to define a kind frame

KIND = (Kinds, U : Kinds -> Set, { $ A , A ' | A, A' G Kinds},

Max(-), Type, Top, = > , - > , £ , V*, (L )

for /x-FunK based on PPER-int.

DÉFINITION 4.10 (The PPER-int kind frame): The PPER-int kind frame is
the kind frame defined in the following way:

Kinds is the set of all Scott domains built by means of the function
space operator out of the Scott domain PPER-int.

U is the forgetful map between Scott domains and Sets.
$At Af is the identity over the space of fonctions from U (A) to U (Af).
Type is the Scott domain PPER-int.
Top is the interval of PPER's [{(_L, J_)}, D x D),
^ is the function space constructor over Scott domains.
Max (A) is the set of all the maximal2 éléments of U (A), where the défi-

nition of maximal element of U (A) is inductively given in the
following way:
• the maximal éléments of Type are the maximal éléments of
PPER-int
• the maximal éléments of A^> Af are the fonctions mapping
maximal éléments of U (A) into maximal éléments of U (A*).

—* is [—>] of Définition 4.7.
< is the ordering C M .

V^ is [V<] of Définition 4.7.

W> is [//] of Définition 4.7.

We have now to prove that the définition above is indeed the définition
of a kind frame, Le. that it is correct and that the conditions, (i)-(iv) of
Définition 2.1 hold.

For the correctness what we first need is the continuity of V^ s =§> and
P»-, proved in Theorem 4.8. The correctness of the définition of P> follows

directly from this. For the correctness of V< and —^ we need also to
have that

—» e Max (17 (Type ^ Type =» Type))

2 Notice that the name "maximal" is not related, except for Type (and this justifies the name),
to the notion of maximality w.r.t. the order of kinds as Scott domains.

Informatique théorique et Applications/Theoretical Informaties and Applications



TOWARD A SEMANTICS FOR THE QUEST LANGU AGE 531

and
V^ G Max (17 (Type ^ (Type ^ Type) => Type)).

These facts are stated in the following lemma, whose proof will not be
given since it is quite easy.

LEMMA 4.11: In the kind frame defined above:
(i) rule (Max—•) is sound, Le. —» G Max (U (Type => Type => Type)).

(ii) rule (Max-V<) is sound, i.e.

V< G Max (U (Type =4> (Type =>Type) ^ Type)).

THEOREM 4.12: The PPER-int kind frame is a kind frame.
Having Lemma 4.11 the only interesting part of the proof of the above

theorem is the soundness of the rule (Amber) which will be given in
Section 8.

We can define now a kind interpetation and a constructor interprétation
for î-FunK based on the PPER-int kind frame: it is sufficient to apply
Définitions 2,2 and 23 to the PPER-int kind frame. We call these the
PPER-int kind interprétation and the PPER-int constructor interprétation.

We can now prove that the PPER-int quasi-kind model defined above is
indeed a kind model, Le. that rule (Max-/i) is sound. The proof is done by
induction on the level of approximation, using the fact that for contractive
types the approximated interprétation at level n + 1 of a —• r is completely
determined by the approximated interprétation at level n of er and r, as
follows easily from Proposition 3.1. (see [12]).

LEMMA 4.13: Rule (Max-//) is sound in the PPER-int kind frame.
The proof of this lemma will be given in Section 8.
With Theorem 4.12 and Lemma 4.13 the proof of the two following

theorems is quite straightforward.

THEOREM 4.14 (Soundness of Max Rules): Ifwe dérive F h Max(cr) then
in the interprétation above [F H a : A}v G Max (A), i.e. the rules concerning
Max are sound.

THEOREM 4.15 (Soundness of ^Rules): If we dérive F h a ^ r then in
the interprétation above [F h a : Type],; i p T h r : Type]^ i.e. the rules
concerning < are sound.
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5. A MODEL FOR ^-FunK

As the last step of our model construction, we define a frame and a term
interprétation for ^-FunK.

Let us first recall that a maximal PPER-interval corresponds to a PPER,
then in what follows we shall not distinguish between them.

It possible to define a frame for /i-FunK FRAME= (KIND, DOM) based
on the PPER-int kind model. Let us first recall what DOM has to be in
FRAME.

DOM = ({Domfl | a G Max (Type)}, {Xa,b I a, b £ Max (Type)},
{Xf\f G Max (Type => Type)}, {Ia,b\a, b G Max (Type) and a < &}>.

DÉFINITION 5.1 (The PPER-int frame): The PPER-int frame is the frame
defined in the foliowing way:

1. KIND is the PPER-int kind model
2. Doma is Dom (a)
3. *[Doma —• Dom6]* are the functions from Doma to Dom6 represented

by éléments of Dom01"*6 i.e.
ƒ € *[Doma -> Dom6]*

ij[_ there is [d\a-+b such that for all [e]a ƒ ([e]) = [d • e]b.

4- Xa.b is the function which associâtes to each element of Dom0"*6 the
represented function from Doma to Dom6.

5. *[ JJ DomF (a}]* is defined in the following way:
aGMax(Type),ag6

g€*{

iff_3ce D s.t. [c]k e Dom^ and Vp G Max (Type)

with p < b we have g (p) = [c]p where k = j | F + (a).
a<b

6. Xf *s defined in the following way: Xf ([d\v<bF) (a) — [d\f (a) where
a G Max (Type), a ^ b.

7. Ia^ is defined in the following way: if a ^ 6 then Ia^([d\a) = [d]&.
It is not difficult to check that Xayb and Xf a r e bijections. To explain

informally the définition of •[ TT Dom^^a)]* in point 5. above,

a6Max(Type),a<6
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we may say that the action performed by an element, d, of its type on
another type (that is on a PPER) consists in forming the équivalence class,
with respect to that type, of d.

To define the term interprétation for /x-FunK we shall first give an
interprétation for dérivations of judgment, i.e. an interprétation for judgments
depending on the way these are derived, taking into account the possible use
of rule (Subsum) as last rule in the dérivation. This interprétation of dérivation
turns out to be also a constructor interprétation since it is possible to prove
that different dérivations for the same term yield the same interprétation (see
[5]). Moreover this interprétation will satisfy the conditions of Définition 2.6.

Notice that in this interprétation the subderivations concerning Max are
not relevant.

DÉFINITION 5.2 (Dérivation Interprétation): Let (77, £) be an environment.

Given a dérivation II of a term-judgment F h M : a we define its
interprétation in the environment ( 77, £ ) satisfying F, P / F h MN : r ] ^ ^
by induction on the depth of II.

Base case

We have derived C; B, x : r; S h x : r using rule (Start-B)

pI /C; B, x : r ; S h x : rj{^0 = Ç(x).

Induction cases

• Last rule is (—>-intro).

Then, using the induction hypothesis, we define

p I / C ; B ; S\-Xx:a.M:a^r]{rfy0

where a = [F h a : Type]^ and b = [F h r :

• Last rule is (—>-elim).

Then, using the induction hypothesis, we define

p l / r h MTV : r]{„ i 0

= Xa,b (Pl i / r h M : a -> T]{Vt()) (Pl2 / r h iV :

where a = [r h a : Type],, and 6 = [r h r : Type],,.
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• Last raie is (V-Intro).

Then, using the induction hypothesis, we define

pi/C; B; S h At < a.M : Vt < a.rI(ï?)0 = x j 1 (Aa£ JL

where ƒ = A/3 G Type.[C; B, t : Type; S h r : Type^ ( t H / 3 ) ,

# = {c € Max (Type) |c<ÏC; B; S h a : Type],,}

and

K = pIi /C, i < a; B, * : Type; S, Max(i) h M :

• Last raie is (V-Elim).

lU/T\-Mp:r[p/t}{rit0

= Xf ( P l / r h M : Vt ̂  a.T] ( , ,0) [ r h p : Type]„)

where ƒ = A/3 G Max (Type).[C; B, * : Type; S, h r : T y p e ^ ( t H / 3 ) .

• Last raie is (Subsump).

Then, using the induction hypothesis, we define

h M : r ] ( 7 ? ; 0 = Ia ,6 ( p i i / r h M : v]M)

where a = [r h a : Type], and & = [r h r : Type],.
We can prove that this définition is correct taking into account the shapes

of the term formation rules, Lemmas 4.14, 4.15 and the fact that D is a
model of pure À-calculus (this assures that the functions defined above using
the metalinguistic abstraction À are well defined).

It is easy to see that, in gênerai, a term judgment can be obtained by
several different dérivations. This means that to obtain a term interprétation
for /z-FunK from the dérivation interprétation it is necessary to prove that
the interprétation of a dérivation of a term judgment dépends only on the
term judgment itself. This property, called cohérence, can be proved by a
cumbersome induction on dérivations, following [6].

THEOREM 5.3 (Soundness): The rules of fi-FunK are sound in the PPER-int
model

The only difficult cases to be considered in the proof of the above theorem
are the ones taken into account in Theorems 4.14 and 4.15.
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6. PPER-int IS A SCOTT DOMAIN

This Section will be devoted to the proof of Theorem 4.6.

To prove that PPER-int is a Scott domain we need some results about the
compléments in D x D of the PPER's, which we will refer to as Co-PPER's.
In particular, we will prove that the set of Co-PPER's forms a Scott domain
with respect to set-theoretic inclusion.

DÉFINITION 6.1 (CoPPER's): Let D be a Scott domain. A set R* QDxD
is a Cö-PPER iff_R = D x D\R* is a PPER.

LEMMA 6.2: A set R* Q D x D is a Co-PPER iff the following conditions
are satisfied:

(i) (x, y) G R* o (y, x) G R*

(ii) (x, y) e R* & (y, z) g R* => (x, z) G R*

(iii) (x, y) e R* & 3n € uj.(xnj yn) G R*.

Proof: =>) Let R* be the complement in Ü x ö of a PPER R. Let us
prove that conditions (i), (ii) and (iii) are satisfied.

(i) (x, y) G R* o (x, y)£R&{y,x)£R& (y, x) G R*.

(ii) Let (x, y) G R* and (x, 2) £ iT . If we assume (y, 2) £ i?* it
follows that (x, y) G R by the transitivity of R and the fact that (x, z) G iî,
(y, z) G i2.

Thus we get (y, z) E R*.

(iii) (=>>) If Vn G a; (a;n, yn) g R*, then (x, y) e R (because
Vn G o;(a;n) yn) G i2). Therefore (rc, y) e R* ^>3n e eu. (xn, yn) G R*.
(<=) Let (a;, y) g R*. Then (x, y) G R^\/n£ w(xn, yn) e R => Vn G a;

^=) Similarly to case =>). D

Remark: Note that, due to the (iii) (^=) point of the above lemma, if
(a, b) G R* for a, b G Z> ,̂ then i?* captures ail pairs (x, y) such that
xn — a and yn = b.

LEMMA 6.3: Let {R* \i € 1} Ç Co-PPER. Then ( J iÇ w a Co-PPER.

Proo/: Trivial, since the intersection of PPER's is a PPER. D
From Lemma 6.3 it follows that Co-PPER is a consistently complete cpo

with respect to the set-theoretic inclusion. To prove that it is also algebraic
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we need to isolate a basis of finite éléments in Co-PPER's. For this purpose
we introducé the notion of n-minimal Co-PPER.

DÉFINITION 6.4: Let g* C D x D be a Co-PPER and n G OJ.

(i) Qn Ç D x D is the relation defined by

L Vu, v G Dn. (u, v) e Q*n & (v, u) G Q*

2. Vu, v, w G Z>n. (u, v) G g* & (u, «;) £ Q* =^ (u, w) G Q*

3. Va;, y ED. (x, y) Ç Q ^ (xn, yn) G Q^

(ii) Q* is n-minimal iJlQ* = g ; (that is (x, y) G Q*O (arn, yn) G g*).

The above one is not a good définition unless one proves that g* is indeed
a Co-PPER. That is what we shall do in the following Lemma 6.5.

We dénote with (Co-PPER^ the set of n-minimal Co-PPER's.

Remark'. In order to give an intuition about what a minimal Co-PPER g*
is, consider that the natural way to approximate g* amounts to taking its
truncation at level n, namely g* D (Dn x Dn). But this is not a CÖ-PPER

(see the previous remark). However we manage to complete g* n (Dn x Dn)
to a Co-PPER g* by adding all the pairs which are approximated by some
of its éléments, g* is minimal in the sensé that it is contained in every
Co-PPER R* containing Q* n (Dn x Dn).

LEMMA 6.5: (i) Let Ç* be a Co-PPER. Then Ç* is a Co-PPER as well.

ai) Q* g g*.
(iii)g* = \jQ*n.

Proof:

(i) (x, y)eQn& (xny Vu) G Ç ; o (î/n, xn) G Q*n & (y, x) G g
(x, y) G g ; & (y, *) £ g ; =* (xn, »n) G g ; & (»B, ^n) 0 g ;

^n) G Q* =^ (x, z) G g ; .

We have then proved that conditions (i) and (ii) of Lemma 6.2 hold.
Condition (iii) of the same lemma holds trivially. Thus g* is a Co-PPER.

(ii) Let (x, y) G g*. Then (xn, yn) G g*, so by the remark after
Lemma 6.2 (x, y) E Q*.

(iii) The left to right inclusion follows by (ii). For the converse, let
(x, y) G g*. By Lemma 6.2 there exists m G u such that (xm, ym) G g*,
hence (xm , ym) G g ^ . By définition of g* it follows that (x, y) E Q*m. •
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LEMMA 6.6: Vn G u (Co-PPER)n has finite cardinality.

Proof: The map <3*~Q* H Dn x Dn is a bijection between (G?-PPER)n

and binary relations over Dn satisfying (i) and (ii) of Lemma 6.2, of which
there exists only a finite number because of the finiteness of Dn. Therefore
(Co-PPER)n is a finite set D

LEMMA 6.7: Let Q* G (Co-PPER)n. Then Q* is a finite element in
(Co-PPER, g ) .

Proof : Let Q* Q j j JfZJ, where {R* \ i G 1} is a directed set of CoPPER's.

Let Q = <2* fi (Dn x £>n). The number of pairs (x, y) such that (rc, y) e Q
is finite. Thus there exists j e I such that Q Q R* and hence Q* g (i£pn
because Q* is a n-minimal C<9-PPER. Now, by Lemma 6.5 (ii), we have
that (R*-)n C R*. n

THEOREM 6.8: (Co-PPER, Q) is a Scott domain.

Proof: By Lemma 6.3 it follows that Co-PPER is a consistently complete
cpo. Besides, by Lemmas 6.5 (iii) and 6.7 CÖ-PPER is algebraic. Lemma 6.6
guarantees that the basis of finite éléments is countable. D

In order to be able to give the full proof of Theorem 4.6 we have still
to show that (PPER, Ç) is a Scott domain, and to this a further technical
lemma is needed.

LEMMA 6.9: Let R= {Ri\i G / } be a direct family of PPER's. Then the
lub ofR9 LLR is the PPER defined by the following condition:

(x,y) G UR<3> Vn G w 3i G / such that xn Ri yn.

Proof: Clearly if S is a PPER such that Vz G I Ri g S, then URÇ 5.
Thus what we need to prove is only that UR is a PPER, i.e. that conditions
1-4 of Définition 4.1 are satisfied. We shall check only condition 3 since it
is the only one not trivial.

Let {xk}keu and {yk}ke^ ^ e t w o increasing chains in D such that
\fk G u>(xk, yk) G UR.

We must prove then that ( |_J xk, [ J yk) G UR, Le.

3ieI.((\J xk)n,(\J y
k)n)eRi.
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Let k e eu. From the définition of UR it follows:

Vnew 3ik G ƒ suchthat ((xk)n, (yk)n) G Rik n.

Because of the finite cardinality of Dn there must exist k such that

( y xk)n = (**)„ and ( LJ yk)n = ( / )„ .
keu k€w

Hence condition (*) is satisfied. D

THEOREM 6.10: (PPER, Ç) is a Scott domain with ( J (PPER)n (where

(PPER)n = : { P f l (Dn x Dn)\P G PPER}) as set of its finite éléments.

Proof: By Lemma 6.9 PPER is a cpo. Its completeness follows by the
fact that PPER is closed for arbitrary intersection, by defining, for each
R, S e P P E R , R U S = n {P e P P E R \ R u S gP}.

To prove its u;-algebraicity first notice that an element of (PPER)n is of
the form Pn - P n (Dn x Dn) with P G PPER and hence a finite subset
of D x D. (PPER)n is a set of finite éléments of PPER. It remains now to
show that, for each P G PPER, P = | | Pn\ this is done by the following

équivalences

(x, y)eP&

Vn G u. On, yn) EP <&Vne u, (xn, yn) G Pn & 0 , y) e | J Ptt.

Notice that because of the finiteness of Dny the éléments Pn are
countable. D

Theorem 4.6 can now be proved starting from theorems 6.8 and 6.10 and
by proving that PPER is isomorphic to (X, ̂ x)> defined below, which, by
Proposition 6.12, is a Scott domain.

DÉFINITION 6.11: (X, Çx) is the posed defined in the following way:
-X = {(R, S*)\Re PPER, 5* GCo-PPER and R n S* = 0 } .
-OR, 5*) Qx(Q}T*)iff_RÇQkS* ÇT\

PROPOSITION 6.12: (X, Qx) ™ a Scott domain.

Proof: We first prove that (X, Çx) is a CP°-
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Let us consider an ascending chain {(i2i, S*)}içu. In order
to prove that (M i?«, M Si) is the lub of the chain we must

check that (|_J Ri) H ( [ J 5j) = 0 . By contradiction, let (x, y) G

(|_J Ri) fi ( [ J 5i), then there exists n G w such that (xn, yn) G ( J 5- .

Hence (zn , 2/ra) G S£ for a certain k G a;. If (rr, y) G M i2; then

fan, Un) G |_J i2;. Hence (xn, yn) e Rh for a certain h e UJ [since

2j n (Dra x Z?n) = ( J i?i fi (Dn x Z)n)]. Now, if m > fc, fc, then

(^nï 2/n) € i2m H 5^ . Contradiction with the définition of X.
Once we know that (X, Çx) is indeed a cpo> Lemmas 6.7, 6.8 and

Theorem 6.10 allow us to infer that it is also a>-algebraic, with the pairs
(Pn , Q* ) as finite éléments, where Pn G (PPER),, and Q* G (Co-PPER)n.

To be a Scott domain X has now only to be proved to be bounded
complete. Then let (iîi, S^) and (J?2Î ^2) ^ e s u c n t n a t there exists a bound
(i2, 5*) G X for them. This means that Ru R2 Q R and SJ, 5 | g 5. Since
(iî, 5*) G X we have that RnS* = 0 and hence ( i ^ U ^ n ^ î u S S ) = 0 .
We can now conclude that (Ri LJ i?2, SJ U SJ ) G X. It is immédiate to check
that such an element is the lub of (Ri, SI) and (ife, 5 | ) . •

Proof of Theorem 4.6: The thesis of Theorem 4.6 follows now by showing
that (X, Çx) is isomorphic to (PPER-int, Çc)-

Let us consider the map a : PPER-int—• X defined as follows:
a([r, iî]) = (r, i2*) (R* being the complement of fi in D x D, and

hence a CÖ-PPER).

It is immédiate to check that eu is an isomorphism. D

Remark: Notice that a directed set {[ri, Ri]}iç.u> in PPER-int is such
that {ri}içw is a directed set in PPER and {R*}%eu> is a directed set
in Co-PPER, that is {Rijieoj is a filtered set in PPER. In particular

7. CONTINUITY OF THE TYPE CONSTRUCTORS

In this fairly technical section we shall prove that the constructors —•
and V< are continuous over PPER-int. The proof for the type constructor
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fi will not be given since it follows immediately by the interprétation of /i
as least fixed point operator.

Continuity of the type constructor —>.

Let us begin with a technical lemma showing that the operator —• is well-
behaved with respect to lub's of directed sets and intersections of filtered
sets of PPER's.

LEMMA 7.1: LetR= {Ri\i G 1} be a direct set of PPER's, Q- {Qj \j G J}
be a filtered set of PPER's and S be a PPER. Then thefollowing properties
hold:

(i)S - (UR)=

(ü) s - (nfi)= f) (S -> Qi)
jeJ

(iii) (UK) - S = p | (ifc - S)
iel

(iv) (nfi) - s = [J (Qj - S).

Proof: We only prove (iii) since the proofs of the other properties are
quite similar.

The proof that UK-+ S g f] (Ri -> 5) is immédiate since i2̂  C u K ^

U/?^ 5 Ç Ri —> 5. To prove the opposite inclusion it is sufficient to show
that, due to the u;-algebraicity of PPER

VnGw p | (Ri -* S) n (Dn x Dn) ^ (L«-^ 5) n (£>„ x Z?n).

Let (ar, 2/) G p | ( ^ -^ 5) n (ÖR x Dn) . To prove that (x, y) G Utf-> 5
ie/

let (d, e) G UK.

Then Vm G w3i G / . (dm, em) G i2 .̂ In particular there exists j £ I
such that (dn_i, en_i) G i î j . Since (x, y) G (i2j —> S), by the assumption
that (x, y) G p | (JSj -* 5), we get (x • dn_ l5 y • e„_i) G 5. By the

properties of the domain D, (x • d, 7/ • e) = (ar • dn_i, y • e n - i ) and hence
(x • d, y • e) G S. D

THEOREM 7.2: [->] : (PPER-int) x (PPER-int) -* (PPER-int) is
continuons.
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Proof: Let {[r2, ft] \ % G /} be a direct set of PPER-int and [s, S] a
PER-int. Then

[r , - , iy->[5, S])
tel

iel

iel iel
by the remark after the proof of Theorem 4.6

ft) —̂  ̂ , (| | ri) —• 5] by (iii) and (iv) of the previous lemma
iel iel

iel iel

& s].
iel

In a similar way, by using (i) and (ii) of the Lemma 7.1, it is possible to
prove that

I J ([*, S] -, [ri7 Ri]) - [s, S] - LJ h , ft]. •

Continuity of the type constructor V<.

We turn now our attention to the V< constructor.

To prove the continuity of such a constructor we need some extra
mathematical apparatus (which is linked to Lawson topology of Scott
domains: see e.g. [11], [18]).

Let T dénote the infinité oriented complete binary tree.

Let {en | n G ou} be a numbering of the finite éléments of PPER-int.

A path in T is intended starting always from the root.

We label now the edges of T in the following way: at the level n, we
label with en each edge which descends rightwards and with -ien each edge
which descends leftwards.

To each element x of PPER-int it is associated a path in T: corresponding
to a level n, the direction is fixed according to if e„ Çcx (rightwards) or
en %cx (leftwards).
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It is worth pointing out that, although for each element of PPER-int there
exists a corresponding path in T, the vice versa fails: for example if en

and em are two incompatible finite éléments (Le. en U em is not defined)
a path descending rightwards at levels n and m cannot correspond to any
element.

We say that a subtree T' of T is uniform iff every internai node has
two sons.

Notation: For a given path TT in T, we write en G TT descends rightwards
at le vel n. Otherwise we write ~^en G ?r (or en £ TT).

DÉFINITION 7.3: a) A path TT is consistent iff there exists rr G PPER-int
which satisfies it, ù . en G 7r ^ en g c x .

Let TT be a consistent path in T.

fe) UTT = d e f U {e |e G TT}.

c) 7T is maximally-consistent iff there exists a maximal element x G PPER-
int which satisfies it.

d) Let <i G PPER-int. TT is d-maximally-consistent iff there exists a
maximal element z G PPER-int such that d Çcz and z satisfies TT.

^) Given a PPER i? a path is R-maximally consistent iff it is [{(J_, J_)}, i2]-
maximally consistent.

LEMMA 7.4: Let (d, e) G DnxDn. Then the set ofthe n-minimal Co-PPER's
Qn such that (d, e) G Q* is finite.

Proof: Immédiate conséquence of Lemma 6.6. D

Notation: Given a path TT in T, TT̂  will dénote the sub-path of TT going
from the root to thè le vel n.

LEMMA 7.5: Let n be a path in T associated to a non-maximal element
x — [r, R] G PPER-int Then there exists a finite sub-path p of -K which
is not maximally consistent

Proof: If [r, R] is non-maximal, i.e. r is strictly contained in R, then there
exists an element (x, y) in D x D such that (#, y) £ R and (x, y) 0 r.
The latter fact implies that there must exists an n such that (xn, yn) $. r,
while (a?n, yn) e R.

Let P be the PPER generated by (xn, y™) and let {Q*\i G 7} be the
set of n-minimal Co-PPER's containing (a:n, yn), which is clearly a finite
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set. Besides, let us dénote by Qi the complement of Q* and consider the
following PPER-intervals:

[{(.L, ±)}, Q,-] (i G / ) ;

[P, £> x D].

These intervals are finite éléments in PPER-int. Moreover we have that:

[{(±, J-)}, Qi] %c [r, P] [i2 C Q2- fails because (xn, yn) £ Q,-].

[P, D x ö ] £ c[r , i2] [(xn, yn) G P but (a;n, yn) # r],

Then it holds (*) [{(_L, J.)}, Q,-] and [P, D x D] are not in TT.
Let us consider now a maximal interval [S, S].

We have two possibilities: (x„, yn) E S or (xn, yn) 0 S.
In the first case we have P ^ C D x D a n d hence [P, D x D] Q c [S, S].
In the second case (xn, yn) £ D x D\S (= 5*). Let us consider 5*, this

a n-minimal Co-PPER such that (xn, yn) G 5*. Hence there exists io G /
such that <3*0 = 5*. For such io we get that

[{(JL, J.)}, Qi0] CC[5, S}.

What we have shown is then that for each maximal element [5, S] the
following holds:

(**) [P, DxD]Çc [S, S] ov3i G ƒ[{(! , J.)}, Q»] Q c [5, 5].

Let us consider now the numbering of finite éléments of PPER-int.
There exist no, Ui{i G / ) such that eno — [P, D x D], eUi =

We fix m G a; such that no < m, 'n% < m(i G / ) , whose existence is
guaranteed by the finiteness of / , and consider the sub-path p — ?rm. From
(•) and (**) it follows that 7rm cannot be maximally consistent. D

DÉFINITION 7.6: Let e be a finite element of D and g : PPER-int—• D
a continuous fonction (D is a Scott domain). Let x G PPER-int, R be a
PPER and T a sub-tree of T.

(i) T' is a x-g-witness tree for e ijfjf
1. T' is finite, uniform and an initial subtree of T.
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2. For every path in T' which ends with a leaf and is x-maximally
consistent it holds e UZ g(\Jir).

(ii) T' is ü-maximally consistent iff it is a [{(-L, -L)}, i?]-#-witness tree.

LEMMA 7.7: Let g : PPER-int^ D be continuons, e G D° (i.e. e is a finite
element of D) and x G PPER-inf. Besides, let us assume that the following
holds: e \Z F\{g(z) \x Qc% &> z is a maximal.}

Then there exists a x-g-witness tree T' for e.

Proof: We prove this lemma by contradiction.

Let us assume that such a tree does not exist and consider the subtree T'
of T defined in the following way: for each node N we erase all the node
below N if the path TT to N satisfies at least one of the following conditions:

1. 7T is not x-maximally consistent.

2. e c g (Un).

The so obtained tree T1 is clearly uniform. Moreover it must be infinité
(otherwise it would be a x-^-witness tree for e).

Let us now take any infinité path TT in T' (which exists since otherwise
T' would be finite and hence a witness tree). We claim

(i) UTT exists in PPER-int.

(ii) LJ7T is maximal

(iii) x Çc U -ir.

To prove (i) it is enough to see that {Unn \n G a;} is a direct set. For
(ii), if UTT were not maximal, then it would exist, by Lemma 7.5, a finite
sub-path TT' not maximally consistent, and then, by the définition of T1 ail
nodes below TT' should be erased, contradiction.

To prove (iii) let us assume x ^Lc Un. In such a case it should exist a finite
element d G PPER-int such that d Qcx^d ^ c LJTT. Let us consider now the
le vel k such that (in the numbering of finite éléments of PPER-int) e& = d.

Let p be a path in T descending down to fc-th level: clearly x cannot
satisfy the path p U (->e^).

Therefore every path that, up to level n + 1, coincides with p U (->e&)
is truncated in T1 (and therefore finite). Thus if e& = d <£c U -K it follows
-iefc G 7T, a fact which implies that TT is finite, contradiction. Then x Qc U ?r
and UTT is maximal.
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By the définition of T' we get Vn G UJ e {Z g (U7rn). By the compactness
of e it follows e E <?(LJ7r), a thing that contradicts the hypothesis
e E \l{g (z) | x Qc% & ̂  is maximal} by (i), (ii) and (iii).

Therefore it must exists a x-^-witness tree for e. D

COROLLARY 7.8: Let g : PPER-int^ D be continuons, e G D°,S G PPER
and e c r\{g ([JR, R]) \ R Q S}. Then there exists a S-g-witness tree.

Proof: Immédiate from the previous lemma (by considering x —
[{(1, _L)}, S)). D

LEMMA 7.9: Let n be afinitepath in T and let xe PPER-inf with x = LJ-X",
where X — {xk | fc G o;} is a direct set Moreover let us suppose that it does
not exist any maximal element z such that:

1. z satisfies ir.

2. x Qcz-
Then there exists n G o; such that no maximal element z satisfies 1. and

the condition

2.n xn Qcz-

Proof: It is not restrictive to assume X being an ascending chain.
Let us suppose that V k G o; there exists a maximal element z^ such that

zk satisfies (1) & (2)k.
We construct an element C in the following way: suppose that we have

already build a prosecution TT1"1 of ?r up to a level i. We now build a
prosecution TT* by descending rightwards from the end of 7TÏ~1 if there exist
infinité indexes j k such that Zjk satisfies TT*"1 U{e^}. If such condition is not
fulfilled we set TT* — TT*"1 U{->ei}. The union of all the paths -K% is an infinité
path 7r'. Clearly there exists UTT' because the set \\A-Ki | i G cv} is ascending.
We set C = UTT'. We claim that ( is maximal. In fact, if it was not the case,
by Lemma 7.5 it should exist a finite path not maximally-consistent. This
contradicts the fact (true by définition of Q that for each level i there exist
infinité maximal éléments consistent with TT*.

Moreover we have that x Qc(* In fact let e be a finite element such that
e Qc%' Then there exists h e UJ such that e Qc^k, if k > h. Now let
us consider in T the i-th level for which e = ê . There are infinité k E UJ
such that e ^ c ^ f c , so that et- G TT. Therefore e ^ c U TT7 — C- Finally, it
is easy to check that f satisfies 7r. SO we have got a contradiction with
the hypothesis. D
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COROLLARY 7.10: Let n be a finite path in T, Ra PPER and {Rk | k G UJ}

afiltered set ofPPER's such that Ç\ Rk = R. Moreover, let us assume that
keu

there is no maximal element z = [5, S] such that:

1. z satisfies 7t\

2. S C R.
Then there exists n G UJ such that no maximal element satisfies condition 1.
and the condition

2.„ S g Rn.

Proof: Immédiate from the previous lemma by considering the intervals
[{(X, -L)}, R] and [{(_L, _!_)}, i?fc]. D

PROPOSITION 7.11: Let g : PPER-int—> D be a continuous function, e E D°
and x G PPER-inf with x — U{xk \ k E u}.

Moreover let us assume that e \Z H {g (z) | x Qcz and z maximal).

Then there exists n E UJ such that e E l~l {g (z) | xn Q z & z is maximal}.

Proof: From Lemma 7.7 it descends that there exists a x-^-witness tree T'
for e. By définition of witness tree it follows that each path ?r that reaches a
leaf is such that one of the following two conditions is satisfied:

(i) 7T is not x-maximally consistent

(ii) e \Z S(LJTT).

Let us consider now the set {pj \ j E J} of all the paths satisfying (i). J is
obviously finite because T' is a finite tree. From Lemma 7.9 it follows then

Vj G J 3kj such that pj is not xk. maximally consistent.

Let n be such that Vj E JkjCj Çc^n-

Pj is not xn -maximally consistent and hence, given a maximal element z
such that xn Çc%, the path associated to z must coincide, in its initial part,
with some path nz in T' such that TTZ is x-maximally consistent.

Therefore, from définition of witness tree, it follows e E g

But \JTTZ QQZI $° e tl 9{z) a nd therefore

e C \l{g(z) \xn Çcz anfi ^ is maximal}. D
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PROPOSITION 7.12: Let {fn : PPER-int^ D\n G w} be a direct set

of continuons function such that M fn — ƒ. Then, for any PPER S,

u n /» &> *•]) = n f (tr'
Proof: ( E ) is immédiate.

To prove the opposite direction let e be a finite element such that
e C f i ƒ ([r, r]). Then there exists a 5-ƒ-witness tree T' for e. Let

'•SS
H — {Pj \j € J } be the set of all the paths which are 5-maximally
consistent. Then, from the définition of witness tree p G H => e \Z ƒ (Up).
Let /i : PPER-int—> D be the function defined in the following way:

otherwise

Clearly h is finite and h n ƒ. Therefore there exists n G a; such that h\Z fn-

For every [r, r] maximal such that r Ç S let us consider the path pr G T'
such that pr — T1 n TI> , where ?rr is the infinité path of [r, r]. We get now

e\Zfn (Upr) C /^ (U7rr) - fn ([r, r]).

Therefore e g |~|- ƒ ([r, r]) => e C | J |~| ƒ„ ([r, r]). D

PROPOSITION 7.13: Let ƒ : PPER-int -^ D be a continuons function and
R= {Rn \n E u} afiltered set of PPER's such that DR= R.

Then [J f i / ( [ r , r ] )= f| f (fo r]).

Proof: (c) is trivial.

For the opposite direction let e be a finite element in D such that e C

ƒ ([r, r]). Since, by assumptions, [{_L, J.}, R] = \J

there exists n G a; such that e C f~| ƒ ([r, r]) (by Lemma 7.11). Therefore
" rQRneE u n

vol. 28, n° 6, 1994



5 4 8 F. ALESSI, F. BARBANERA

THEOREM 7.14: [V<] : PPER-int^[PPER-int-*PPER-int\^PPER4nt is
well defined and continuons.

Proof: First of all let us prove that [V<] is well defined.
Given y = [s, S] G PPER-int and ƒ G [PPER-int^ PPER-int] we have

that V< (y) (ƒ) - [ f ] ƒ+ ( h r]), |~] ƒ " ([r, r])]. It is straightforward to
rQS rQS

check that V< (y) ( ƒ ) is an interval.
Let us now first verify that V< (y) is monotonous and continuous in

[PPER-int-+ PPER-int].
For the monotonicity let ƒ, g G [PPER-int^ PPER-int] with f C. g, Le.

Vze PPER-int ƒ+ (z) c ^ + (z) C 5 " (^) C ƒ" (z). Then f | ƒ+ ([r, r]) C
/•S5

j~~| ^ + ([r, r]) Ç [~~] .g" ([r, r]) g [ ] f~ [r, r]), Le. the monotonicity of

V^ (y) in [PPER-int-^PPER-int] holds.

For the continuity let {fn}neco be an ascending chain in [PPER-int-^PPER-
int] such that | | fn = f.

We need to prove that | J V< (y) (ƒ„) = V< (y) (ƒ) Le.

(1) LJ f i ^([r,r])= f i /+([r,r])

(2) fi fi fn([r,r]) = [] r([r,.r}).

(1) follows immediately from Proposition 7.12.

To prove (2) it is easy to check that

n n ƒ» ([»•• r D = n n ^ ([*•• ̂ =n /~ «^ »•])•

We are then now left with the proof of the continuity of V<, since the
monotonicity can be trivially verified.

Let {yn}neu> with yn = [sn, Sn] be an ascending chain in PPER-int such
that LJ yn^y=[s, S], Le. | J sn = s and |~| 5n = S'
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What we have to prove is then that, given ƒ G [PPER-inWPPER-int],

gSn rQS

and

(2) n n /" ([*•» r D = n /• a*-. ^

(1) follows immediately from Proposition 7.13. To prove (2) we have
only to check that J~~] [~~| f~ ([r, r]) Çj |~1 ƒ" ([r, r]), since the other

inclusion trivially holds. Let p E D x D and be a finite element such that
p g P j ƒ" ([r, r]). Then there exists r' Q s such thatp ^ f~ ([r7, r']) ^ p G

g
ƒ*" ([r7, r']), where ƒ*" ([r', r']) - D x D\f~ ([r;, r7]) (ƒ*" is continuous
on Co-PPER). Hence, since p is finite, we have that there exists a finite
element [c, C] in PPER-int, with c Q rf Ç C, such that p G ƒ*" ([c, C]),
hence p £ f~ ([c, C]). Since c is a finite PPER there exists n' such that
c Ç sn* and then [c, C] ^c[sn' H r7, sn ' H r7].

Therefore p ^ ƒ - ([an, n r7, 5,,, n r7]) ^ p ^ |~| |~| ƒ - ([r, r]). D

THEOREM 7.15: [̂ ] : [PPER-int^PPER4nt]^PPER-int is a continuous
function.

Proof: Trivial. D

8. THE PPER-int KIND FRAME IS A KIND MODEL AND RULE (AMBER)
IS SOUND

Let us firstly deal with the proof that the PPER-int kind frame is indeed
a kind model, Le. rule (Max-/z) is sound.

LEMMA 8.1 : Let ƒ : PPER-int^ PPER-int be a function defined by a maximal
and contractive type, i.e. ƒ — À d G PPER-int. an (t/^) where it holds Max (a)
and a is contractive in t.
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Then

(i) V[r, R] € PPER-wX (ƒ ([r, R]))n+1 = (ƒ ([rB) i?n]))n+l

(ii) /x ƒ /5 a maximal element of PPER-int.

Proof: (i) See [10].

(ii) Let [r, R] be the least fix point of ƒ. Then [r, i2] =

-[/+(h «]), r ( K «])], w. we have
l . r - /+([r ,

2.12 = / - ( [ r ,

Let us first prove by induction that Vn e u)rn = Rn.

The base case n — 0 is trivial.

For the induction step rn+1 = (ƒ+ ([rn, iZn]))n+i and Rn+1 =
(ƒ"([*•„, i2n]))n+i by (i).

By the induction hypothesis rn — Rn. Since ƒ maps maximal éléments in
maximal éléments it follows that (ƒ+ ([rn, i2n]))n+i = (ƒ" ([rn, i2n]))n+i
i.e. r n + i = iîn+i. D

Proof of Lemma 4.13: Immédiate from the above lemma. D

Let us turn now our attention to the proof that the rule (Amber) is sound
in our model.

LEMMA 8.2: Let ƒ : PPER-int-^PPER-int be afunction defined by

ƒ = Xd G PPER-int. c^^/d) where Max (a) and a is contractive in t.

Then Vn € u;(fn(h))n = ( /B( / 2))„ , where h = [{(-L, -L)}, {(-L, -L)}]
and h = [{(±, -L)}, D x £>].

Proof \ By induction on n.

The base case n — 0 is easy, since each approximation at level 0 is

{(-U -L)}.

Let us assume the thesis for n holds.

Then (fn+1 (Ji))„+i = (ƒ ( r (Ii)))»+i by définition

= ( / ( ( / " Ui))n))n+i by Lemma 8.1

= (ƒ((ƒ" tfj))n))n+l
by the induction hypothesis

= (ƒ (ƒ" ( /2))Wl
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THEOREM 8.3: (i) Let ƒ, g : PPER-int-^PPER-int be as the Lemma
above and such that ƒ < M 9, i-e. for each maximal element z we have
ƒ(*) ^M9(z)).

Then fif < M fig.

(ii) The rule (Amber) is sound.

Proof: (i) We have that, by defining h = [{(±, ± )} , {(JL, ±)}] and
/2 = [{(J.,

= U (ƒ" (/2))« (byalgebricityofPPER)

"(Ji))« by Lemma 8.2

Analogously M 5 = [_} [((g+)" (h))n, {{g~)n {h))n\.

From the condition ƒ < M 5 it then follows

Vn G w ((ƒ+)- {h))n i ((5+)" (/i))n andhence// / <

(ii) Immédiate from (i). D

9. LIMITATIONS OF A NATURAL EXTENSION OF THE PPER INTERVALS
APPROACH

Using the Interval of PPER's we have managed to perform a step forward
in the direction of modeling the full QUEST system. This at the cost of
extending the system with a "maximality" predicate. This extension of the
syntax however does not introducé, as we have pointed out, any essential
limitation to the expressive power of QUEST.

What ^-FunK lacks with respect to the QUEST language is higher order
quantification, ie. given a constructor F : K => Type where K : Kind it is
not possible to use the function F to build an infinité product type (denoted
in the following by Vj^F).

It might be thought that we could introducé higher order quantification
in our system since the model we proposed seems to easily support such
an extension by means of a natural generalization of the semantics of V< :
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given a function F : K —» PPER-int, where K is the interprétation of K,
a natural way of modeling V# F is the following:

^ O O ' n F - o o i -

Unfortunately such an extension, does not work since, in gênerai, the
constructor Vĵ  is not continuous.

The aim of what follows is to present a counter example to the continuity

of \/K if it is defined as above.

Counter example to the continuity of V#

To prove that the semantics of PPER interval cannot be extended in the
natural way we prove now that

V[Type^Type] : ([PPER-int - • PPER-int] -> PPER-int) -> PPER-int

is not continuous.

To present this counter example with a sufficient level of detail some
preliminary notions and Lemmas are necessary.

Notation: V2 will dénote V[Type__^Type].

Let {pi | i G eu} be an enumeration of the finite éléments ofDxD and let
Pn be the smallest PPER containing {pi, • - -, pn}. For each fcGwwe define:

r[{±,±}, DxD] if xQc[Pk,DxD]
yky } \ a otherwise

where a is a fixed maximal interval.

Let us prove some properties of the fonctions gk-

It is easy to check that, by définition of g%, for each maximal
element z E PPER-int gk (z) — a. It then follows that g^ G
Max ([PPER-int => PPER-int])

LEMMA 9.1: For each k G u; gk is a continuous function,

Proof: Let x = | | x%.

If x Çc [Pk, DxD] then there is nothing to do. Otherwise it has to exist
a finite element e G (PPER-int)0 such that e Qcx & e %c[Pk, D x D].
We have that e Çca; ̂  3 j G w. e =C%j- Then e Qcxj => Xj %c
[Pki DxD] ^ gk(Xj) = a. D
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LEMMA 9.2: Let e be a finite element of PPER-int such that
e = [r, D x D] Çc[D x D, D x D]. Then there exists k* £ ou such that, if
k^k* thengk(e) = [{_L, _L}, D x D].

Proof: Since r has to be a finite subset of D x D, necessarily there exists
k* eu such that r Q Pk* • Hence if k > k* we have that e Ç c [pk, D x D]
and then gk (e) = [{±, J.}, D x D]. D

Let E1 = {e{\i G a;} Ç(PPER-int)0 be an ascending chain such that
UE = [D x D, D x D].

Let us consider the fonctionnais Fn : [PPER-int -> PPER-int] -> PPER-int
defined, for each n G w, as follows:

l a
if Vx G PPER-int ƒ ( ^ ) g c ^
otherwise

(a is the maximal element in the définition of the #fc's).

LEMMA 9.3: \/n € CJ Fn is continuons.

Proof: Let ƒ = [_| ƒ; with {ƒ? | J G a;} directed family of continuous

fonctions.
If Vx G PPER-int f(x) g c « then

Fn (ƒ) = ƒ (cn) = LJ ̂  (en) =

Besides, if 3 a; G PPER-int such that ƒ (x) %c® then | J /j (s)

and hence there exists j Ç w such that fj (x) Çca- Therefore

^ above lemmas we can now prove that V2 is not continuous.
It is easy to check that the family F = {Fn\n G eu} is increasing in n G a;

and therefore there exists UF and besides, V ƒ G [PPER-int -> PPER-int]

UF(f)=

_ (f([D xDy Dx D]) if Vx G PPER-int ƒ (
\ a otherwise
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If ƒ is a maximal element of [PPER-int - • PPER-int] and Va; G
PPER-int ƒ (x) Çca then it necessarily has to be f([DxD,Dx D]) = a.
Hence V / G Max ([PPER-int -> PPER-int]) U F (ƒ) = a.

In particular, if a = [5, S] we have that

(V2(UF))+ = f] U
/GMax ([PPER-int—PPER-int])

Nonetheless | J |~] (Fn)+ (ƒ) - [{JL, ±} , £> x D].
ne^ /eMax([Type-^Type])

To prove this let us consider the previously introduced function #&.
We have that VxG PPER-int^ (x) Çc& and hence Fn (g^) — gk (en)-
Besides, for a given n by Lemma 9.2 there exists &* such that

gk*(en) = [{±, ±}, DxD].
Therefore Fn (g^) — [{-Ls -L}, flxö] and then V2 is not continuous.
We have then shown that if one whishes to use the PPER intervais as a

basis for a model for an extension of /x-FunK something more subtle that
the natural generalization of our semantics for V/̂  has to be given.
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