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Abstract. - In this paper we study the problem of Computing approximate vertex covers of a graph
on the basis of partial information in the distributed decision-making model proposed by Deng and
Papadimitriou [1]. In particular, we show an optimal algorithm whose compétitive ratio is equal
to p, where p is the number of processors.

Résumé. - Dans cet article nous étudions le problème de trouver des couvertures approchées
d'arêtes d'un graphe en partant d'une information partielle dans le modèle de prise de décision
distribuée proposé par Deng et Papadimitriou [1]. En particulier nous donnons un algorithme
optimal dont le taux de concurrence est p où p est le nombre de processeurs.

1. INTRODUCTION

The minimum vertex cover (MVC) problem consists of finding, given a
graph G, a minimum cardinality set of nodes V' such that, for any edge
(w, v), either u E V1 or v G V!. This is a well-studied problem which
appeared in the first list of NP-complete problems presented by Karp [4].
A straightforward approximation algorithm, based on the idea of a maximal
matching, was successively developed by Gavril (according to [2]) with a
performance ratio no greater than 2. Several other approximation algorithms
are presented in the lecture notes of Motwani [5]. In this paper we analyse
the complexity of finding approximate solutions for the MVC problem in
the framework of distributed decision-making with incomplete information
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[1, 3, 6, 7, 8]. In particular, we assume that the vertex cover is chosen
by independent processors, each knowing only a part of the graph and
acting in isolation. More specifically, we assume that the adjacency list of
each node of the graph is known by only one processor which has to décide
whether the node should belong to the vertex cover. We then want to develop
distributed algorithms that always produce feasible solutions (that is, vertex
covers) and achieve, in the worst case, a reasonable compétitive ratio (that
is, the ratio of the cardinality of the solution computed by the algorithm to
the optimum cardinality should be as small as possible). In this paper, we
show that a simple double-matching algorithm which essentially performs
GavriF s algorithm first on the "bridge" edges and then on the "inner" edges
achieves a compétitive ratio equal to p where p is the number of processors.
We also show, by means of a quite involved counting technique, that this
algorithm is optimal, that is, no distributed algorithm can achieve a ratio
smaller than p. These results fit into a more genera! context in which an
optimization problem has to be solved in a distributed fashion and neither
a centralized control nor a complete information are available (see [3] for
several applications). Moreover, it has been argued that this kind of results
"can be seen as part of a larger project aiming at an algorithmic theory of the
value of information" [8], Intuitively, this theory should allow to compare
in terms of competitve ratios two different information regimes, that is, two
different ways of distributing the input among the processors.

2. THE MODEL

We consider a distributed system formed by p non-communicating
processors P\, .... ,PP . Given an instance / of an optimization problem II,
we assume that / is encoded as a set of objects / — {wi, . . . ,wn}> The
instance is "distributed" among the processors according to a certain criterion,
so that the processors Pi receives a subset /2 Ç I and computes a partial
solution Si which dépends only on Ii and i. A measure function u gives
the value u{S\^ . . . , Sp, I) of the partial solutions Si, . . . , Sp (without loss
of generality, we assume that u is undefined whenever Si, . . . , Sp do not
resuit into a feasible solution).

More formally, an information regime (for a p-processor system) is a
function 71 that, given an instance / , returns a p-tuple of subinstances
7i, . . . , Ip. The p-tuple I\, . . . }IP is also called a distributed instance. A
décision strategy A is a p-tuple of algorithms Ai, . . . , i p . The compétitive
ratio of a strategy A with respect to a regime 1Z is defined as follows.
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°p t ( J>

where 7i, . . . ,IP = 7£(7) and opt (/) is the value of an optimum solution
for / . Observe that R(A, 72,) > 1 for any strategy A and any information
regime 7S, and that R(A, TV) is as close to one as the solutions computed
by A are close to the optimum,

This définition can be easily generalized to a family JF of information
regimes as follows:

R(A} T) = ma,xR(A, Tl).

The compétitive ratio of a problem II in a p-processors system, with
respect to a famiïy T is

It has been argued that such a ratio is a reasonable measure of the value
of the information that has been distributed to the processors according to
the information regimes in T.

For any optimization problem, two approaches are interesting within such
a framework:
1. Fix a natural family of "homogeneous" information regimes, usually those

with fewer redundancy, and try to characterize as tightly as possible the
compétitive ratio (that is, the value of information with respect to such
a distribution scheme).

2. Consider several (families of) different information regimes and show the
existence of trade-offs between redundancy and competitiveness.
In this paper we will study the MVC problem within this framework

following the first approach.

2.1. The distributed MVC problem

In the following we will identify a graph G — (V, E) with the set L of its
adjacency lists and we will consider the family ^paxt of information regimes
that partition L into disjoint sets Li, . . . ,Lp .

A distributed strategy A — A\, . . . , Ap for the MVC problem is a p-tuple
of algorithms with the following property. For any graph G — (V, E), for

vol. 30, n° 5, 1996
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any information regime 1Z, such that TZ(G) = Li, . . . , Lp, Ai(Li) C Vi and
A{G, Tl) = U?=i Ai(Li) is a vertex cover for G, where VJ dénotes the set
of nodes whose adjacency lists are in L{.

The compétitive ratio of A with respect to the family

= max

In the following sections we will show that min.4i2(*4, ^part) = P

3. THE UPPER BOUND

Recall that Gavril's algorithm looks for a maximal matching in the graph
and then returns both the endpoints of any edge in the matching. It is easy
to see that such a set of nodes is a vertex cover and that its cardinality is at
most twice the cardinality of the minimum cover.

In the next theorem we will apply the same idea first to edges "shared"
by two processors and then to the remaining edges.

Input: Li

{Vi dénotes the set of nodes whose adjacency lists are in Li]

begin

d := 0; B% := 0;
for each edge (u, v) such that u E Vi and v £ Vi do

if u £ Ci and v £ Bi then

begin

C- := d U {«};

Bi := B% U {v};

end;

for each edge (u, v) such that u, v G Vi do

if u ^ Ci and v £ Ci then

d := Ci U {u, v};
return Ci

end.
Figure 1. - The double-matching algorithm.
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THEOREM 1: For any p > 2, a strategy A for a p-processor System exists
whose compétitive ratio is at most p.

Proof: Consider the strategy A ~ {A\, . . . , Ap} where algorithm Ai is
described in figure 1, and assume that the edges are picked in any specified
order in the boldface for loops (e.g. in lexicographie order).

Let G be an input graph and TZ be an information regime in .Fpaxt- We
dénote by A\ \Li) and A\ \L{) the set of nodes included in C% during the
first and the second for instruction, respectively. Clearly, all edges "seen"
by processor Pi are covered by the set Ai'(Li) U A\2'(Li) U B{. Then, in
order to prove that A(G, TV) is a vertex cover for G it suffices to show
that, for any i,

(1)

The proof is by induction on the number b of bridge edges, that is, edges
whose endpoints "belong" to different processors (observe that each Bi
contains only endpoints of bridge edges). If b = 0, then the proof is trivial.
Suppose that we have 6 + 1 bridge edges and that (u, v) is the last of these
edges in the lexicographie order with u G VJ and v e Vj. Let L» and Lj
dénote the adjacency lists obtained from Li and Lj, respectively, by deleting
the edge (u, v), moreover, let A\ \LI) and Bi (respectively, Aj (Lj) and

Bj) be the sets computed by the algorithm on input Li (respectively, Lj).
By induction hypothesis,

We shall now prove that Bi Ç ^ 1 ) (the proof for Bj is similar). To this
aim, we distinguish the following two cases.

L u e A\1\ZÎ)VV G Bi: in this case Bi = BiÇ

2. u £ A\ (Li) Av ^ Bf. in this case Bi = BiU {v} and u £ Bj (since

u $ A ^ and Bj Ç Â(1Ï). Ifve Af\l3) then, clearly, Bi C Â ^ Ç

otherwise v will be put into A, (Lj) when considering edge (u, v) so

that Bl

We have thus shown that A(G, TV) is a vertex cover. In order to prove
that its competitve ratio is at most p, let n^ = YA=I IA (Li)\ f° r A; = 1, 2.
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Clearly, an index i must exist such that |A^(Lj)j > ni/p. This set
then corresponds to a set of at least nijp disjoint edges. Moreover, the set
Uî=i A\ (Li) corresponds to another set of ri2/2 disjoint edges. From (1)
it also follows that the union of these two sets is still a set of disjoint
edges. That is, G contains a matching of at least ni/p + 712/2 edges. Thus,
any vertex cover for G must contain at least nijp + 712/2 > (ni + 712)/p
nodes, that is,

, 1Z)\ < n i + 712
<

opt(G) " (ni+n2)/p
We can conclude that the compétitive ratio of A is at most p. D

4. THE LOWER BOUND

In order to prove that the resuit of the previous section is tight, let us first
show that, for any strategy A, an information regime 72. G .Fpart exists such
that H(A, 11) > 2, Let K^J1 dénote the distributed instance in which the
complete bipartie graph Kn'n with vertex classes U and W is distributed in
the following way: V{ = U, Vj = W, and ail other processors know nothing
(recall that TZ(Kn'n) = Li, . . . ,LP and, for any k9 V& is the set if nodes
whose adjacency lists are in L&). Then, for any strategy A, either Pi or Pj
has a choose ail its nodes when running A with input ÜT"'-n (otherwise, an
uncovered edge exists). Without loss of generality, we can assume that Pi
chooses ail its nodes. Let us then consider the new distributed instance in
which the vertices in W are pairwise connected, thus forming a clique of
order n. Clearly, Pi still chooses ail its nodes since its subinstance is not
changed. Moreover, Pj is also forced to choose at least n — 1 of its nodes.
The optimum solution then contains n nodes while the solution computed by
A contains at least 2n - 1 nodes. That is, the compétitive ratio is at least 2.

In order to increase the above lower bound, we will show in the next
theorem how to fînd, for any strategy A, and for infinitely many n, a
distributed instance G in which a processor Pj knows n nodes and the other
processors Pi share at least (p — l)(n — 1) nodes which are ail connected
to the n nodes of Pj. Moreover, each Pi with i / j chooses ail its nodes
when running strategy A with input G. We can then modify the instance by
pairwise Connecting ail nodes of Pj. The optimum thus contains n nodes
while the solution computed by A contains at least p(n — 1) nodes. That is,
the compétitive ratio is at least p.

Informatique théorique et Applications/Theoretical Informaties and Applications



THE DISTRIBUTED DECISION-MAK1NG COMPLEXITY 437

In order to prove the theorem, we need the following technical result
which intuitively states that, given two séquences of integers to be interpreted
both as "values" and as "indices", the sum of the two séquences must be
sufficiently large if, for any element of one séquence whose value is "small",
this element is the starting index of a subsequence of "large" values in the
other séquence.

LEMMA 1: Let a i , . . . , a^y, 61, . . . , b2\ be 2N nonnegative numbers such
that, for any n,

1. 0 < an, bn < N.

2. If an < n — 1, then bk > n for k = an + 1, . . . , n — 1.

3. If bn < n — 1, then a^ > n for k = bn + 1, . . . , n — 1.

Then
N N

^(a„ + 6„)>2 53(n-l). (2)
n—1 n—1

Proof: We proceed by induction on N. For N = 1 the proof is trivial
since both ai and 61 are nonnegative.

Assume that (2) has been proven for any Nf < N+l and let a\, . . . , ajy+i,
61, . . . ,6AT+I be 2(N + 1) nonnegative numbers satisfying the hypothesis
of the lemma. Let us consider the case in which both ajv+i and ftjv"+i are
smaller than N (the other cases are proved similarly). Then a^r-j-i = N — h
and fcjv+i — N - k with h, k > 0. From the hypothesis it follows that

üN-k+i, - . . , ajv = JV + 1 and &iv-/i+i, ...,aN = N + l.

For any n with N — k + l <n<N and for any m with N — k + 1 <m<N,
let us define a!n — TV and 6'm = JV. The 2AT numbers a i , . . . ,ajv_fe,
û7v_fc+i, . . . X Y , 61, . . . ,6jv-/i, 6jv-fe+i' ••• '6W clearly still satisfy the
hypothesis of the lemma. This, in turn, implies that

N+l N

n=l n= l
iV

> 2 J 3 (n - 1) + (h + fe) + (aAT+i +
n=l
N+l
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where the inequality is due to the inductive hypothesis. The lemma thus
follows. D

We are now in a position to prove the main resuit of this section.

THEOREM 2: For any strategy A — {Ai, . . . , Ap}, and for any integer JVo,
a graph G, an information regime 1Z 6 .Fpart* an index j , and an integer
no > NQ exist such that

1. \Vj\ = no.

2- £ i # N > (p - l)(no - 1).
3. For any i ^ j , each vertex in V% is connected to each vertex in Vj.

4. For any i / j , Aî(Li) — VJ.

Proof: For any i, j , m, and n, let ÜT̂ -'W dénote the distributed instance in
which the complete bipartite graph Km'n with vertex classes U and W is
distributed in the following way: V% = U,Vj = W, and all other processors
know nothing. For any integer n, let cfj be the maximum m such that P̂
with input K™?71 chooses ail its nodes (see fig. 2 where the black nodes have
been chosen and the white nodes may or may not have been chosen).

O

n nodes

Pi Ck

o
m > clj

nodes n nodes

Figure 2. - The définition of c ^ .

Observe that, for any i, j , and n, if c™ • — m < n — 1 then ck
yi > n for

fc = m + 1,, . . . ,n — l: from Lemma 1, we have that for any i, j , and N,
the following inequality holds:

N N

7 1 = 1
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It then follows that

EEE c " i = E £ « . + ch) * p(p - i ) £ > - !)• <3>

Assume now that an NQ exists such that, for any n > NQ and for any j9

and let

NQ P P

n=lj=l i = 1

Then, for any AT > NQ, we have that

N p p N p p

£££<, = *+ £ ££<,
n=lj=l i = 1 n=iV0+li=l i ^ 1

N P

iY

J^ (
n=JV 0 +l

which, for A'' sufficiently large, contradicts (3).

Thus, for any integer Afo, an index j and an integer no > NQ exist such that

vol. 30, n° 5, 1996
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The distributed instance G is then defined as a star of bipartite graphs
in which processor Pj knows no nodes and each processor Pi with i ^ j
knows c™°j nodes which are ail connected to each node of Pj (2). Clearly,
this graph satisfies the theorem. D

As a conséquence of the above theorem, we then have the following resuit,
whïch states the optimality of the upper bound shown in the previous section.

COROLLARY I; R(MVC\ J^part) > P-

5. CONCLUSION AND OPEN PROBLEMS

We studied the problem of Computing approxirnate vertex covers of a
graph on the basis of partial information. We showed an optimal algorithm
whose compétitive ratio is equal to the number of processors.

In this paper we fixed a particular family of information regimes: it would
be interesting to consider other families of information regimes and find
trade-offs between compétitive ratio and redundancy.

The algorithm given in Section 3 runs in polynomial time, even if the lower
bound holds for algorithms of unbounded complexity. In gênerai, ho wever,
the compétitive ratio of a problem may increase if we restrict ourselves
to polynomial-time algorithms. Investigating the relation-ship between time
complexity and compétitive ratio may be an interesting direction for further
research.

In particular, in the case of the minimum vertex cover problem, given
full information, no polynomial time algorithm is known to achieve a better
asymptotic performance ratio than 2: it would be interesting to find a non-
trivial information regime where a compétitive ratio equal to 2 is achievable
in polynomial time.
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(2) To be more précise, we should assume that, for any, &, each vertex assigned to processor P*.
has a "name" depending on the value of k, such that no two distinct processors own two nodes
with the same name. For instance, we can assume that if processor Pk has rik nodes, then their
identity is k, p + k, . . . , (nk — \)p H- h.
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