
INFORMATIQUE THÉORIQUE ET APPLICATIONS

J. M. ROBSON
Separating words with machines and groups
Informatique théorique et applications, tome 30, no 1 (1996), p. 81-86
<http://www.numdam.org/item?id=ITA_1996__30_1_81_0>

© AFCET, 1996, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1996__30_1_81_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 30, n° 1, 1996, pp. 81 à 86)

SEPARATING WORDS WITH MACHINES AND GROUPS (*)

by J. M. ROBSON C1)

Communicated by Christian CHOFFRUT

Abstract. - In the study ofsmall automata which separate pairs ofstrings ofa given length, those
automata whose syntactic monoids are groups, appear to be of central importance. We show an
upper bound on the number of state s requiredfor such a restricted automaton to separate two words
of length N, not too much larger than the corresponding bound in the gênerai case.

Résumé. - Les automates, dont le monoïde syntaxique est un groupe, sont apparemment d'une
importance centrale dans l'étude des petits automates capables de distinguer deux mots de la même
longueur. On montre un majorant sur le nombre d'états d'un tel automate séparant deux mots de
longueur N, qui n'est pas par trop supérieur au majorant connu dans le cas d'un automate générai

1. INTRODUCTION AND HISTORY

This paper continues the study [1], [2], [3] of the minimal finite state
machine separating two arbitrary words of length TV (that is accepting one
but not the other), in particular the question of how many states are required
in the worst case. The cases where the two words have different lengths or
where the alphabet has a cardinality different from 2 were solved or reduced
to the case of equal length words over a binary alphabet in [1] and so we
do not study them hère. We therefore take the alphabet to be {0, 1} and we
restrict our attention to deterministic machines. [3] showed an upper bound
of O(N2lblog*lbN) on the number of states required. The results of [1]
imply a lower bound of Q(logN).

In this paper we study the related problem where the transition associated
with the input of a given symbol is restricted to be a permutation of the
states of the machine, that is we study séparation of words by groups without
the extra interest added by the fact that a word over a group is generally

(*) Received July 1, 1995.
(]) LaBRI, Université Bordeaux-I, Talence Cedex, France, E-mail: robson@labri.u-bordeaux.fr

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/96/01/$ 4.00/© AFCET-Gauthier-Villars

8 2 J. M. ROBSON

taken to allow inverses. It may be noted that the results in [1] hold equally
for this restricted case. We will show an upper bound of O(y/N) for the
number of states required.

For the rest of the paper a "machine" means a finite automaton with
alphabet {0, 1} whose transition fonctions are both permutations of the
states.

2. SEPARATION BY SMALL PERMUTATION GROUPS

2.1. Introduction

In this section we will prove the new resuit that two words of length
N can be separated by a very simple machine with O(y/N) states. The
description of the set of machines is very simple. The fact that one machine
of the set must separate two given words is les s clear.

2.2. The Machines

We define the permutation machine MXiTn (x < m) with 2m states
(c, p) (0 < c < m, 0 < p < 1) and transition fonctions for input
"0" (c, p)- > ((c + 1) mod m, p) and for input " 1 " (c, p)- >
((c + 1) mod m, if c = x then 1 — p else p). This machine starts in
state (0, 0) and accepts in any state (c, 1). Clearly c counts the number of
input characters read (modulo m) and p records the parity of the number of
" 1 " characters encountered at positions congruent to x modulo m. Thus the
machine accepts precisely those words with an odd number of occurrences
of " 1 " in positions with index congruent to x modulo m.

2.3. Statement of the Main Theorem

THEOREM: TWO words w and wl of the sarne length N are separated by
a machine Mx^m such that (1) m = O{y/~N), (2) m is square free and (3)
either m and x have no common factor or m = 2 and x — 0.

Conditions (2) and (3) are not essential but simplify the proof. Dealing
with all Mx,m subject to condition (1) would merely reduce the constant
factor in the Ö notation. Conversely we could simplify the argument even
forther by restricting the machines to those with m prime, but that would
give a slightly weaker resuit (O(^NlogN)).

The proof of this theorem will take up the remainder of section 2.

Informatique théorique et Applications/Theoretical Informaties and Applications

SEPARATING WORDS 83

2.4. Simple Properties of the Machines

We define l as the smallest integer such that the number of machines
MXtm satisfying conditions (2) and (3) of the statement of the theorem and
having m < l is at least N. The machine separating w and vJ will be one of
these machines with m < L We write 5 for the set of all these machines and
number them arbitrarily 5i,..., 5151. We define the result vector of a word
u as the vector res(u) of length \S\ having its element i equal to " 1 " if Si
accepts u and "0" otherwise. We further define an équivalence relationship
on words by saying u =5 v iff res(u) — res(v).

LEMMA 1: If u and v are two words with \u\ = \v\, then res(u ^ v) =
res(u) ^ res(v) (where ̂ is the componentwise exclusive or opération).

Proof: Consider the element i in each of the three vectors res(u), res(v)
and res(u ^ v) corresponding to a given machine Mx^m, These éléments are
the exclusive or of the characters of the three words (u, v and u ^ v) which
lie in positions with index congruent to x modulo m. By the associativity
and commutativity of the exclusive or operator, it follows that element i of
res(u ^ v) is given by the exclusive or of those of res{u) and res(v).

2.5. The Number of Equivalence Classes

LEMMA 2: The équivalence relation =5 has exactly 2^1 équivalence classes.

Proof: We will show how to construct a word of length l\ for each of the
^1 possible result vectors. By lemma 1 it suffices to do this for each result

vector which has exactly one " 1 " element. So consider the result vector with
a single " 1 " element in the position corresponding to the machine M x m .
Machine Mo;2 is a special case: its word is the one with a single " 1 " at
position l\. In all other cases, since m is square free, we can write it as a
product of distinct primes m = n^=i ^i- Since m and x have no common
factor, we know that x mod 71̂ is nonzero for each TT̂ . Write x% for this
value. Consider the word u with 2k " 1 " characters, whose positions are
obtained by choosing either x% or zero for the value modulo TT̂ for each
i (1 < i < fc) and zero for the value modulo every other prime less than
or equal to /. (By the Chinese remainder theorem we can always choose
such positions.)

We claim that res(u) has the required form of a single " 1 " in the position
corresponding to Mx^m. Certainly it does have a " 1 " in this position since it
has one and only one " 1 " character in a position congruent to x modulo m.

vol. 30, n° 1, 1996

8 4 J. M. ROBSON

To see that res(u) has no " 1 " in any other position, consider an arbitrary
other position corresponding to Mx^m>. There are three possibilities: (1)
m ~ m! but x ^ xf: every " 1 " character in u except the one at position
x modulo m was chosen so as to have a common factor with m and so
cannot affect any Mx^m' in S (#' ^ x)\ (2) there is some prime factor iti
of m which is not a factor of ml: any positions of 'T's in u congruent to
xf modulo m! can be divided into two equal parts, those congruent to X{
modulo Ki and those congruent to zero; thus their number is even so that
Mr',m' does not accept u\ (3) m! has some prime factor n which is not
a factor of m (and m! is not equal to 2 since that case would have been
included in case (2)): every position of a " 1 " in u has a common factor (vr)
with m! and so does not affect acceptance by any M#'.m> in 5.

Thus, as required, u is accepted by MXjm
 and by no other machine in S.

This complètes the proof of lemma 2.

2.6. Canonical Members of Equivalence Classes

Now we define WQ to be the shortest word equivalent (under =5) to the
empty word and not consisting entirely of "0" characters. Note that WQ must
end with a " 1 " character.

LEMMA 3: Any word of the farm 0*WQ is equivalent to the empty word.

Proof: We will show that, if v is any word equivalent to the empty word,
0v is also equivalent. Recall that being equivalent to the empty word means
not being accepted by any of the machines in S. Consider an arbitrary such
machine Mx.m. This machine will accept Ov iff Ov has an odd number of
" 1 " characters at positions congruent to x modulo m, that is if v has an odd
number of " 1 " characters at positions congruent to x - 1 modulo m. This is
already ruled out by the fact that v is not accepted by Mx-\^m except in the
case that x — 1 has a common factor with m. We will show by induction on
the number of common factors of y and m that v has an even number of
occurrences of " 1 " at positions congruent to y modulo m. The basis of the
induction is the case where this number of common factors is zero and is
established by the fact that My^m does not accept v. Suppose the number of
common factors of y and m is c + 1: by reordering the prime factors 7ri...7r&
of m we can write y in modular représentation as (0,0, ...0, yc+ï,..., Vk) w i t n

all the explicitly written y{ nonzero. The positions congruent to y modulo
m can be described in terms of their modular représentation as all those
which agree with y on every position except possibly c + 1 minus those

Informatique théorique et Applications/Theoretical Informaties and Applications

SEPARATING WORDS 85

which definitely differ from y on position c + 1 but agrée with it on the
other positions. That is they are those congruent to yf modulo m' minus
all those congruent to some yff modulo m where (a) m! — m/7rc_|_i, (b) yf

has modular représentation (0,0,..., 0, yc+2î •••> Vk) with respect to the prime
factors of m! and (c) the values yff are those whose modular représentation
with respect to m is obtained by replacing the 0 in position c + 1 by some
nonzero value less than TTC+I. But each of these sets of positions (the set for
y1 and each of the TTC_|_I — 1 for the various yn) is one corresponding to some
machine Mx^m where x has only c prime factors in common with m. Hence,
by the inductive hypothesis, each of these sets of positions has an even
number of " 1 " characters and therefore so too does the différence. The case
where m was itself a prime does not follow this pattern exactly since the
first set of positions is now the set of all positions and does not correspond
to a machine Mx.m; in that case the fact that this set has an even number of
" 1 " occurrences cornes from the fact that neither M0.2 nor M\^ accepts v.

LEMMA 4: Every équivalence class of =s contains a word with length
kol - 1,

Proof: Take an arbitrary représentative u of an équivalence class C. If
\u\ < |IÜO|, then u can be lengthened to an equivalent word of the correct
length by appending an appropriate number of "0" characters. Otherwise, if
u ends with a "0", deleting this "0" gives a shorter equivalent word. If u
ends with a "1" , take the exclusive or of u with a word of the same length
obtained by prefixing "0" characters to WQ. This will give a word equivalent
to u (by lemmas 1 and 3) and of the same length but ending "0", to which
we can apply the same process of deleting the final "0". Iterating this process
will eventually give us a word equivalent to u and of length exactly \wo\ — 1.

LEMMA 5: Every équivalence class of =5 contains exactly one word of
length \WQ\ — 1.

Proof: We know each class contains at least one such word. If it
contained two, their exclusive or would be equivalent to the empty word, in
contradiction to the définition of wo.

Now we can conclude from lemmas 2 and 5 that \WQ\ — 1 + \S\ since
there is a bijection between words of length \w$ \ — 1 and équivalence classes
and we know that there are 2^1 équivalence classes. We can also conclude
that any two words w and wf of the same length less than \wo\ are separated

vol. 30, n° 1, 1996

BIBLIOTHEQUE
IMT

8 6 J. M. ROBSON

by a machine in S since otherwise we could produce two equivalent words
of length \WQ\ — 1 by appending the same suffix to w and w!.

2.7. The Required Value of l

LEMMA 6: \S\ = Q(l2).

Proof: S contains every machine MXim for 0 <x < m < l except
those for which m has a squared prime ir2 as a factor or both x and m
have the same prime n as a factor. There are Q(l2) pairs rc, m satisfying
0 < x < m < l of which a fraction < ?r~2 have 7Tj as a squared factor
of m and similarly a fraction < ?r~2 have TT2 as a common factor of m
and x. Since ^ ^ . p r i m e 27r~2 < 1, this must leave Çl(l2) pairs which do
define machines in S.

Putting together the conclusion of 2.6 and lemma 6, we see that to separate
w from wf, it is sufficient to take l large enough to make Q(l2) greater than
N. Hence l = O(VN) suffices.

3. FURTHER WORK

Since the machines MXjm have been shown to be surprisingly effective
at economical séparation of words, it is natural to ask whether some
généralisation of their définition might lower the bound to O(N1^3) or
even beyond. An obvious attempt would be to define Mx.y.m which accepts
those words which have an odd number of 'T's in positions which are
congruent to y modulo m and are preceded by an odd number of 'T's in
positions congruent to x modulo m. These machines are certainly permutation
machines with 4m states; whether two words of length N must be separated
by one of them with m = O(N1f3) is a completely open question.

REFERENCES

1. P. GORALCIK and V. KOUBEK, On Discerning words by automata, 13th International
Colloquium on Automata Languages and Programming, Springer (LNCS 226), 1986,
pp. 116-122.

2. J. H. JOHNSON, Rational Equivalence Relations, 13th International Colloquium on
Automata Languages and Programming, Springer (LNCS 226), 1986, pp. 167-176.

3. J. M. ROBSON, Separating Strings with Small Automata, Information Processing
Letters, 1989, 30, pp. 209-214.

Informatique théorique et Applications/Theoretical Informaties and Applications

