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ON THE ROBUSTNESS OF ALMOST-^

by Ronald V. BOOK (*) and Elvira MAYORDOMO (2)

Abstract. - We study the classes of the form ALMOST-R, for R a reducibility. This includes,
among others, the classes BPP, P and PH. We give a charaderization of these classes in terms of
réductions to n-random languages, a subclass of algorithmically random languages. We also discuss
the possibility of char acte rizing the classes ALMOST-R in terms of resource bounded measure.

1. INTRODUCTION

Given a reducibility Tl, the class ALMOST-7£ is defined as the class
of languages A such that TZ"1(A) has Lebesgue probability 1. The
"ALMOST-ft" formalism, studied for instance in [Bo94] and [BLW94],
provides characterizations of some interesting complexity classes, among
others, ALMOST- < £ = P [Am86], P = ALMOST- <£ t t [TB91],
BPP = ALMOST-<Ç ([Am86], [BG81]), BPP = ALMOST- <£ [TB91],
AM = ALMOST- <ÇP ([Ca89], [NW88]), and PH - ALMOST- <ÇH

([Ca89], [NW88]).

Book, Lutz, and Wagner [BLW94] characterized these classes in terms of
Martin-Löf algorithmically random languages, where Martin-Löf algorithmic
randomness is the strongest définition that is regarded as representing
randomness of individual infinité séquences. Considering a subset of all
reducibilities (that includes all of the standard reducibilities used in structural
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complexity theory), they showed that ALMOST-'R = ^(RAND) n REC,
where RAND dénotes the class of Martin-Löf algorithmically random
languages, and REC dénotes the class of recursive languages. This
characterization lead to observations about the relationships between
complexity classes such as: P = NP if and only if some language in
RAND is <£tt-hard for NP, and PH = PSPACE if and only if some
language in RAND is <ÇH-hard for PSPACE. Book [Bo94] extended this
characterization by showing the Random Oracle Characterization, namely
that for every B G RAND, ALMOST-^ = U{B) n REC, and the
Independent Pair Characterization, namely that for every B and C such
that B e C G RAND, ALMOST-^ = U(B) n U(C).

While different classes are obtained in the characterization of ALM0ST-7£
as 7?,(RAND) n REC by considering different reducibilities TZ, here we are
concerned with the possibility of obtaining different classes by considering as
parameter values the classes RAND and REC. In particular, we investigate
the result of substituting spécifie subclasses of RAND for RAND itself.
For each natural n, we find that if we substitute a class based on
Kurtz's notion of "n-randomness" (defined in [Ku81]) and simultaneously
substitute the class A^ (from the arithmetical hierarchy of languages)
for the class REC, then once again the result is ALMOST-7^. That is,
'R(n-RAND) nA°„= ALMOST-^ (Theorem 3.3 (a) and (c)).

Considering the Kleene arithmetical hierarchy as a whole, we show that
a language A in it is in ALM0ST-7£ if and only if A is 7£-reducible to
an cj-random language. The concept of "u;-randomness" is, in a sensé, the
"limit" of the n-random sets, and has been introduced in [Ku81].

Notice that since ALMOST-7?, is a recursive class, these results show that
there are no languages from A° - REC in Ti(n-RAND), that is, oracles in
n-RAND are useless for A^ - REC. In the same way, oracles in u;-RAND
are useless for AH - REC

Our new characterizations of classes having the form ALMOST-7^
imply a robustness property of these classes. The parameters C and V in
ALMOST-^ = U(C)r\V may vary, while the result is always ALMOST-TC.

All our results hold for bounded reducibilities that are invariant under
finite variations of the oracle. This restriction is the same that is used in
[BLW94], and is more gênerai than the one in [Bo94] where invariance
under finite translation is also required.
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2. PRELIMINAIRES

We assume that the reader is familiar with the standard recursive
reducibilities and the variants obtained by imposing resource bounds such as
time or space on the algorithms that compute those reducibilities.

A word (string) is an element of {0,1}*. The length of a word w G {0,1}*
is denoted by \w\. For a set A of strings and an integer n > 0, let
A<n = {x G A | \x\ < n}.

The power set of a set A is denoted by V(A).

Let CA be the characteristic function of A. The characteristic séquence
XA of a language A is the infinité séquence CA(XO)CA(%I)CA(%2) • • • where
the séquence {xo,#i,#2, * * •} = {0> 1}* m lexicographical order. We freely
identify a language with its characteristic séquence and the class ^P({0,1}*)
of ail languages on the fixed finite alphabet {0,1} with the set {0,1}W of all
such infinité séquences; context should résolve any ambiguity for the reader.

If L is a set of strings (Le., a language) and C is a set of séquences (Le.,
a class of languages), then L • C dénotes the set {w£ | w G L, £ G C}. The
complement of L is denoted by Lc and the complement of C is denoted by
Cc. The class of compléments co — C is defined as co — C = {Lc | L G C}.

Given an oracle Turing machine M and a language D, L(M,D) stands
for the set accepted by machine M with oracle D. Given a string x, MD(x)
represents the output of M on input x and with oracle D.

Assume a fixed effective enumeration M\, M<i,... of all deterministic
oracle Turing machines. For each language D and i > 0, WP
therefore, W-j0, W® . . . is an enumeration of all languages in

For each string w,Cw = {w} • {0,1}^' is the basic open set determined
by w. An open set is a (finite or infinité) union of basic open sets, that is, a
set X • {0,1}W where X Ç {0,1}*. (This définition gives the usual product
topology, also known as the Cantor topology, on {0,1}W.) A closed set is
the complement of an open set. Let D be a language. A class of languages
is recursively open relative to oracle D if it is of the form WP • {0,1}^ for
some i > 0. A class of languages is recursively closed relative to D if it is
the complement of some relative to D recursively open set.

For a class C of languages we write Prob[C] for the probability that A G C
when A is chosen by a random experiment in which an independent toss of
a fair coin is used to décide whether each string is in A. This probability is
defined whenever C is measurable in the usual product topology on {0,1}*.
In particular, if C is a countable union or intersection of (recursively) open
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or closed sets, then C is measurable and so Prob[C] is defined. Note that for
each oracle D, there are only countably many recursively open sets, so every
intersection of recursively open sets relative to D is a countable intersection
of such sets, and hence is measurable; similarly every union of recursively
closed sets relative to D is measurable.

A class C is closed underfinite variation if A e C holds whenever B G C
and A and B have finite symmetrie différence.

The Kolmogorov 0-1 Law says that every measurable class C Ç {0.1}W

that is closed under finite variation has either probability 0 or probability 1.

Since we are concerned with the use of oracles, we consider complexity
classes that can be specified so as to "relativize". But we want to do this
in a more gênerai setting than reducibilities computed in polynomial time
and so we introducé a few définitions.

A relativized class is a function C : 7>({0,l}*) —> V(V({Q,1}*)). A
recursive présentation of a relativized class C of languages is a total recursive
function ƒ : N —> N such that for every i > 0, M^Ax) is halting for every
oracle A and input x, and C(A) = {L(Mf^^A) | i > 0}. A relativized
class is recursively présentable if it has a recursive présentation.

A reducibility is a relativized class. A bounded reducibility is a relativized
class that is recursively présentable. If 7Z is a reducibility, then we use
the notation A <n B to indicate that A G Tl(B), and we write 7Z~1(A)
for {B | A < ^ B}. Typical bounded reducibilities include <^7, <^ t t , <x,
<TP> ^ T N Ï £?ngspace> etc. The relations < m and < T (from recursive function
theory) are reducibilities that are not bounded. A reducibility 1Z will be
called appropriate if (i) it is bounded, (ii) for any language L, TZ'l{L)
is closed under finite variation. This définition of appropriate reducibility is
less restrictive than the original one presented in [Bo94], but with this new
définition all the results in [Bo94] still hold, as Kautz remarked in [Ka94].

The reader should note that the reducibilities commonly used in structural
complexity theory meet the conditions for being appropriate.

If 1Z is a reducibility and C is a set of languages, write 7£(C) for

Given a language D, we will dénote with AH the arithmetical hierarchy
of languages relative to oracle D, that is,

(i) S f = R E Ö = {AC { 0 , 1 } * \ A = L(M, D) for a Turing Machine
M } ,

(ii) for every n > 0, £ £ + 1 = RES»,
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ON THE ROBUSTNESS OF ALMOST-ft 127

(iii) for every n > 0, Il£ = co -
(iv) for every n > 0, A^ = E£ H

(v) AHD = U n > o ^ .
For D = 0, we get the unrelativized arithmetical hierarchy, usually denoted

with S°, 11°, A° and AU. For each n > 0, we dénote as if(n) the standard
many-one complete set for S°, that is, £° = S f (""1}. For n = 0, if(0) = 0.

3. USING n-RANDOMNESS

In this section we develop our results that relate an-randomness" with
the classes of the form ALMOST-7^. We first define the concepts of "£>-
constructive null set" and "D-random language" in a similar way to the
introduction of null sets and random languages in [BLW94].

Let D be a language, a class X of languages is called a D-constructive
null set if there is a total recursive function g such that

(i) for every k > 1, X Ç W^fc), and

(ii) for every k > 1, Prob[W^fc)] < 2~fc.
Notice that condition (ii) implies that every D -constructive null set has

probability 0.
Let NULLD dénote the union of all D-constructive null sets. The class

RAND^ of algorithmically random languages relative to D is defined as in
[Ma66], RANDD = {0,1}^ - NULLD.

We define n-randomness in terms of K(n~~1^ -constructive null sets, that
is, let NULL„ = NULL^^"^ and let n-RAND - {0,1}W - NULLn.

Notice that NULLn Ç NULLn+i and that n + 1-RAND C n-RAND.
In the case of n — 1, we use the notation NULL = NULLi and
RAND - 1-RAND.

Omega-randomness is the "limit of" n-randomness, defined as

u;-RAND = f] n-RAND.
n

From the results in [Bo94], we know that

ALMOST-^ = {A | RAND Ç 11'1 (A)}.

If we have n-RAND in the place of RAND, which languages fulfill
n-RAND Ç 1Zr^{A)l This question motivâtes the next définition.
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If 1Z is a reducibility and n > 0, then define the class ALMOSTn-7?. by

ALMOSTV& = {A | n-RAND Ç ft1

and the class ALMOST^-^ by

A L M O S T ^ = {A | cj-RAND Ç K

In [BLW94] Book, Lutz, and Wagner studied the classes ALMOST/K
and related them to the class RAND by showing that ALMOST-7£ =
7£(RAND) n REC. The main resuit of this paper is that each class
ALMOST-n7£ is related to the class n-RAND in a very similar way,
and that ALMOST-n^ = ALMOST-^. We also obtain similar results for
ALMOST^-Ti and u;-RAND.

We begin with a technical lemma stating that for any language A in
RECD , n~l{A) is a class in Ef. This will be useful in the proof of our
main theorem. We next recall the définition of E^\ the Kleene's arithmetical
hierarchy of classes of languages, that can be found for instance in [Ro67].

DÉFINITION: Let D be a language. Let X be a class of languages, let n > 0.
Then X is in E^ if and only if there exists a predicate P that is recursive
in D and such that

X = {A | 3X\ Mx-2 ...Qn%

where Qn is 3 if n is odd, and V otherwise.

Note that classically the same notation is used for both the arithmetical
hierarchy of languages defined in the preliminaries (where Y,® dénotes a
set of languages) and the arithmetical hierarchy of classes of languages we
just defined (where T,® dénotes a set of classes). The meaning in each case
will be clear from the context.

LEMMA 3.1: If 7Z is a bounded reducibility and B is a language in
then n~l{B) is in Ef.

Proof: Let B be as in the hypothesis. Since B G REC^, there exist a
Turing Machine M such that \/x e {0,1}*, MD(x) € {0,1} and

x G B if and only if MD(x) = 1. (1)

Let g be a recursive présentation of 1Z. Then A G TZ~1(B) if and only if
there exists j > 0 such that B =
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ON THE ROBUSTNESS OF ALMOST-^ 129

The condition on A, B = L(Mg^^A) is equivalent to

\/T /y CL /-? J-*> ]\/f , (T\ — 1
V J / -o e xj w iKi^^j^y — x,

which is equivalent to

Vx [(x G B A M ^ ( i ) = 1 ) V ( Z #BAM^3)(X) = 0)].

Using équation 1 we have that A G 1Z~1{B) if and only if

3j\fx \{M (x) = 1 A M ( \{x) = 1) V (M (x) = 0 A JW ̂  (#) = 0)1.

Since machine M halts on every input, the predicate P(A.j, x) defined as

[(MD(x) = 1 A M'^ix) = 1) V (MD(x) = 0 A M ^ ( x ) = 0)].

is recursive in D. This proves that ll~l(B) G Ef. •
The proof of our main theorem is based on the following zero-one law

for rc-RAND that is due to Kautz [Ka94] (see also [Ka91], where a more
restrictive version of this lemma is proven).

LEMMA 3.2: Let X be a class in S^ that is closed under finite variation.
Then either X n RANDD = 0 or RAND^ Ç X.

Lemmas 3.1 and 3.2 together imply the following corollary

COROLLARY 3.3: For any appropriate reducibility TZ and for any language
D,

a) for every B G RANDD, ALMOST-ft = TZ(B) D RECD ;
b) ALMOST-ft = -ft(RANDD) n RECD .

Proof: Let B G RANDD. We start by remarking that RANDD Ç RAND
by définition (since NULL Ç NULLD). Therefore, by the Random Oracle
Characterization in [Bo94],

ALMOST-ft = U(B) n REC ç U{B) n RECD.

For the other part, let A G ̂ ( ^ n R E C - 0 . By Lemma 3.1, ̂ - ^ . A ) G f
and by Lemma 3.2, either n~l{A) n RANDD = 0 or RAND 0 Ç H'1 {A).
Since B G TV1 {A) n RAND^, RANDD ç TZ-l(A).

But RAND"° is a countable intersection of measure 1 classes, therefore
ProbpAND13] = 1 = P r o b p l - 1 ^ ) ] , and A G ALMOST-^. This
complètes the proof of a).
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Part b) follows directly from a). D
Now we have our main resuit.

THEOREM 3.4: For any appropriate reducibility 1Z and any n > 0,
a) ALMOSTn-^ = ^(n-RAND) n A°;
b) for every B G n-RAND, ALMOSTn-7l = U(B) H A°;
c) ALMOSTV^ = ALMOST-^.

Proof: From Corollary 33 , taking D = K^n~l\ we know that for each
B G n-RAND,

ALMOST-7e = TL{B) n A°. (2)

and that

ALMOST-^ - ^(n-RAND) n A°n.

Since équation 2 holds for every B E n-RAND, we have that for each
A G ALMOST-7^ n-RAND Ç ft-^A), therefore A G ALMOSTn-7Z,
and ALMOST-^ Ç ALMOSTVR.

As remarked below, for each D, ProbfRAND^] = 1. This implies that
Prob[n-RAND] = 1 and ALMOSTV& Ç ALMOST-% for every n > 0.
This complètes our proof. D

Theorem 3.4 extends the Random Oracle Characterization to classes
having the form ALMOSTn-7£ by showing that for every n > 0 and
every B G n-RAND, ALMOST-71 = 7i(B)n A° = K(n-RAND)nA[| -
ALMOSTn-7£. As a corollary we see that it can be extended to u;-RAND.

COROLLARY 3.5: For any appropriate reducibility 1Z,
a) ALMOST^-TC - ^(a;-RAND) n AH;
b)for every B G CJ-RAND, A L M O S T ^ = K{B) n AH;
c) A L M O S T ^ = ALMOST-7e.

Proof: Since CJ-RAND is a countable intersection of classes having
probability 1, Prob[u;-RAND] = 1 and A L M O S T ^ Ç ALMOST-^.
By définition of ALMOSTn-7i and ALMOSTw-7i, for every n > 0
ALMOSTV^ Ç ALMOST^-^, because o;-RAND Ç n-RAND. From
Theorem 3.4,

ALMOSTn-^ = ALMOST-7^

therefore ALMOSTW-^ = ALMOST-^.
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Let B G o;-RAND, then for every n > 0, B G n-RAND, and by
Theorem 3.4

ALMOST-^ = 1Z(B) H A° = ^(u;-RAND) n A°.

Since this holds for every n > 0,

ALMOST-^ = U{B) HAH = ^(u;-RAND) n AH.

•
Notice that since ALMOST-7£ is a recursive class, Theorem 3.4 shows

that there are no languages from A^ — REC in 7?,(n-RAND), that is, oracles
in n-RAND are useless for A° - REC. In the same way, by Corollary 3.5
there are no languages from AH - REC in 7£(a;-RAND).

Note that the Independent Pair Characterization trivially holds inside
n-RAND and u;-RAND, because both classes are included in RAND.

4. USING p-MEASURE

In this section we briefly discuss the characterization of ALMOST-7?.
in terms of "p-measure". This concept was introduced by Lutz in his
development of resource-bounded measure, a generalization of classical
Lebesgue measure that classifies recursive complexity classes by their size.
See [Lu92] for a complete introduction to resource-bounded measure.

Let D be the set of dyadic rationals, that is, D = {2~nm | n, m > 0}.
A martingale is a fonction d : {0,1}* —> D with the property that for

every w G {0,1}*, d(w) = (d(wQ) + d(wl))/2. For each martingale d,
define the class S[d] as S[d] = {L | limsup,^^^ d(xL[0-n]) = oo}, where
Xx,[0..n] is the string consisting of the 0th to nth bits in XL-

Let p be the class of fonctions that can be computed in polynomial time.
Let p2 be the class of fonctions that can be computed in time 2log , for some
k. Let A G {p,P2}- A class X of languages has A-measure 0 if there exists
a martingale d e A such that X Ç S[d}\ this is denoted by MA(X) = 0. A
class X has A-measure 1, denoted by MA(X) = 1, if ^ A ( X C ) = 0.

Due to the Kolmogorov 0-1 Law, we need to consider only A-measure 0
and A-measure 1 when dealing with classes that are closed under finite
variations (see [Lu92]).

We define the following classes:
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132 R. V. BOOK AND E. MAYORDOMO

ii. p-RAND = {0, l}w - NULLP;
iii. ALMOSTp-7i = {A | /^P(7^~1(A)) = 1}.

It follows easily from the définitions that for every n > 0, NULLP Ç
NULL Ç NULLn and p-RAND D RAND D n-RAND. From basic
results in resource bounded measure [Lu92], NULLP has p2-measure 0,
and p-RAND has p2 -measure 1.

Since Prob[p-RAND] = 1, clearly ALMOSTp-72: Ç ALMOST-72,. But
to see the converse, that is, ALMOST-72, Ç ALMOSTp-7£, we need that
for each A e ALMOST-72,, p-RAND Ç Tl'1 (A). This would imply that
for each A e ALMOST-72,, 72,~1(A) has p2-measure 1, but this is not
even known for the simplest reducibilities, such as <^ . In fact the p2-
measurability of 1Z~1(A) for each language A is an open problem, only
solved for trivial cases (such as A e P) and for very particular examples
(see [JL95] and [BM95]).

Let us only remark a first step in this direction. For all natural
reducibilities, it trivially holds that for every B, 72,(0) Ç H(B). If,
besides, ?ï is a reducibility such that ALMOST-72. Ç 7£(0), then
ALMOST-72. = ALMOSTp-72.. Some reducibilities that have this property

are <fn, <£ t t , <xH> anc* < T ^ H >
 w ^ e r e

 < T ^ H *S defined by A < T & ^
and only if A <ÇH B © QBF.

5. REMARKS

Lutz and Martin (personal communication) have considered the following
situation: take a reducibility 72. and restrict it so that only a bounded number
of queries can be made (making it like a "bounded truth-table" or "bounded
Turing" reducibility) while maintaining the bounds on computational
complexity. If 72,6 dénotes the result, then 72,6(RAND)n£5 = ALMOST-72.6.

Kautz and Lutz (personal communication) went in the other direction.
If 72. is a reducibility that is not bounded truth-table or bounded Turing,
then 72:(RAND) n E? / ALMOST-71 (but clearly ALMOST-72 C
72:(RAND) n E?).

It would be interesting to answer these last two questions in a more gênerai
form, that is, does 72,(n-RAND) n S£+ 1 equal ALMOST-72:?

In the current paper we have not considered any variation in 72,. Rather,
we have considered subclasses of RAND having the form n-RAND and
superclasses of REC having the form A°. In this case we showed that
72,(n-RAND) n A j = ALMOST-72.. Thus, as n varies, the subclass of
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ON THE ROBUSTNESS OF ALMOST-TC 133

RAND becomes smaller and the superclass of REC becomes larger, but
still the bounded reducibility 1Z forces Ti(n-RAND) n A° to be just
ALMOST-^.

These results show that classes of the form n-RAND (and p-RAND) yield
the same complexity classes as RAND when studying classes characterized
as ALMOST-7^. Hence, these classes may be useful in studying the idea
of "complexity-theoretic pseudo-randomness" just as RAND is useful in
studying "intrinsic randomness." This paper represents only a first step in
this investigation.
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