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UNIFORMLY GROWING BACKTRACK TREES (*)

by Rainer KEMP (*)

Communicated by J. BERSTEL

Abstract. - We consider a gênerai addiîive weight on afamily of non-regularly distributed binary
trees introduced by P. W. Purdomfor the purpose ofmodelling backtrack trees. This weight dépends
on the structure ofthe subtrees and on weight functions defined on the number of le ave s appearing
in the tree and its subtrees. Choosing parîicular weight functions, the corresponding weight is a
characteristic parameter of the tree.

We shall dérive a gênerai approach to the computation ofthe average weight for arbitrary weight
functions. This gênerai resuit implies exact and asymptotic expressions for many types of average
weights defined on the considered class of trees if the weight functions are arbitrary polynomials
in the number of leaves.

Keywords: Trees, asymptotic analysis, additive weight.

Résumé. —Nous considérons un poids additif général sur une famille d'arbres binaires irréguliers
introduite par P. W. Purdom dans le but de modéliser des arbres à retours en arrière. Ce poids
dépend de la structure des sous-arbres et de fonctions de poids définies sur le nombre de feuilles
figurant dans l'arbre et dans ses sous-arbres. Pour un choix particulier de fonctions de poids, le
poids correspondant est un paramètre caractéristique de l'arbre.

Nous développons une approche générale pour le calcul du poids moyen pour des fonctions de
poids arbitraires. Ce résultat général fournit des expressions exactes et asymptotiques pour de
nombreux types de poids moyen définis sur la classe d'arbres considérée lorsque les fonctions de
poids sont des polynômes quelconques en le nombre de feuilles.

Mots clés : Arbres, analyse asymptotique, poids additif.

1. INTRODUCTION AND BASIC DEFINITIONS

Let T be an extended binary tree ([8], p. 399) with the set of internai nodes,
/ (T), the nonempty set of leaves, L (T), and the root r(T)eI (T) U L (T).
Throughout this paper we shall use the convention that the one-node
tree has no internai nodes and exactly one leaf. For any two nodes
u, v e I (T) U L(T), d(u, v) stands for the distance from u to v defined
as the length of the shortest path (= number of nodes in the path minus

(*) Received April 1992, revised August 1993.
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4 6 R. KEMP

one) from u to v. A node x G I(T) U £ (T) with d(r (T), re) =• l has the
level l. The set of internai nodes and leaves appearing in T at Ie vel / is
denoted by 1/ (T) and Li (T), respectively. The three T has the height ft if
the maximum level of a node is equal to ft.

In [9], a family of trees has been introduced in order to estimate the
number of nodes of a backtrack tree by doing partial backtrack search. This
family of trees !Fp{h), p G [0, 1], ft e No, consists of all extended binary
trees with height less than or equal to ft, where each tree T G Tv (ft) is
associated with a positive real number <pPih (T) recursively defined by:

(à) If T is the one-node tree then <pPi^ (T) :— p&^o + 1 - p, ft > 0;
(b) If T has the left subtree T\ G Tv (ft - 1} and the right subtree

T2 G Tp{h - 1) then ipPjh (T) := p^h~i ( ï i ) ̂ , / , _ i (T2), ft > 1.
The number y?P) ̂  (T) is called the p-weight of the tree T. The trees

T G ̂ "p (ft) with ft < 2 are drawn in Figure 1. It is not hard to see that
for each (p, ft) G [0-, 1] x NQ, the p-weights ipPih (T) define a probability
distribution on the set Tp (ft) (see [9]; Lemma 1). In this paper, we shall
dérive explicit and asymptotic expressions for the expected value of the
following parameters defined on a tree T G Tv (ft):

Figure 1. - AU trees T E Tv (h) for h. < 2. The root of a
tree T is marked by its j9-weight (pPjh(T). q stands for (l — p).

- the degree D (T) of the root;
- the number of internai [extemal] nodes IN (T) [LE (T)];
- the left [right] branch length LBL (T) [RBL (T)];
- the number of internai [extemal] nodes IL(T) [LL(T)] appearing in

the left subtree of the root;
- the number of interna! [extemal] nodes IR (T) [LR (T)] appearing in

the right subtree of the root;
- the number of paths between internai [extemal; internai and extemal]

nodes IP(T) [LP (T); ILP(T)]\
- the number of root-free paths between internai [extemal; internai and

extemal] nodes IPr (T) [LPr (T); ILPr (T)l;
- the internai [extemal] path length IPL(T) [EPL{T%

- the internai [extemal; internal-external] free path length IFPL (T)
[EFPL (T) ; IEFPL (T)];.

The formai définition of each of these quantities is presented in the second
column of Table 1. In order to investigate these parameters, we use the
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UNIFORMLY GROWING BACKTRACK TREES: 47

gênerai concept of "additive weïghts" introduced by the author in [4, 5,
6]. For a given tree T G Tp (h), the weight wp (T) is recursively defined
as follows:

Let ei, C2 E R+ be two constants and let g, $ i , $2 • No —» R be given
mappings, the so-called weight functions.

(a) If T G Fp(h) is the one-node tree then wp (T) : = g (1);

(b) If T G Tp (h) has the left subtree T e Tp (h - 1) and the right subtree
T2 e Tv (h - 1), h > 1, then

wp (T) : - ei wp ( ï i ) + es ^p (T2) + 5 ( \L (T) [ )

All considered parameters can be characterized in a recursive way by
choosing special values for ei and c2, and special functions for g, $1,
$2* The particular choice of these quantities for each parameter is given
in Table 1.

First, we present a genera! approach to the computation of the average
weight Wp (h) of a tree T G Tp (h) for arbitrary weight functions g, <&i, $2 •
It turns out that wp (h) satisfies an inhomogeneous linear récurrence with
constant coefficients (Theorem 1). If the weight functions are polynomials
then the inhomogeneous part of that récurrence is simply a linear combination
of the derivatives of a fixed function defined by another nonlinear récurrence
(Theorem 2). Fortunately, it is possible to dérive an asymptotic equivalent to
these derivatives. This observation leads to an asymptotic equivalent to the
average weight wp (h) provided that the weight funetions are polynomials
(Theorem 3). In the main, we find that wp (h) grows at most linearly in h
if p < 0.5, and polynomially in h if p — 0.5; if p > 0.5 then vrp.(h) has
an exponential growth in h.

In the last section, we shall apply these rather genera! results to the weights
defined in Table 1. We obtain exact and asymptotic expressions for these
parameters together with some non-obvious relations (Tables 2, 3).

voL 29, n° 1, 1995



48 R. KEMP

TABLE l

The définition of distinguished parameters together with their représentation as an additive weight
Here, T is a tree in Tp (h) with r := r (T), I := ƒ (T), L := L (T), the left subtree Ti eTp(h~ 1)
and the right subtree T2 E Tp(h-l), where ƒ; := I(Ti), Li := L(Ti) and r» := r{Ti),
i e {1, 2}. The leftmost [rightmost] leaf of the subtree with the root v is denoted by av [bv].

Parameter

D(T)

IN(T)

LE(T)

LBL (T)

REL (T)

IL(T)

IR(T)

LL(T)

LR(T)

IP(T)

LP(T)

ILP (T)

IPr (T)

LPr (T)

ILPr (T)

IPL (T)

EPL (T)

IFPL(T) x

EFPL{T) 2

IEFPL(T) 3

Définition

2(1 — <5l51 7 U j L | )

UI
\L\

d(r, ar)

d(r,br)

\h\
\h\

\Li\

\L2\

m
(>•;>)<";>)

\h\ | Li | + |/2 | |La |

\ E d(«-̂ )
(u,v)6/x/

5 E d(u'")

\ E rf(«'v)

characterized by the weight wp (T) with

Cl

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

C2

0

1

1

0

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

9{m)

2 ( l - < 5 i , m )

i - < W
Ôm, 1

0

0

0

0

0

0

(V)
(?)
m (m — 1)

0

0

0

0

0

0

0

0

$1 (m)

0

0

0

1

0

m - 1

0

m

0

0

0

0

(T)
m (m — 1)

m — 1

m

(m-1)2

m 2

2 m (m-1)

$2 (m)

0

0

0

0

1

0

m - 1

0

m

0

0

0

(--•)

(T)
m (m — 1)

m — 1

m

( m - 1 ) 2

m 2

2 m ( m - 1)

1 IFPL (T) and wp (T) are interrelated by wp (T) = \I\ IPL (T) - IFPL (T) (see [4, 5]).
2 EFPL (T) and wp (T) are interrelated by wp (T) = \L\ EPL (T)-EFPL (T) (see [4, 5]).
3 IEFPL (T) and tup (T) are interrelated by wp (T) = | / | £ P L (T) + | L | / P L (T) -

IEFPL (T) Cw?e [4, 5]).

Informatique théorique et Applications/Theoretical Informaties and Applications



UNIFORMLY GROWING BACKTRACK TREES 49

2. A GENERAL APPROACH TO THE COMPUTATION OF THE AVERAGE WEIGHT

In this section, we shall present a gênerai approach to the computation of
the average weight wp (h) of a tree T G Tp (h). The observations stated in
the following lemma can be proved by induction on h using the recursive
définition of the p-weight ipPi h (T) presented in the preceding section.

LEMMA 1: Let h G No, T G Fp (h) and <pPjh(T) be the p-weightofT.
(a)We have: ipp^h(T) = p\J(T)\ {1_p)\L(T)\-\Lh(T)\

(b) The séquence (pp^h (T), T G Tp (h), is a probability distribution on
Fp{h). •

An inspection of the preceding lemma shows that we obtain big bushy
trees with high probability if p is near 1 and little short trees with high
probability if p is near 0; for p near 0.5, we obtain long skinny trees
with high probability. Henceforth, we say that the tree T G Tp (h) has the
probability tpp^ (T) explicitly given in part (a) of Lemma 1.

Now, let 4h) (™, k) := {T G Tp (h) | ( | L (T) |, \Lh(T)\) = (m, k)}
be the set of all trees T G Tp (h) with m leaves and k leaves at level
h. Note that each T G ^h) (m, k) has the probability p™'1 (l-p)m~k.
Introducing the generating fonction

n u (z v) — V V éh) (ra k) zm vk (1)
m>l k>0

of the numbers tp (m, k) := \^Fp (m, k) \, we find

n r\ ( y 9 II Vil TT i ( y QI I y I TT f y II 1 ft "^ 1 ( / \

P,0 \z-> y) — zy<> llp,h \zi y) — z -\- np h_^ ^z, y), n ^ i . yz,)

The initial condition of this récurrence follows from the relation
tp * (m, k) — 6m^i 6^1- The récurrence reflects the fact that a tree
T G Jp (m, fc) is either the one-node tree [giving the contribution
z to Tlp^h{z, y)] or a tree with a left subtree T\ E 4 " (mi, fei)
and a right subtree T2 G ^p ~ (m2, £2)» where mi + m2 — m and
fci + &2 = fc [giving the contribution 11̂  h_1 (z, y) to 11^^ (z, y)]. Note
that p " 1 IIp^ (p(l — p), (1 -p)~l) — 1 for all h G No because <^p^ (T)
is a probability distribution on Tp (h).

Next, let ^h) (m, A;, «;) := {T G ^ f e ) (m, fe) | wp (T) = «;} be the set
of all trees T e Tp (h) with m leaves, k leaves at level h and weight u>.

vol. 29, n° 1, 1995



50 R. KEMP

The cardinality of Tp ' (m, ky w) is denoted by 4 (m> &> w). Since each
T e F^ (m, fc, IÜ) occurs with probability p m ~ a (1 -p)m~k, the average
weight of a tree ^ (/i) is given by

E
fc>0 ta>0 T€^i h > (m, Jfc, w)

A;>0

Hence, introducing the generating function

Wp. fc (z, », x) := X; E E 4ft) ("». >̂ «,) zm / xw (3)
m>l fc>0 io>0

of the numbers tp ' (?n, &, IÜ), then we find for the average weight wp (/i)

p 1 — W^,ft (zy y, x) (4)

It remains to dérive an expression for the function WPih {z-> V-> x)- This will
be done in the proof of the following theorem.

THEOREM 1: The average weight wp (h) of a tree T G Tv (h) is recursively
given by

[9 (m) 4op

m>l k>ö

+ p ($1 (m) + $2 (m» tf~l) (m, k)] pm~r (1 - p)m—k

Proof: Obviously, WPIQ(Z, y, X) = zyx9^\ Thus, wp (0) = 5(1) by
(4). Now, let h > 1. A tree T E J ^ (m, &, w) has m leaves, k
leaves at level h and weight w if and only if the left [right] subtree
ï i e Tp{h- 1) [T2 G ̂ p (/i - 1 ) ] has m\ [m2] leaves, h [k2] leaves at
level h — 1 and weight wi [102], where m\ + rri2 = TU, k\ + k2 — k and
w — g (m) — c\ w\ + C2 ̂ 2 + ^1 {TTI\ ) + $2 ^ 2 ) - Translating this fact into

Informatique théorique et Applications/Theoretical Informaties and Applications



UNIFORMLY GROWING BACKTRACK TREES 51

terms of the generating functions

/ft) (m h

ro>l

« ^ {1 , 2}?

and

we immediately find the relation

w>0

Since ; ̂^ w) = 4 w e n a v e

^pji (z ' V-> x) = ^p2i (^' ?/' !) = np,/^ (^' V)i w h e r e np,ft ( ^ 2/) i s defined
in (1). Using these relations and taking the partial derivative on both sides
of (5), we find by an elementary computation

r j

x = 1 k>0

— Wp, fo_i {̂ , y, a;)
x-\

E E (*i •> h\ v™ tl MTT T -i f -y ?A (6)

Multiplying this équation by p 1 and setting (z, y) :—
(p(l —p), (1 —p)"1), we obtain by (4)

/c>0

1 (1 - p)m~k

- f (d + c2) wp (A - 1) + E E
L m > l fc>G

(m)) « ^ - ^ (m, k)pm~l (1 - ^fc . ! (p (1 - p), (1 -

vol. 29, n° 1, 1995



5 2 R. KEMP

Since ILPth(p(l — p)> ( 1 - p ) " 1 ) = p for all h > 0 this équation is
equivalent to the expression présentée in our theorem. D

The gênerai resuit présentée! in Theorem 1 shows that the average
weight wp (h) satisfies an inhomogeneous linear récurrence with constant
coefficients. The inhomogeneous part of that récurrence dépends on the
weight functions $i (m), i G {1, 2} and g (m). If we restrict these functions
to polynomials in the variable m then we can express the inhomogeneous part
by the fonction FPih(z) := p'1 Up^h (p(l - p) z, ( 1 - p ) " 1 ) . We obtain
the following result.

THEOREM 2: Assume that the weight functions $i (m), i G {1, 2}, and
g (m) have the représentations

g(m):= £ gxm
x and <J>, (m) =: ^ /i°mA , i € {1, 2}.

Furthermore, let p := max {di, ĉ2 j d}. 77ie average weight wp (h) of a tree
T ^ Tp (h) is recursively given by

0<A<p 0<j<A

X [ffA ̂ f i (1) + P Ui1] + / f ) ̂ ° l - l (1)], ^ > 1,
where S%* is a Stirling number of the second kind and F^l dénotes the j-th
derivative with respect to z of the function Fp^h (z) defined by the récurrence

Fp ,o (z) = z, Fp.h (z) = (i-p)z+pFlh^ (z), h>l.

Proof: Inserting the given représentations of g (m) and <&i (m), i G {1, 2},
into the récurrence for wp (h) presented in Theorem 1 and using the

well-known identity mx = ^ j \ l ) S%* as well as the définition
0<j<A ^ J ^0<j<A

of Up,h (zi y) given in (1), we find for h > 1

E
0<\<p0<j<\

Informatique théorique et Application s/Theoretical Informaties and Applications



UNIFORMLY GROWING BACKTRACK TREES 53

where FPih(z) := p'1 ILPjh (p (1 - p) z, (1 - p) l). Translating the
récurrence for Hp^h (z, y) stated in (2) into terms of the function Fp^ (z),
we immediately find that FPth (z) obeys the same récurrence as Fp-9h (z)
introduced in our theorem. Thus, FPj h = Fp^. This complètes the proof. D

Remark 1: Since Fp ^ (1) = 1, we find by the récurrence for FPjh (z)
presented in Theorem 2

and for s > 2

0<i<6
- C7)

The récurrence for F^ A (1) can be solved by itération. We find

if p 6 [O,
_ J 2p-l l - 2 p (8)

Solving the récurrence (7) for s :— 2, we find by (8) the exact expression

( 2 p - l ) 3

if p e [ o , i ] \ -

(9)

24
(2h2 + 9h + 13) if p = - . D

All the weights introduced in Table 1 [except D (T), IN(T) and LE (T)]
have weight functions g (m) and $^ (m), i E {1, 2}, which are polynomials
in m of degree less than or equal to two. Restricting Theorem 2 to this case,
we obtain the foliowing result by (8), (9) and the relation FPjh (1) = 1.

COROLLARY 1: Assume that the weight functions <&i (un), i E {1, 2}, and
g{m) have the représentations

g(m) = go + fliro + and = /0
W + ƒ}*) m + rn2

vol. 29, n° 1, 1995



54 R. KEMP

Moreover, let K\ :— f^* + /^ ' and c :—. c\ + C2. Tfte average weight wp (h)
of a tree T E Fp{h) is recursively given by

(/l) = <

pcwp (A - 1) + Ai (2p)2h + [A2

if PG[O,l]\|i}

'A - 1) + Bi h3 + B% h2 +

+

2(2p-l)
-1)

2 [(2p - (p -

A 4 =
( 2 p - 1)
+ (2p2 - 2p + 1) (p - 1) (52 + p«2)]

- l ) 2 (p -

if p = ^

1
 rn -,

1
16
1

= 48

S 4 = - [8 (go + 5i + 92 ) + 4 «o + 2 rei + K2] O
o

Next, we shall dérive an asymptotie equivalent to wp (h) for large h. In
the corresponding computations, we shall often use the following identities
(convention 0° := 1)

hm

0<i<h

1 - r e
D(hm-L) if J < 1

O(hm) if x = l, (10)

xh + O (hm) if x > 1

Informatique théorique et Applications/Theoretical Informaties and Applications



UNIFORMLY GROWING BACKTRACK TREES 55

where x G R+ and m E No fixed. Here, Am (x) dénotes the m-th Eulerian
polynomial ([2], p. 244; [3], p. 214). For x < 1, the identity follows by
applying the binomial theorem to (h — i)m. For x — 1, the identity is a
conséquence of the relation ([2], p. 155; [3], p. 215)

E fcm = 3TT[Sm+l(fc+l)-Bni+1J,
o<k<h + 1

where Bm (x) - xm + O (xm~'1) is the m-th Bernoulli polynomial ([2],
p. 48; [3], p. 215) and Bm = Bm (0) is the m-th Bernoulli number. For
x > 1, the identity follows by reversing the sum and by applying the gênerai
relation ([2], p. 245; [3], p. 214)

E \m X Am (x) . « t

A X — TT, \X < 1.
1 x)

A>0 V1 x)

Now, we are ready to prove the following technical resuit.

LEMMA 2: Let Fp^ (z) be the function introduced in Theorem 2.
(a) Let p < 0.5. We have for fixed s > 1:

where as satisfies the récurrence

1 - p 2p

(b) Let p — 0.5. We have for fixed s > 1:

where (3S satisfies the récurrence

(c) Let p > 0.5. We have for fixed s > 1:

Fi% C1) = 7* (2p)fts + O (h1-

where 75 satisfies the récurrence

s>-2-

vol. 29, n° 1, 1995



56 R. KEMP

Proof: An inspection of formula (8) shows that our statements are valid for
s = 1. The gênerai récurrence for F^f h (1) presented in (7) implies for s > 2

E
0<\<h

x Y [" ~)Kji x i ( i ) ^ r r j i i ( i ) , s>2. ( i i )
\<3<s

Now, the results presented in (a), (b) and (c) can easily be verified by
induction. The induction step in each case is as follows:

(a) We find by the récurrence for as and by (10) with x — 1

= E
A<

E
x [as-j + O((h-X

E

Using the récurrence for (3S, we obtain by (10) with x = 1

E
x E

Informatique théorique et Applications/Theoretical Informaties and Applications



UNIFORMLY GROWING BACKTRACK TREES 57

(c) Making use of the récurrence for 7$, we find by (10) with x = 1
and x < 1

F W ( I ) = y (2p)A+1 T fa"M[7i(2p)i(fc-A-1)

O((h - X - l)1

= 7 , (2pYh [1 - (2p)-(s-1)/ l] + O (h1-61- 2h(s~1)). D

Remark 2:
(i) The récurrence for as presented in part (a) of the preceding Lemma 2

can be solved in the following way: let ao := 0 and let A (z) := ^~J —y zs

s>0 S-

be the exponential generating function of the numbers as. Translating the
récurrence into terms of A (z), we immediately find the differential équation

Integrating this équation on both sides and using the initial condition
A (0) = 0, we further obtain

Solving this quadratic équation, we find

1/21
A(z) = l-2p

1 - 1 - 4 - ^ r-^z
2p

because A (0) = 0. Now, using the known évaluation ([3], p. 206)

vol. 29, n° 1, 1995



5 8 R~ KEMP

with y := — ^ z9 we finally obtain [also for p = 0]

3 (s - 1)1(1-2P)2*-1'

(ii) In the same way, the récurrence for fls given in part (b) of the preceding

Lemma 2 can be solved. Let 0Q :~ 0 and let A(z) :=• Y^ ~ zs be the

exponential generating function of the numbers f3s. Here, the récurrence
implies the differential équation

A(z)A'{z) = 2[zA'{z)Y-A'iz)-±.

Integrating this équation on both sides, we obtain by means of the initial
condition A (0) = 0

* ) A ( * ) * .

Now, the substitution A (z) := z1!2 A\ (z) yields À\ (z) = 4 zll2 A[ (z) - 1 .

This Riccati differential équation can be solved by separating the variables.

W e o b t a i n A x { z ) = t a n (-z1/2\ T h u s , A ( z ) = z l l 2 t a n ( i z l \

Using the known évaluation ([1], p. 75)

*-«-£—m
where Bm is the m-th Bernoulli number, we finally obtain

P$ =
 2S ?2J (-1)5"1 B2s, s > 1. (13)

(iii) Unfortunately, the procedure used in (ii) and (iii) does not lead to an
explicit expression for 7S defined by the récurrence stated in Lemma 2(c).
Introducing the exponential generating function A{z) := 2_\ ~T0S> w e

obtain the functional équation A2 (z) — p"1 A (2pz) - 2 A (z). To date, the
author is unable to solve this équation. 0

Now, we are ready to prove the following rather gênerai resuit.
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THEOREM 3: Assume that the weight functions $i{m\ i E {1, 2}, and
g (m) have the représentations

g(m):= ^ gx mX and <ï>i(m):= * € {1, 2},

Furthermore, let p = m a x {d\, c?2, c?}» c : = ei + C2 and f\ :=• p {/ | ^ + / ^ ^j .

T/ze average weight wp (h) has thefollowing asymptotic équivalents for large
h:

(a) If p = 0

f ffo + ƒ0

1 — pc

k pc — 1

if pc < 1

i f pc = 1

x/ pc > 1

(b)If p > 1

(èij ƒƒ p < 0.5

(/l) = <
p (1 - pc)

,Ö(N")

i ƒ pc < 1

z ƒ pc = 1

if pc > 1,

where ipp (h) = {2pf ^ ~
Cp (p) is the constant

h ifif c < 2, and % {h) = \pc)h if c > 2. Hère,

where Q\ (x) is the polynomial Q\ (x) = J J

(b2) If p = 0.5 then:

(2j-2)!

O" " 1)1

w p (/i) = <
2-c

2p
* ƒ c = 2

if c>2
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p\ (22p — 1)
Hère, Cp is the constant Cp~2 (gp + fp) —- (-l)p B2p, where

is a Bernoulli number.
(b3)Ifp > 0.5 then:

wp (h) = <

(2p)p-pc
pc<l\Z(pc>lAp>r)

h) if pc>lAp = r

,O(\pc]h) if pc> lAp<r

where r = In (pc)/In (2p) and ipp(h) = (2p)h^p~l) h1'6^1 O - ^ . O if
pc < 1, if>p(h) = (2p)h^p~1)h}+è^^ if pc > 1 A p > T+ 1, and
ipp (h) = [pc]71 if pc > 1 an<i r < p < r + 1. //ere, C^ ÏJ ^ constant
Cp = js [(2p)P 9p + fp]s where ^s is given by the récurrence established
in Lemma 2(c).

Proof: Iterating the récurrence for wp (h) presented in Theorem 2, we
obtain

wp {h) =

or equivalently

{pc)hg{l)+ J

x 2 ^ ÔA [9\
0<j<\

2 (pcT
,<h 0<A<p

0 + /A

(pc)11

0<fi<h

+ E E 43)GKj(h), (14)

where

Gx,iW= E

For p — 0, we have # (1) = po and our result established in part (a) follows
by using the closed formed expression for the geometrie series.
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Now, let p > 1.
(i) The case p < 0.5.

Inserting the expression for F^ (1) presented in Lemma 2(a) into (15),
we immediately obtain

£ (h -
0<fi<h ^

By (10), the O-term is equal to O (ïpj (h))9 where ij)j (h) is the function
introduced in part (bl) of our lemma. Hence, by (14)

E
l<A<p

Now, our result established in part (bl) follows by the définition of aj
presented in (12) and the closed formed expression for the geometrie series.

(ii) The case p = 0.5.
Using Lemma 2(b), we find by (15) for c / 0

and further by (10)

2

GX,}(h)=\
— c

if c = 2

if c > 2

For c = 0, this result can be verified directly using (14), (15) and
Lemma 2(b). Inserting the derived expression for G\j(h) into (14), the
result stated in part (b2) of our lemma follows with (13).
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(iii) The case p > 0.5.

Inserting the expression for
obtain for c -é. 0

^ (1) in Lemma 2(c) into (15), we

0<ti<h

Discussing the particular choices for j [Le. pc < (2p)k, pc = (2p)k,
pc > (2p)k for k G {j, j - 1}], we find with (10) by a lengthy computation

j (h) = {

-pc
if pc < 1V (pc > 1 A j > r )

h + O (\pc}h)SX + /A

if pc > 1 A j = T

O(\pcf) if pc>lAj<T

where the number r and the function tjjj (h) are introdueed in part (b3) of
our lemma. This équation is also valid for c = 0. Now, our resuit established
in part (b3) follows immediately by (14). D

3. THE GENERALIZED WEIGHT

In particular applications (cf. Section 4) the average "generalized weight"

= E E E
ra>l k>0 w>0

is of interest. Using the définition of the function Wp^ (z, y, x) introdueed
in (3), we obtain

wi1J (h) = (i-p)JLJj-Wp,h (z, y, x)
)
(16)
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Taking the partial derivative with respect to z on both sides of équation (6),
we find by means of (4), (16) and the relation Up^ (p{l~p), (l~p)~1)=P

w'11 (h) = + c2) wj?1 (h - 1) +

(m) + $2 (m)) t ?

E m \9

m, fc)] p

(m, k)

+ P (ci

fc>0

where Mp^h •= (1 ~ P)-^-^-p,h(z, y)

Now, the récurrence (2) implies that

Mp.h = 2p-l
if [O, l]\{i}

1+ifc

\Using this relation and Theorem 1, the above récurrence for wp\h) can
be transformed into

^-! Wp (h)

w?1 (0) = g (1)

w|,1] (h) = p (Cl + C2) wj,11 (/! - 1)

+ E E Km - MP.A-
ö

( (m) + $2 (m))tf "1} (m, fc)]pm-x (1 -p) m " f c . (18)

Restricting the preceding considérations to the case that the weight functions
$i (m), à € {1, 2}, and # (m) are poLynoinials in m of degree less than or
equal to one then we find by (18) the following result

CoROLLARY 2: Assume that the weight functions <&i (m), i G {1, 2} and
g(m) have the représentations

g (m) =go+gim

vol 29, n° 1, 1995
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Moreover, let K\ := f \ + f \ and c : c i + C2- 77^ average generalized

weight Wp * (h) of a tree T € Tv (h) is recursively given by

where

pcw[p] (h - 1) + Ci w p (h) + C2

- c wj>1] - 1) + w p + Z)2 /i
3 + D3 h

2 + D4 h + D5

if P=\

2(2p-l)
V

[2(p-l)+(2p)h]

2{2V-iy

+ p(2p~ I)«o+P(p-l)«i]

P(P~ 1) (2p — 1) ^0 + (2p — 2p

— 12 «o

D
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4. APPLICATIONS

In this section, we shall apply the gênerai results presented in the
previous sections to the particular weights introduced in Table 1. Using
the gênerai relations established in Theorem 1, Corollary 1 and Corollary 2,
the computation of exact expressions for the average weights does not present
any difficulty. Let us consider two examples.

(1) The average number of internai nodes IN (h) of a tree T G J P (h)
is characterized by the parameters

(ei, c 2 , s (m) , $1.(171), $ 2 (m)) = (l, 1, l - « m , i , 0, 0).

Interesting these quantities into the récurrence established in Theorem 1,
we find

IN (0) = 0

IN (/O = 2plN(h- 1) + E E 4h) ^
m>2

) ' 1

and

-p), (i-p)'1)

k>0

= 2pïN(h- l

where Tip^h is the fonction given in (1). Here, we have used the relation

Solving the above récurrence for IN(h)9 we obtain the resuit for IN (h)
presented in Table 2.

(2) The average internai free path length IFPL (h) of a tree T G Tv (h)
is given by [cf. Table l]

IFPL (h) = IPL l̂ (h) - IPL (h) - wp (h), (19)

where IPL'1] (h) is the average "generalized internai path length"
[cf. Section 3] and wp (h) is the average weight [cf. Table 1] which

vol. 29, n° 1, 1995



66 R. KEMF

is characterized by the parameters (c\\ C2, g{m), $1 (m), $2 (^)) =
(1, 1, O, (m - l ) 2 , (m - ï)2) . For p ^ 0.5, the resuit estabîished in
Corollary 1 yields

2/(2/-!)
+ (2p-l)3 ' ^ L

This récurrence can be solved by itération. We obtain

+ (h (2p - l)2 (ftp - 2p -h)-Zp + 4p3)

+ 2p(l-2p2)]. (20)

An inspection of Table 1 shows that the average internai path length IPL (h)
is characterized by the parameters

(ei, C2, ̂ (m), # i (m), #2 (m)) = (1, 1,0, m - 1, m - 1).

Here, Corollary 1 leads to the récurrence

I P L (0) = 0

IPL (h) = 2PIPL (h - 1) + ̂ - j (2p)h - ^ - j , k > 1,

which has the solution

IPL(h) = P
 2 {(2hp-2p- h) {2pf + 2p}. (21)

(2p-l)

Now, the resuit présentée in Corollary 2 tells us

IPLW (o) = o

I P L U (h) = 2pIPLM (h - 1) + 2 ( 2 p
1

1 ) [(2p)ft + 2 (p - 1)] IPL (ft)

(2p-l)3
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Inserting the explicit expression for IPL(/i) given in (21) into this
équation, we obtain a récurrence for I P L W (fr) which can also be solved
by itération. We find the explicit expression

lp!™ (h) = - - 4 [(2hp -2p-h) (2p):

+ {3h2 ( p - 1) ( 2 p - l)2 -h{p- 1) (2p - 1) (2p + 3)
- 4p(2p2 - 6p + 3)} (2p)fe + 4p(p - 1) ( 2 p - 3)]. (22)

TABLE 2

77ïe exact values ofthe average weights introduced in Table L

Parameter

|D(A)

IN (ft)

: L E W

LBL (A) 1

L=LLR(A)}

ILP(ft) |

I P ' W

exact expression

P5ÉO.5

2j»

2 r 2 p — 1}

2 {2p — 1 )

x (2Ap-3p--2fc)(2p)& + 2p(3p-2)l

x (2hp-hp-2h- 2) (2p)h -2(p- l)2];

ö- [(2p) + 2 {2p — 1}
4 (2p — 1)

x (2 fep - 5p - 2 h + 2) (2p)h + 8 / (3p - 2)]

p = 0.5

1

h
2

k + 2:
2

l - 2 - f c

/ i - l
4

; 4

; A (f t- l)(2ft + l l )
48

! h(2h2 +9ft + 13)
24

; (h - 1) (ft - 2) (2 ft + 9)
! 48
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TABLE 2 (continuée!)

Parameter

ILP r (h) 1

= 2LPr(A)J

IPL (h)

EPL (h)

IFPL (h)

EFPL (h)

IEFPL (h)

exact expression

2 ( 2 ; - i )3 [ ( 2 p ) 2 h + 2 ^- i )

x{2hp-p-2h){2p)h _8p(p-l)2]

— ^ - 2 [(2 fep - 2p - A) (2p)h + 2p]
{Zp — IJ

P [(2Ap + 2p-ft-2)(2p)*
(2p- 1)

-2(p-l)]

2 ( 2 / - l ) 4 l ( 2 ^ " 2 j 3 " ^ ' 1 ) ( 2 p ) 2 W

x(2p2-3p-l) + 2p(4p-l)}(2p)^

-4p(p-l)]

+ {/l
2(p-l)(2p-l)2 + /l(p-l)

x(2p-l)(6p-7)

-2(4p2-7p + 2)}(2^-4(p-l)2]

{2p
P_i)4[(2hp-h-2)(2p)2h+1

+ {h2{p-l){2p-lf + h{2p-\)

x {2p2 -5p + 4)

+ 2(3p-l)}(2p)A-2(p-l)]

p^ö.b

{h l)(2/i2+5/i + 6)
24

h{h-l)
4

/i(/i + 3)
4

fc (/i - 1) {h + 1) (/i + 2)
32

h(A + l)(/i + 2)(3A + 13)
96

ft(/i + l)(/i + 2)(3ft + 5)
48

Finally, inserting (20), (21) and (22) into (19), we obtain the corresponding
resuit for I F P L (h) presented in Table 2. For p — 0.5, the explicit expression
for IFPL(h) can be computed in the same way. Alternatively, we can apply
L'Hospital's rule to the expression for IFPL (h) with p ̂  0.5.

The asymptotic results displayed in Table 3 can be verified by using
the explicit expressions presented in Table 2 or by a direct application of
Theorem 3. For example, consider the average external path length EPL (h)
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TABLE 3

The asymptotic équivalents of the average weights introduced in Table L

69

Parameter

D(ft)

IN (/O

LE (ft)

LBL (ft) 1

= RBL (ft) J

IL (ft) 1

= IR(ft) j

LL(ft) 1

IP(ft)

ILP (ft) 1

= 2LP(ft) ƒ

IPr (ft)

ILPr (ft) ï

= 2LPr(ft)J

IPL (ft)

EPL (ft)

IFPL (ft)

EFPL (/i)

IEFPL (h)

asymptotic expression for h —> oo

p < 0.5

2p

P

1 - P
l~2p

P
p-1

P2

l-2p

P(l-P)
l -2p

p2(2-3p)
(1 - 2pf

ÏP(1-P)2

{l-2pf

2p3(2-Sp)
(l-2pf

4p2 (1 pf

(l-2pf

2p 2

(l-2p)2

2p(l-p)
[\-2pf

2p2(l-p)
(1 - 2pf

2p{\~pf
(1 -2p)4

2p(l-p)

p = 0.5

1

/i

2

ft
2

1

ft
4

4

ft3

24

12

ft3

24

ft3

12

4

ft2

4

32

ft4

32

ft4

16

p > 0 . 5

2p

2p-l (2p)

1 ft 2/ P = 1

P (n \h
2(2p-l)["P)

P / O Nh

2(2p-l) - P

2 ( 2 p — 1 )

( 2 Ü — 1)

P /n )2fc .

4(2p-l)3

2(2, 1)

2 p - l ( 2 p )

2 p - l ^

p2ft 2 / l

(2p- l ) 3 ( i j P )

p 2 ft (^ \2h

(2p- l)3 ^ ^

2p2ft 2h

: (2p^l)3 ( " P )
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which is characterized by the parameters

(ei, c 2 , ^ (m) v $i (m), $2 (m)) = (1, 1, 0, m, m).

Applying Theorem 3, we find p — 1, c — 2 and f\ — 2p8\^i. Hence, part
(bl) of that theorem tells us for p < 0.5

with

p(l-p)

, ( l - 2 ^ ) 2

For p = 0.5, part (b2) of Theorem 3 yields

_ d 2

2

1! (22 — 1) o 1
where Ci = 2 — - — (—1) B<i = - . Finally, we obtain by part (b3)

for p > 0.5 [note that r = p = 1]

EPLffc) = C1(2p)h-1k+O\

2p2

where Ci = 71 2p = . Note that all O-terms are exact [see Table 2],
2p — 1

Remark 3: The average number of nodes appearing in a tree T £ Tv (h)
is given by

This result has already been proved in [9]. The remaining results are new.

An inspection of Table 3 shows that the given weights satisfy some
interes ting relations. For example, the following f acts are valid for large h:

• The average number TPT{h) [resp. LP r (h)\ ILP r (h)] of root-free paths
between internai [resp. external; internai and external] nodes is asymptotically
proportional to the average number IP(h) [resp. LP (h)\ ILP (h)] of paths
between internai [resp. external; internai and external] nodes; the proportional
factor is 2p if p < 0.5 and (2p)^1 if p > 0.5;

• The average internai [resp. internai free] path length IPL (h) [resp.
IFPL (h)] is asymptotically proportional to the average external [resp.

Informatique théorique et Applications/Theoretical Informaties and Applications



UNIFORMLY GROWING BACKTRACK TREES 7 1

external free] path length EPL (h) [resp. EFPL (/i)]; the proportional
factor is asymptotically p(l — p)"1 if p < 0.5 and 1 if p > 0.5. The same
relation holds for the average number of internai nodes IN (h) and the
average number of external nodes LE(/i);

• The product of the average internai free path length IFPL (h) and the
average external free path length EFPL (h) is asymptotically proportional
to the quadrat IEFPL2 (h) of the average internal-external free path length;

the proportional factor is equal to p (1 - p) if p < 0.5 and - if p > 0.5;

• The product of the average number IP (h) of paths between internai
nodes and the average number LP (h) of paths between external nodes is
asymptotically proportional to the quadrat ILP2 (h) of the average number
of paths between internai and external nodes; the proportional factor is equal

to -p (2 - 3p) (1 - p)2 if p < 0.5 and - if p > 0.5. The same fact holds

for the corresponding average numbers of root-free paths. O

5. FINAL REMARKS

In this paper, we have presented a gênerai approach to the computation of
the expected additive weight, wp (h) of a special class of binary backtrack
trees. There are three technical questions raised by the given approach;

(1) What is the exact solution of the récurrence for j s established in
Lemma 2(c) or of the functional équation presented in Remark 2(iii)?

(2) Can the polynomials Q\ (x) appearing in Theorem 3(bl) be expressed
by familiar polynomials?

It is not hard to show that

Qi(x)=x and Qx(x) = xfj. + éx)Qf
x_1(x)-2xQX-i{x), A > 2.

Introducing the substitution Q\ (x) := (1 + 4x) * h\ (x), this récurrence

implies h\{x) = x ( l + 4x)~1^2 and h\ {x) = x (1 + 4x) h/
x_1 (x) for

A > 2.
(3) What is the asymptotic behaviour of the average "generalized weight"

introduced in Section 3?
Finally note that the defined class of backtrack trees can be generalized

by introducing a new p^ for each h, Thus, the définition of the p-weights
of a tree alters to

(a) If T is the one-node tree then (p^h (T) := pu Ôh,o + 1 - Ph* h > 0;
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(b) If T has the left [right] subtree T\ [T2] then

Vfrh (T) := pft ^ h _ ! (TL) ^ - i (T2), fc > 1.

It is not hard to see that the séquence ^ /> (T) is again a probability
distribution on the set !F$ (h) consisting of the backtrack trees with height less
than or equal to h. The probability <p^ ̂  (T) of such a tree T G T$ (h) is now

= n pj ifc-j(r)i(i-«) |L^(r)|-

Generalizing the presented methods, the average behaviour of the expected
values of the parameters defined in Table 1 can also be computed for the
family Fp(h). For example, we find D (h) = 2ph and

LE(/i)

T "DT ( U \

EPL(fc)

IPL (h)

= IN(/i) +

~D "D T / L \
= xvrJL(/iJ

= E o-
0<j<h

= E i=
o<i</i

0<j<A

V^ TT

= 2^ 11 *
0<j<fc0<A<j

+ 2)2^ 5 3 Pfe
0<A<j

!j n P -̂A

1 n
0<\<j

?h-X

-X

It would be interesting to dérive the asymptotic average behaviour of the
introduced additive weight for this family F${h) in gênerai.

Another generalization of the presented concept is its extension to gênerai
rooted trees. Such an extension has been discussed in [10]; there, the concepts
developed in this paper have been generalized to a subclass of simply
generated trees with a given finite set of allowed node degrees.

Finally, notice that particular non-additive weights have been discussed in
[7] and [11]. There, the average behaviour of the "stackfunction" and of the
"registerfunction" has been considered for the family of trees Tp (h).
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