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TOKEN TRANSFER IN A FAULTY NETWORK (*)

by Krzysztof DIKS (*) (**), Adam MALINOWSKI (*) (***)
and Andrzej PELC (2) (****)

Communicated by W. RITTER

Abstract. -A token originally siîuaîed in a givenfault-free node of the complete network, called the
source, has to visit all other fault-free nodes. Links and/or nodes of the network f ail independently

_yvith_ probabilities p < 1 and__q< 1, respectively. In a unit of time every node can be involved
in at most one transmission; transmissions along a faulty link or involving a faulty node do not
succeed. We consider various communication models depending on the ability of nodes to modify
their behavior according to the outcome ofprevious transmissions. For all models we present token
transfer algorithms working fast and with probability of correctness exceeding 1 — n~e, where n
is the number of nodes and e an arbitrary positive constant

Résumé. - Un jeton, situé d'abord dans un nœud fonctionnel d'un réseau complet, appelé la source,
doit visiter tous les autres nœuds fonctionnels. Les liens et/ou les nœuds du réseau tombent en panne
avec probabilités p < 1 et q < 1 respectivement ; toutes les pannes sont indépendantes. Pendant
une unité de temps chaque nœud peut participer à au plus une transmission ; les transmissions dans
lesquelles participe un nœud ou un lien défectueux n'ont aucun effet. Nous considérons plusieurs
modèles de communication selon la capacité des nœuds à modifier leur comportement compte tenu
des résultats des transmissions antérieures. Pour tous les modèles nous présentons des algorithmes
de transfert du jeton qui sont à la fois rapides et qui travaillent correctement avec probabilité plus
grande que 1 — n~£, où n est le nombre des nœuds et e est une constante positive quelconque.

1. INTRODUCTION

Token transfer can be considered as a variation of the well-known
broadeasting problem. In broadeasting, one node, called the source, has
to transmit a message to ail other nodes. [14] is an extensive survey of
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384 K. DïKS et al

the domain of broadcasting and closely related gossiping. Broadcasting and
gossiping in networks with faulty links and/or nodes have been recently
studied by many authors [1, 2, 4-6, 9-12, 15]. While the classical approach
assumes an upper bound on the total number of faults and their worst
case location [1, 11, 12], probabilistic models, where links and/or nodes
fail independently with constant probability, have recently gained growing
attention [2, 4-6, 9, 10, 15], The goal in this case is the design of efficiënt
algorithms which work correctly with high probability.

The special characteristic of token transfer, which distinguishes it from
classical broadcasting, is that the same token has to visit all (fault-free) nodes
in a sequential way, while in broadcasting all nodes that are already informed
can disseminate the source message in parallel. Thus token transfer, even in
fault-free networks, requires linear time, unlike classical broadcasting which
can be done in logarithmic time. A similar variation of broadcasting has
been considered in [3, 8] under the name of linear broadcasting: the task
considered there was visiting every node by one of several tokens originally
stored in the source. Thus our token transfer problem can be viewed as
linear broadcasting with a single token.

We work under two alternative fault assumptions: in one of them nodes
are fault-free and links fail independently with constant probability p < 1;
in the second, links and nodes of the network fail independently with
probabilities p < 1 and q < 1, respectively. The scenario with faulty nodes
and fault-free links is not discussed, since in this case an asymptotically
optimal algorithm always working correctly is trivial. In both cases faults
are assumed permanent and of crash type: a transmission involving a faulty
link or node does not succeed.

Under each of those fault scénarios we consider four communication
models based on different ability of nodes to adapt their behavior according
to success or failure of previous transmissions. Models range from non-
adaptive, where communication scheduling is completely rigid, to adaptive
which are characterized by large flexibility of transmissions. These models
are precisely defined in section 2.

As usual in the theory of broadcasting and gossiping, we assume that
in each time unit a node can be involved in at most one transmission.
Our goal is the design of fast token transfer algorithms which have the
following reliability property: given a positive constant e, the algorithm
works correctly in n-node networks with probability exceeding 1 — n~€.
Such algorithms are called e-safe. For each model and every e > 0 we
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TOKEN TRANSFER IN A FAULTY NETWORK 385

present a fast e-safe algorithm: time complexities of our algorithms range
from O (n) to O (n log n).

The paper is organized as follows. In section 2 we give a précise description
of our communication models and some preliminary probabilistic facts used
later on. Section 3 is devoted to the fault-free node scenario, while in
section 4 we study the assumption of both link and node failures. Section 5
contains conclusions and open problems.

2. MODEL DESCRIPTION AND PRELIMINAIRES

The communication network is represented as a complete n-node directed
graph whose vertices are nodes of the network and arcs unidirectional
communication links. Nodes are labeled with integers 1, . . . , n and the are
from v to w has label vw. The node with label 1 is called the source. All
nodes know all labels.

Our algorithms are synchronöus: processors use a globsdclöck. In one time
unit every node can be involved in at most one transmission: it can call or
be called by at most one other node, these two possibilities being exclusive.

We consider two fault scénarios. In the first, nodes are fault-free and links
f ail independently with probability p < 1. In the second, links and nodes
other than the source f ail independently with probabilities p < 1 and q < 1,
respectively. It should be stressed that failures of links vw and wv are also
independent. The source is assumed fault-free. All faults are permanent (the
fault status of a component does not change during algorithm exécution) and
of crash type: faulty nodes do not attempt transmissions and faulty links do
not transmit. We assume that a fault-free node which made an unsuccessful
transmission attempt knows that the transmission failed but does not known
a priori if this was due to a faulty link or faulty destination node. Likewise,
a fault-free node which expected transmission from a node v at a given
time unit and did not get it, does not know whether the node v or the
respective link failed.

For each of the above fault scénarios, we consider four communication
models based on different degree of adaptivity of communication. By this we
mean the ability of nodes to modify their behavior according to the outcome
of previous transmissions. The most rigid is the non-adaptive model NA:
all transmissions must be scheduled in advance and whenever a node v
scheduled to transmit to w has the token, it must send it. (This attempt may
be unsuccessful due to a link or destination node failure and in this case
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386 K. DiKs et al

the token does not move). In the model NA there is only one elementary
transmission procedure SEND (v9 w) which consists in an attempt of sending
the token from node v to node w. The token moves to w if at the time
of exécution of SEND Ou, W) it is in node v and if nodes v, w and the
link vw are fault-free.

The next model is semi-adaptive (SA). Hère transmissions are scheduled
in advance as before, but nodes have the ability of attempting transmissions
without trying to send the token, even when they have it. Such "idle"
transmissions will prove useful for testing which nodes and links are fault-
free, without risking the loss of control over the token. In the SA model
two elementary transmission procedures are used: SEND (v, w) has the same
meaning as before and CALL(i;, w) consists in the attempt by v to call w
without trying to send the token, even if the token is currently in node v.
Clearly no move of the token results from this procedure: the only advantage
is the increase of knowledge about fault status of other nodes and links.
It should be stressed that a successful CALL (f, w) procedure does not
involve sending any information (apart from implicit information that it was
successful).

Finally, the most flexible models are adaptive ones: nodes can freely
décide to which nodes they should attempt transmissions and whether a
particular transmission should be of SEND or of CALL type. We distinguish
two adaptive models: the restricted adaptive model RA and the gênerai
adaptive model GA. In RA only the node currently holding the token can
attempt transmissions (of SEND or of CALL type), while in GA all nodes
can attempt transmissions at all times (provided that every node is involved
in at most one transmission at a time).

It should be noted that in models SA, RA and GA all décisions of nodes
have to be based on the local history of the node (the success or failure of
previous transmissions involving that node): we do not assume the existence
of any central monitor supervising the exécution of algorithms.

Combining these four communication models with the link failure scenario
(L) and the node and link failure scenario (NL) we get eight models for
which the token transfer problem will be discussed:

NA-L
SA-L
RA-L
GA-L

NA-NL
SA-NL
RA-NL
GA-NL
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TOKEN TRANSFER IN A FAULTY NETWORK 387

The goal of a token transfer algorithm is that the token, originally stored
in the source, visit all fault-free nodes. Since we are working in networks
with random faults, we can only require high probability of achieving this
goal. This probability is called reliability of a token transfer algorithm. For
every fixed e > 0, a token transfer algorithm is called e-safe if its reliability
for n-node networks exceeds 1 - n~£, for sufficiently large n.

In our probabilistic considérations we will use the following lemma known
as Chernoff s bound [13].

LEMMA 2.1: Let X be the number of successes in a series of b Bernoulli
trials with success probability q. For any constant 8 with 0 < 6 < 1,

The following lemma is an easy conséquence of the above, directly used
in the paper.

LEMMA 2.2: Consider a series of cm Bernoulli trials with success probability
0 < r < 1. Let E (c, m) be the event that the total number of successes is at
least m and let F (c, m, k) be the event that in every series ofk consécutive
trials there is at least 1 success. Then for every c > 4/r,

a)Pr{E(c, m)) > 1 - e" c r m /4 ,
b) Pr (E (c, m) n F (c, m, k)) > 1 - e"crm/4 - cm (1 - rf.

Proof: T a k i n g b = c m , q = r a n d 6 = 1 in Lemma 2.1 we get
er

Pr (E(c,m)) < e-^- 1

_ e-(cr-2+i)m/2 < e_(cr-2)-m/2_

CT

cr > 4 implies — < er — 2. Hence we get
a) Pr (E (c,m)) > 1 - e"crm/4.
On the other hand Pr (F(c, m, Â:)) < cm(l*-rf . Hence, a) im-

plies b). •

3. LINK FAILURES

In this section we assume that all nodes are fault-free and links fail
with probability p < 1. In this framework our algorithms are based on the
following idea (cf. algorithm PATH-TRANSMISSION in [9]): arrange nodes
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388 K. DiKS et al

in a line of length m and in each of cm steps attempt communication between
all neighbors. If communication between a pair of neighbors succeeds with
probability r in each step independently, for sufficiently large c information
travels through the entire line, with high probability.

Since links fail, in order to guarantee independent transmission attempts
between neighbors, we need to use distinct intermediary nodes at each time.
However, unlike in the case of classical broadcasting, the token once sent
by v to an intermediary x which cannot transmit it to the next node w in
the line due to faulty Connecting link, is not available in v to try another
intermediary at the next step. Moreover, with probability p, the link xv may
be faulty (although vx was fault-free) and thus the token cannot be returned
to v. Thus, in the non-adaptive case, a mechanism of direct communication
between intermediaries must be conceived.

Let A = {ao, . . . , am} be a set of nodes to be visited by the token, initially
situated in ao. Let Pi = {vl

0, . . . , ^ _ x } , for i = 0, . . . , m - 1, be a set of
intermediaries between ai and a^+i, such that all sets A, PQ, . . . , Pm-\ are
pairwise disjoint. Let c be a positive integer constant. The nodes from A are
visited by the token using the procedure NA-PATH.

procedure NA-PATH (A, Po , . - -, Pm-i)

for % :.= 1 to cm do

for all j < m in parallel do

SEND(Oj, < n o d f c )

for 5 := 0 to k — 1, s ^ i mod k do

for all j < m in parallel do

SEND(vi, v{modk)

for all j < m in parallel do

The above procedure works in time 0{mk).
In order to describe the non-adaptive token transfer algorithm we fix two

positive constants c and d. Let k = \d log n] and let m be the largest
integer such that m(k + l) + 1 < n. Let Ai, . . . , A|-n/m-[ be subsets of
{1, . . . , n} such that:

f n/m]
(J Ai = {1, . . . , n}, A% - { 4 , . . . , a^},

where aj is the source and a%
m — a1^1. Let FQ, . . . , P^-x be pairwise

disjoint subsets of {1, . . . , . n)\Ai of size k.
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Algorithm NA-L Token Transfer

for i := 1 to \n/rn\ do

NA-PATH(i4», P o V - . J ^ - i )

The above algorithm works in time O (n log n).

THEOREM 3.1: Let p < 1 be link f allure probability and let e be a
positive constant There exists an e-safe non-adaptive token transfer algorithm
working for n-node networks in time O (n log n).

Proof: It is enough to show that for every e > 0 there exist constants
c and d such that NA-L Token Transfer is e-safe. Fix a positive e. Procedure
NA-PATH corresponds to a Bernoulli scheme of length cm where a single
trial is a transfer attempt of the token between consécutive nodes via an
intermediary. A success in such a scheme has probability r = (1 — p)2. In
order to transfer the token along the path, at least m successes are needed.
Since each pair of consécutive nodes has only k intermediaries, we need to
exclude the event of k consécutive failures. By Lemma 2.2 (b) the reliability
R of NA-L Token Transfer satisfies

R > 1 - [—1 (e"crm/4 + cm (1 - r)k)

for c > 4/r and r = (1 — p) . Thus, for sufficiently large n,

R > 1 _ ne~cr L(n-l)/r<* log n+llJ/4 _ (c + X) n (j _ r)d log ^

Hence, for sufficiently large constants c and d and sufficiently large n,
R > 1 - n~£. •

We do not know if time complexity O (n log n) can be improved for
e-safe non-adaptive token transfer algoritms in the fault-free node scenario.

It should be noted that the non-adaptive algorithm for link and node
faults scenario, presented in section 4, has the same complexity as NA-L
Token Transfer. However, we chose to give the latter algorithm in the fault-
free nodes case because its analysis is much simpler and the crucial path
transmission idea will be used in other, more efficient algorithms later in
this section.

We now turn attention to the semi-adaptive model. In this case token
transfer along a path can be done more efnciently. The reason is that, since
CALL transmissions are now available, it is helpful to test links joining
intermediaries with nodes of the line in a preprocessing phase and then send
the token only to those intermediaries which are able to send the token back
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in case it cannot be sent forward. In case of other intermediaries CALL
transmissions are used. Thus after each step of the sending phase the token
is at some node of the path. Let c, A and Pi, for i < m, have the same
meaning as in procedure NA-PATH.

procedure SA-PATH (A, P o , . . . , Pm-i)

for i :~ 0 to k — 1 do {preprocessing: connection testing}

for all j < m in parallel do

CALL(^, oy)

if this transmission has been successful

then aj adds v{ to its GOODJNTERMEDIARIESy list

for i := 1 to cm do

for all j < m in parallel do

if v /m o d k € GOOD.INTERMEDIARIESj then

else

for all j < m in parallel do

The above procedure works in time O (k + m).
Using the same notation as for NA-L Token Transfer we can formulate

the semi-adaptive token transfer algorithm as follows.
Algorithm SA-L Token Transfer

for i :— 1 to \n/rn\ do

SA-PATH (AU P i . - ' - i ^ m - i )

This algorithm works in time O{n).

THEOREM 3.2: Let p < 1 be linkfailure probability and let e be a positive
constant. There exists an e-safe semi-adaptive token transfer algorithm
working for n-node networks in time O (n).

Proof: Similarly as before it is enough to show that for every e > 0
there exist constants c and d such that SA-L Token Transfer is e-safe. The
argument from the previous proof works with one modification; since the
token is sent only to intermediaiies that can send it back, the probability of
success in the Bernoulli scheme should now be taken r — (1 — p) . •

We finally consider adaptive models. The existence of linear time algorithm
for the GA-L model is straightforward: the SA-L Token Transfer algorithm
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can be used. It remains to construct a corresponding algorithm for the
RA-L model where only the node currently holding the token can attempt
transmissions. We use previous notation.

procedure RA-PATH (A, Po, . . . , Pm-i)

for i := 1 to cm do

for all j < m in parallel do

for all v e {a3} U P; \W m o d f c } in parallel do

if the token is at v then SEND (u, v{modk)

for all j < m in parallel do

if the token is at vjmodk then SEND(^modfc) a i + i )

This procedure works in time O (m). It should be noted that since there
is only one token, the exécution of the procedure does not cause multiple
simultaneous transmission attempts to the same node. As before we have an
algorithm working in time O(n).

Algorithm RA-L Token Transfer

for i .:= 1 to \n/m\ do

RA-PATH (Ai; P i i " - * ^ - ! )

The proof of the following theorem is the same as that of theorem 3.1.

THEOREM 3.3: Let p < 1 be linkfailure probability and let e be a positive
constant. There exists an e-safe adaptive token transfer algorithm (both in
the gênerai and restricted models) working for n-node networks in time
O(n). M

4. LINK AND NODE FAILURES

In this section we assume that links f ail with probability p < 1, nodes
other than the source f ail with probability q < 1, all failures are independent
and the source is fault-free.

We first consider the non-adaptive model. In our algorithm we will
use a procedure which can be intuitively described as follows. Let
A = {ao, . . . , a m - i } be a set of nodes to be visited by the token and
let P = {vo, . . . , Vm-i} be a set of intermediary nodes disjoint from A.
Suppose that in the beginning the token is in some node of A We think
of nodes from A as points situated on a motionless circle and of nodes
from P as points of a circle of equal size situated above A in such a way
that, initially, Vi is straight above a{. The second circle can turn around. In
every step every node vi G P attempts a transmission to the node a,j straight

vol. 29, n° 5, 1995



392 K. DiKs et al

below it, then aj attempts a transmission back to v% and finally the upper
circle makes a unit angle turn after which v{ is situated above a^j+1^mo(xm.
We perform q m steps for an appropriate constants c\. Here is a formai
description of this procedure.

procedure ROUND (A, P)

for i := 0 to c\ m — 1 do

for all j < m in parallel do

SEND(Vj-, a ( i + 0 m o d m )

S E N D ( o ( i + 0 m o d m , Vj)

The above procedure works in time O (m).

The constant c\ will be chosen to guarantee that, for every node aj e A9 at
least one transmission attempt to ay be made by a node currently holding the
token, with high probability. This transmission can fail due to a faulty link;
however, if the above procedure is repeated for a given set A with many
pairwise disjoint sets Pi , . . . , P^ then each aj will have many opportunities
to get the token and, with high probability, one of them must succeed.

In order to guarantee that the token be in A before each exécution of
procedure ROUND, with high probability, we use the following procedure
DROP, for an appropriate constant C2.

procedure DROP(A, P)

for i := 1 to C2 log n do

for all j < ra in parallel do

The above procedure works in time O (log n).

Now the algorithm can be described as follows. Take a positive
constant c^. Assume for simplicity that 1 + C3 log n is an integer and
divides n. Let m — . Partition the set {1, . . . , n} into subsets

1 + C3 log n J

Ao, . . . , AC3 log n of size m such that the source is in set Ao.
Algorithm NA-NL Token Transfer

for i := 0 to cz log n do

for j := 0 to C3 log n, j ^ i do

ROUND (A^ Aj)

DROP(A ( i + 1 ) m o d c 3 log n , Ai).

The exécution of the internai loop takes time O (m log n) — O (n) and
hence the algorithm works in time O (n log n).
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THEOREM 4.1: Let p < 1 and q < 1 be link and node failure probabilities
and let e be a positive constant. There exists an e-safe non-adaptive token
transfer algorithm working for n-node networks in time O (n log n).

Proof: It is enough to show that for every e > 0 there exist constants c\, ei
and C3 such that algorithm NA-NL Token Transfer is e-safe. Fix a positive e.
Let ei, C2, C3 be constants to be determined later. Let n be sufficiently large to
satisfy m — > \c\ log n\. Without loss of generality assume

1 + C3 log n
that \c\ log n\ is even. Let E\ (A, P) dénote the event that the token visits
a least log n times the set A in a fixed series of \c\ log n] consécutive steps
of procedure ROUND. Consider two consécutive steps i and i + 1 of this
procedure as one Bernoulli trial. Fix nodes VJ e P and a y + j ) m o d m G A
such that the token is in one of them. Steps i and i + 1 involve the
transmissions SEND (VJ, a ( i + i ) m o d m ) , SEND (a ( j + j ) m o d m ï ^ ) , SEND
(vj, a y + i + 1 ) m o d m ) and SEND (a ( j + j + 1 ) m o d m ) Uj). Define the success
in this Bernoulli trial to be the event that nodes Vj and a(j+»+i)modm
as well as links a y + i ) m o d m VJ and VJ a ( j + ï + 1 ) n i o d m are fault-free. Thus
the probability of success is r\ — (1 — p) (1 — q) . In case of success the
token visits the node a y + j + 1 ) m o d m , no matter if it was previously in VJ
or in a(j+ï)modm- Thus obtaining at least log n successes in \c\ log n]/2
Bernoulli trials (with success probability r\) implies that event E\ (A, P)
holds. Hence Lemma 2.2 a) implies

A, P)) < e 'C l r i log ̂ Z8

Procedure ROUND has at least \c\ log n] > c\m steps. If in
I log n I

each of groups of \c\ log n\ steps the token visits the set A at
| log n [

least log n times, the total number of visits is at least m. Thus at least one
full round over A is performed. This implies that the following event holds:
E2 (A, P) - the event that for each node a G A the token is at least once
in a node v E P currently straight above a.

It follows that

Pr (E2 (A, P)) < e~Cl r i lo^ n/s.

We also need to estimate the probability of successfully dropping the token
by the procedure DROP. Let E3 (A, P) be the event that upon completion
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of DROP ( A, P) the token is in a node in A. To guarantee this it suffices that
one of C2 log n links together with the destination node be fault-free. Hence

where r2 = (1 - p) (1 - g).

Consider the algorithm NA-NL Token Transfer. Fix a node a G A;. Let
P (a) be the set of nodes which attempted to transmit the token to a, while
currently holding it. Let E (a) be the event that \P(a)\ > c$ log n.

We have

f| E2(Ai,Aj)n f) Es (Ai, A,-)nE3(Ai, A î_1)c^(a).
j < c 3 log n J<C3 log n

The exécution of DROP (Ai, Aj_i) guarantees the invariant that the token
is in Ai when the ó-th turn of the external loop starts. It follows that

Pr (E (a)) < (es log n+1) (me"Cl r i lo« ̂  + (l - r2)C2 log n ) .

Let F (a) be the event that none of the nodes from P (a) succeeded in
transmitting the token. Since Pr (F(a) ) = p l ? W I , w e get

Pr (F (a)) < Pr (F (a) | F (a)) + Pr (F (a))
< pC3 log „ + ( c 3 l o g n + ^ ( m e - C l r i log n/8 + ( 1 _ r 2 ) c 2 log n

The algortihm works correctly if none of the events F(a), for a G A,
holds. Hence its reliability satisfies the condition

R>l-n (pC3 log n + (c3 log n + 1) (me"Cl r i log ^Z8 + (1 - r2f
2 log n))

which is larger than 1 - n~£, for sufficiently large constants c\, c%9 C3. •
The NA-NL Token Transfer algorithm can obviously be applied in ail

other models. In case of the model RA-NL the algorithm should be modified
similarly as in section 3: nodes which do not have the token do not attempt
transmissions. It follows from [7] that e-safe token transfer cannot be
accomplished in the model NA-NL or RA-NL in time o(n log n). Hence
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for these two models our algorithm has optimal order of time complexity. It
remains to discuss the two other models: SA-NL and GA-NL.

We do not know if time complexity O (n log n) can be improved for e-safe
semi-adaptive token transfer algorithms. However we will construct an e-safe
semi-adaptive linear algorithm under an additional assumption concerning the
model. This assumption consists in allowing information exchange between
nodes. Namely, we suppose that the elementary procedure CALL has an
additional one-bit parameter b. CALL (f, IÜ, 6) is an attempt to transmit
bit b from node v to w. (It should be noted that instead of allowing one-
bit information transmissions, we could equivalently allow refraining from
making a CALL scheduled in a given time unit.) CALL (v, w, - ) means that
the transmitted bit is irrelevant, it will be ignored by the destination node.

Let A = {ai, . . . , am} be a list of nodes to be visited by the token,
with ai — am being the source, and let P ~ \v\, . . . , v^} be the set of
intermediary nodes, disjoint from A. We will need k > cm intermediaries,
for an appropriate constant c. In the preprocessing phase we apply the
linear time gossiping algorithm with one-bit messages, given in [10], for
all nodes in the network. Upon its completion every fault-free node knows,
with high probability, which nodes are faulty and which are fault-free. Let
D = {aPo, . . . , aPt+1} be the sublist of A consisting of all fault-free nodes
from A. (aPo = aPt+1 is the source). The token is now transfered along
the following path: from aPQ to the first intermediary node V{0 for which
links aPo Vi0 and ViQ aPl are fault-free; then to node aPl and next to the
first intermediary v^ such that i\ > %o, and the links aPl v%x and v%x aP2

are fault-free, etc,
This procedure of token transfer with information exchange can be

described as follows.
procedure TT-WIE (,4, P)

for i := 2 to k + m do

{each node v e P calls all nodes from A and adds to its list MARKEDV those nodes to
which the call has been successful}

for all max (1, i - m) < j < min (fc, i - 1) in parallel do

CALL(vy, tu-,, - )

if this call has been successful then

VJ adds a%-j to the list MARKED^.

for i := 2 to k + m do

{node Vj sends 1 to a{-3 if the link from v to the next node in D af ter ai-j is fault
free, it sends 0 otherwise}

for all max (1, i — m) < j < min (ky i — 1) in parallel do
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if VJ has the token then SEND(vj, ai-j)

else

let ar be the first node on list D with r > i — j

if ar € MARKEDVj. then

CALL(vj, ai^j y 1)

else

CALL(uj, Oi_j, 0)

if ai-j got 1 from VJ in the previous time unit then

else

CALL (ai-j, VJ, —)

The above procedure works in time O (k + m).
Let c be a constant and 5 the largest integer such that s + c (5 + 1) + 1 < n.

\{n-l)/s\

Let AJ, . . . , Ar/n_1wn be sets of size 5 such that \^J A\ —
«=i

{2, . . . , n} and let Pj be sets of size & = c (s + 1) disjoint from A* U {1}.
Let Ai be the list of length m = 5 + 2 whose first and last term is 1 and all
other terms are éléments of A\. The semi-adaptive token transfer algorithm
with information exchange can be written as follows.

Algorithm SA-TT-WIE

apply the linear time gossiping algorithm from [10] to diagnose all nodes.

for i := 1 to l(n - l)/s] do

TT-WIE(^, Pi)

This algorithm works in time O(n).

THEOREM 4.2: Let p < 1 and q < 1 be link and node failure probabilities
and let e be a positive constant There exists an e-safe semi-adaptive token
transfer algorithm with information exchange, working for n-node networks
in time O (n).

Proof: Fix e > 0. It follows from [10] that diagnosis of the fault
status of all nodes can be done with probability of correctness exceeding
1 — n~£l2. Assume that diagnosis has been performed correctly. Let Eu for
i < T(n ~~ 1)/51 dénote the event that upon completion of procedure TT-WIE
(Ai, Pi) the token visits all fault-free nodes in A» and returns to the source.
Hence Ei holds if there exists a séquence of fault-free nodes V{0, . . . , v%t in
P such that zo < . . . < it and links aPj Vi. and Vij aPj+1, for j = 0, . . . , t, are
fault-free. Hence Pr (Ei) is not smaller than the probability of obtaining at
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least t+1 successes in a scheme of k Bernoulli trials with success probability
r = (1 — p) (1 — q). Since t + 1 < s + 1, Lemma 2.2 a) implies

Hence the reliability R of algorithm SA-TT-WIE satisfies

which is larger than 1 — n £ for a sufficiently large constant c. •
We finally turn attention to the adaptive model without restrictions. In this

case we will present an e-safe token transfer algorithm working in linear time.
Let A = {ai, . . . , am} be a set of nodes to be visited by the token and

P — {^i, •. -, Vk} & set of intermediary nodes disjoint from A. Assume
that 1 0 A U P. We will use a procedure which can be intuitively described
as follows: the token is transmitted along a DFS path in a tree of height 2
constructed in the preprocessing phase. The root of this tree is the source
(node 1), vertices of level 1 are "good intermediaries": those nodes v e P
for which links 1 v and v 1 are fault-free, and vertices of level 2 are all
fault-free nodes in A A node v E P is the parent of a G A if it is the
first node w E P such that both links aw and wa are fault-free. Here is a
formai description of this procedure.

procedure TOKEN-TRANSFER-IN-TREE (A, P)

{phase 1: preprocessing - tree construction}

for i := 1 to k do {the source finds nodes in P with which it has two way connection}

CALL(1, Vi)

if both calls successful then

the sources adds v% to the list GOOD-INTERMEDIARIES

v% sets its local flag I-AM-GOOD-INTERMEDIARY^.

for i \— 2 to m + k do {each node from A calls consécutive nodes from P until it finds
a "good intermediary" with two way connection to it}

for all max (1, i - k) < j < min (m, i - 1) in parallel do

if the flag I-FOUND-INTERMEDIARYaj is not set then

CALL(aj,^_j)

if (the call from a,j was successful and the flag

I-AM-GOOD-INTERMEDIARY,,.^ is set) then

if both calls successful then
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Vi^j adds aj to its list MY-NODES^,,,

aj sets its local flag I-FOUND-INTERMEDIARYaj

{phase 2: token passing in the tree}

for all nodes x in {1} U AU P in parallel do

if x = 1 then

for i := 1 to k do

if vi € GOOD-INTERMEDIARIES then

wait until token is in x

if x e P then

wait until token is in x

for all nodes a e MY-NODESX do

SEND (x, a)

wait until token is in x

SEND O, 1)

if x e A then

wait until token is in x

let v be the node from which x got the token

SEND (x, v)

The above procedure works in time O(k + m).

Let c be a positive constant and k — \c log n\. Let Ai and A<i be subsets
of {2, . . . , n} such that \Ai\ = \ A<i \ — m, where m — n — k — 1, and
Ai U A2 — {2, . . . , n}. Let Pi, for i = 1, 2, be sets of size k, disjoint
from Ai.

Algorithm GA-NL Token Transfer

TOKEN-TRANSFER-IN-TREE (Au P±)

wait until 5n time units since the beginning have passed

TOKEN-TRANSFER-IN-TREE (A2, P2)

Since exécution time of the procedure TOKEN-TRANSFER-IN-TREE
(Ai, Pi) may vary, the aim of waiting for 5n time units is that all nodes
know that the first exécution of the procedure has terminated (It is easy to see
that 5 n exceeds worst case exécution time of this procedure, for sufficiently
large n). The algorithm works in time O(n).

THEOREM 4.3: Let p < 1 and q < 1 be link and node f allure probabilities
and let e be a positive constant. There exists an e-safe adaptive token transfer
algorithm (in the gênerai model) working for n-node networks in time O (n).
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Proof: It is enough to prove that for every e > 0 there exists a constant
c such that algorithm GA-NL Token Transfer is e-safe. Fix e > 0. Consider
the procedure TOKEN-TRANSFER-IN-TREE. Let E (a), for a G A, be the
event that for some fault-free node v G P, links lt>, va, av and i; 1 are
fault-free. Thus

It follows that the reliability R of GA-NL Token Transfer satisfies

which exceeds 1 - n~£, for sufficiently large c.

5. CONCLUSIONS

The following table summarizes our results:

Communication
model

Fault model
Links fail

nodes fault-free
CL)

Links and
nodes fail

(NL)

Non-adaptive
(NA)

NA-L

O{n log n)*

NA-NL

O (n log n)

Semi-adaptive
(SA)

SA-L

O(n)

SA-NL

0 (n log n)*

Adaptive

Restricted (RA)

RA-L

O(n)

RA-NL

O (n log n)

General (GA)

GA-L

O(n)

GA-NL

O(n)

For each of the eight models considered, time complexity of the respective
token transfer algorithm appears below the name of the model in the
appropriate entry of the table. All our algorithms have complexity O (n)
or O (n log n). Order O (n) is trivially optimal. As mentioned before, order
O (n log n) is also optimal for models NA-NL and RA-NL, in view of a
resuit from [7]. Thus two problems remain open (the appropriate entries in
the table are marked with a *).

Problem 1

Does there exist an e-safe non-adaptive token transfer algorithm working
in time o (n log n) if all nodes are fault-free?
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Problem 2

Does there exist an e-safe semi-adaptive token transfer algorithm without
information exchange, working in time o (n log n) if both links and nodes
can fail?
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