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ON THE HORTON-STRAHLER NUMBER FOR RANDOM TRIES (*)

by L. DEVROYE (*) and P. KRUSZEWSKI (2)

Communicated by A. ARNOLD

Abstract. - We consider random tries constructedfrom n i.i.d. séquences of independent Bernoulli
(p) random variables, 0 < p < 1. We study the Horton-Strahler number Hn, and show that

l0ëmin(p,l-p)

in probability as n —*• oo.
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Résumé. - On étudie des arbres aléatoires du type « trie » construits à partir de n suites
indépendantes de variables aléatoires Bernoulli (p) où 0 < p < 1. On prouve que

Hn 1

en probabilité, où Hn est le nombre de Horton-Strahler.

INTRODUCTION

In 1960, Fredkin [9] coined the term trie for an efficient data structure
to store and vetrieve strings. These were further developed and modified
by Knuth [4], Larson [16], Fagin, Nievergelt, Pippenger and Strong [6],
Litwin [17], Aho, Hopcroft and Ullman [1] and others. The tries considered
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hère are constructed from n independent infinité binary strings X\,..., Xn.
Each string defines an infinité path in a binary tree: a 0 forces a move to
the left, and a 1 forces a move to the right. An infinité p-trie is a random
binary tree obtained by highlighting n infinité paths (from the root down).
These paths are independent and are described by independent, identically
distributed (i.i.d.) séquences of Bernoulli (p) random variables, 0 < p < 1.
For example, Figure 1 shows an infinité p-trie built from the infinité strings
01001. . . , 01011...., 10011.. . , 10100 . . . and 11100 The tree is now
pruned so that it has just n leaves at the n représentative nodes (e.g., see
Fig. 2). That is, the finite p-trie is the infinité p-trie maximally trimmed so
that each of the n infinité paths is finite and visits at least one node not
visited by any other path (that node is necessarily a leaf of the future p-trie).
Observe that no représentative node is allowed to be an ancestor of any other
représentative node. This implies that every internai (non-leaf) node has at
least two leaves in its collection of descendants.

Originally used to classify river Systems by Horton [11] and Strahler [24],
the Horton-Strahler number has also been applied to binary trees. Let u b e a

10011.- 10100».

Figure 1. - An infinité p-trie.

01001... 01011...

11100...

Figure 2. - The p-trie is a trimmed-down version of the infinité
p-trie in which the strings are associated with the leaves.
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node in a binary tree. Let \u\ be the number of nodes in the subtree rooted
at u (with u included) and let the Horton-Strahler number Su be defined by

(0 if
S = <

[ { v , Sw] + I^sv-sw] if
(possibility-nonexistent)

childrenu and wr

where I is the indicator fonction. Note that leaves u have Su ~ 1, and that
internai nodes w with one proper child v have Su = Sv.

Figure 3. - A binary tree with Horton-Strahler labeUing.

In gênerai, let Hn be the Horton-Strahler number of the root of a binary
tree with n nodes. For a chain-shaped tree, Hn = 1. For a complete tree
with k full levels and 2fc — 1 nodes, we have Hn = fc. A little thought
shows that Jïn < log2 n + 1.

The Horton-Strahler number arises in computer science because of its
relationship to expression évaluation. In a computer, an arithmetic expression
is evaluated by micro-operations using registers. To facilitate this process, the
expression is stored as an expression tree with the operators in the internai
nodes and the operands in the external nodes. The arithmetic expression is
evaluated by traversing the corresponding tree. In 1958, Ershov [5] showed
that by always traversing the child node with the lower Horton-Strahler
number first, the corresponding register use is minimal (note however that
this does not minimize time). Furthermore, the minimum number of registers
required to evaluate an expression tree with root u is exactly Su + 1.
As expression évaluation is a special type of postorder traversai, the same
paradigm shows that the minimum stack size required for a postorder traversai
of a binary tree is Su + 1 (e.g., see Françon [8]). In fact, the Horton-Strahler
number occurs in almost every field involving some kind of natural branching
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pattern. More recently, the Horton-Strahler number has been used to draw
trees by Viennot, Eyrolles, Janey and Arqués [29] and Kruszewski [15].
Viennot [28] provides a thorough overview. See also Vauchaussade de
Chaumont [26] and Vauchaussade de Chaumont and Viennot [27].

The properties of the Horton-Strahler number have only been studies for
one model of random binary tree, equiprobable binary trees (EBT). These
are random binary trees with n nodes drawn uniformly and at random
from all possible rooted binary trees with n nodes. Let Hn be the Horton-
Strahler number of a random EBT with n nodes so that EHn and Va.r{Hn}
are the corresponding expected value and variance. It is well-known (see,
e.g., Flajolet, Raoult and Vuillemin [7], Kemp [13], Meir and Moon [18],
Meir, Moon and Pounder [19], Moon [20], Devroye and Kruszewski [4],
and Prodinger [23]) that

n ~ log4n and Var{# n } = 0(1).

Viennot et al. [29] introduced the notion of corresponding ramification matrix.
Penaud [21] proved their conjecture on the structure of the ramification
matrix for EBTs. Viennot et al. [29] experimentally studied the ramification
matrix for random binary search trees. Vannimenus and Viennot [25]
experimentally studied the ramification matrix for "injection patterns".

In tree-drawing applications, one needs a family of trees with one or
more parameters so that the resulting trees cover a sufficiently wide range
of shapes. One such family is the family of tries with parameter p. As Hn

varies with p, the parameter p may be used to control the "bushiness" and
elongation of the drawn trees. For example, Arqués et al. [2] visualized tries
as botanical trees. It would be désirable to have simple two- and multi-
parameter families as well, for added flexibility. These may be obtained
by considering Markovian tries, in which the i.i.d. Bernoulli séquences are
replaced by Markovian séquences of random bits (see, e.g., Jacquet and
Szpankowski [12]). The study of the Horton-Strahler number for this moel
is not attempted hère.

We first define two tree metrics, the Balance number and the Fill level,
which serve as deterministic upper and lower bounds for the Horton-Strahler
number. We then dérive the upper and lower bounds respectively of these two
metrics and show that they converge to the same value, thereby squeezing
Horton-Strahler number between them.
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THE BALANCE NUMBER

We first define an infinité trie T* as the infinité complete binary tree. A
position of a node in T* is addressed by two integers, (i, Z), where l is the
level number (l > 0), and 0 < i < 2l — 1 is an integer indicating the node
at level L For example, the root is at level 0, so i — l — 0 for the root. The
integer i when expanded into l bits describes the path from the root to the
node (0 forces a left turn, 1 forces a right turn). Let \%\\ dénote the number
of one bits in the last l bits of z.

If we take an i.i.d. séquence of Bernoulli (p) random variables, say
Zi>Z2)Z$y... and write the bits backwards to form integers, then we obtain
the integers

These are precisely the integers visited on the path from the root by our
séquence. At level 0, we visit 0. At level 1, Zi , at level 2, Z\ + 2aZ2, and
so forth. When we refer to node (i, l), and i > 2*, we are in fact referring
to ( imod2 / , J ) . Therefore, we allow such références modulo 2l.

The probability that a random i.i.d. séquence of Bernoulli (p) random
variables carves out a path that reaches (i,l) is qij = p l ^ ( l — p) ~^1. We
call this the probability of node ( i , / ) . For every node (i,Z) we record its
cardinality C^/, the number of the n strings X\,..., Xn that go through it,
Le., those strings that have in their first l bits the integer i written backwards.
If \i\i = fc? then C^j is binomial (n,pk(l — p) ~ ). The sibling of a node
(i, l) is (i7, l) where if and i differ in the last bit only. We define the Balance
number of (ij) as

where (z,j) dénotes (imod2-?,j). The Balance number Bn of the p-trie is

Bn = svp Bij,
(•,0

where the supremum is only over those nodes (i, Z) that are in the p-trie. For
example, Figure 4 shows our trie with the edges labelled by the indicator
function I\i<czj<cil ] a n ( l m e nodes labelled by Balance number.

We note that since nodes with no siblings have the same Balance numbers
as their parents, the finite and infinité p-tries (and the corresponding Patricia
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Figure 4. - The trie with Balance numbers.

tree - a Patricia tree is a trie in which all internai nodes with one child
are removed and recursively replaced by that sole child) all have the same
Balance number.

We now show the following upper bound on Bn.

THEOKEM 1: For 0 < p < \ and e > 0,

lim P{Bn > (1 + e) logi n} = 0.
n—s-oo p

Proof: The nodes are separated into three catégories:

A = {(ij) :nqhi > n£},
B - {(i, ï) : n~£ < nqu < n£},

Let AQ be the event that for all (ij) G A, / > 1, C^i < C^j if and
only if qu < q^j. For p < | , we will see in Lemma 1 that, if A§ is the
complement of Ao,

On any path, the number of nodes that belong to B is not more than
2 + 28 log^^ n (assuming stül p < ^, then paths of the form (... 000...)

i — p

maximize the path length). Finally, let B* be the subset of nodes in B with
at least one child in C. We show in Lemma 2 that

P{3(iJ) e £* : Cu > M} -> 0 if M > 1 + -. (1)

Informatique théorique et Applications/Theoretical Informaties and Applications
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Collecting ail this, we note that for any (é, £), with probabiiity tending to one,

( \ ((mij) on path from (i, l) to root,
2 4- 2elog^_ n + <1-p ) {{m,j) G A, qmj < qm'j

(2)
As any path visits B*} and every node of B* has cardinality < M with

probabiiity tending to one, the contribution to Bij from ail nodes below that
node of B* is < M. Observe that the last quantity of (2) is maximized by
choosing i with binary expansion (111...).

Then we must have, for any (m, jf) G A on the path to (i, /), npm > n£,
or m < (1 - e) logi n. Therefore, as we may take M — 1 + | ,

p

1 / log- \
- + 2 + 2e- f- logi n + (1 - e) logi n
6 V l o ê ï ^ p /
i / log-

< 3 + - + ( 1 + 2e f- logi n.e V logiez

Thus we will have shown that

° ë ^ ) logi n
l (f,0

for all e > 0. D

We are left with two technical lemmas.

LEMMA 1: P{Ag} -> 0.

Proof: Take ( i , l ) G i and let (z*,P) dénote its parent (note: F = Z - 1,
z* = i mod 2^*). Given Cj*}/*, we know that C^/ is binomial (Ci*j*, 1 — p)
or binomial (C^ ;/*,p) depending upon whether its is left or right child.
Now, if qn < qi' i
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Thus, by Hoeffding's inequality [10],

P{CM > Ci,,i\Ci^} < exp|-2Q -p\ Ci%lX

We argue similarly for qu > g^/, [C^i < Q//], and note that

ij > Citj^qij < qi'j

or
pij. < Ci',hQitl > Qi'JL _

d ^^ } (where 0 < S < 1)

as nqi*j* > n£ because (i,l) G A. Thus, by Boole's inequality,

or < (3)

Clearly, |A| is not more than the number of leaves in the tree pruned to
A times the height of A. But as the leaves are disjoint, their probabilities
cannot sum to more than one, and each individual probability is at least
n-{i-e)^ fac number is not more than n1^6. The height of A is not more
than 1 + log^^ n, by a trivial argument. Thus, (3) is not larger than

I - P

2 1 + log ï n In1"
I-P )

D

LEMMA 2.

sup >i,l > M 0 for M > 1 + - .

Proof: First we count the number of nodes in JB*. Clearly, for any node
in S*, nqi.i > n~£ and nq^ip < n~£ because one of its children must be
in C. Let C* be the collection of all the rightmost ("p") children of nodes
in B* (Le., ail nodes in C* have probability p times that of their parent in
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B*). Note that the nodes in C* are disjoint, hence their probabilities sum
to at most one. But for (ij) G C*,

Mi A = nqi%l*p > n~£p,

or qhi > p/n1+£- Therefore, |C*|n-(1+£)p < 1. Thus, \B*\ < n 1 + 7 p . Fix
(ij)€ 5*. Recall that qu < l/pn1+£. Then

(where m = \_M + lj )

) m

(pn£)m 1 - ^
2

for n large enough. Thus

for ail n large enough. This tends to zero if em > 1 + e. That is, if
m > 1 + 1/e. This holds if M = 1 + l /e. D

We can now dérive the resuit in Theorem 1 for all p G (0,1).

COROLLARY 1: For all e > 0, 0 < p < 1,

lim P^ Bn > (1 + é) log i n } = 0.
n->OO [ min(p,l-p) J

Proof: We note that for p = 1/2, the same proof works throughout, except
for the following. From (2), regardless of whether Lemma 1 holds or not,

Bij < M + 2 + 26log2 n + (1 - e) log2 n

< 1 + - + (l + e)log2n.

vol. 30, n° 5, 1996



452 L. DEVROYE, P. KRUSZEWSKI

So, we need not bother with (2) nor an extension of Lemma 1. In the proof
of Lemma 2, the fact that p < 1/2 was not used. We thus see that for ail
e > 0, 0 < p < 1,

lim p i Bn > (1 + g)log n \• = 0. D
n—KX> (̂  min(p.l-p) J

THE FILL LEVEL

The Fill level or saturation level of a binary tree is the deepest level l
in the tree such that ail possible 2l nodes at that level exist. For example,
the trie of Figure 2 has Fill level 2. In 1992, Devroye [3] showed that for
random Patricia trees constructed from n i.i.d. séquences of independent
equiprobable bits and Fill level Fn that

Fn - log2 n ^
log2 log n

almost surely. We let Fn be the Fill level, of a p-trie with n strings and
show the following lower bound - the short proof is included hère for
completeness. For a much larger class of random tries, Fn was studied by
Pittel [22], whose results imply the bound given below.

THEOREM 2: For e > 0 and 0 < p < 1,

lim p i Fn < (1 - g) log n 1 = 0.
Tl—S-OO (̂  minCp,l-p) J

Proof: Without loss of generality, we assume that p < 1/2. We note that

Equivalently, by Boole's inequality, we have

iti = 0 j < 2 3 P{CM = 0}

( \ n
1 - min qu)

0<K2M '7

< 2'(l-/)n <2le'npl.

Informatique théorique et Applications/Theoretical Informaties and Applications
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This tends towards 0 with n if we take l ~ (1 — ë) l ogn / log( l /p ) for

any e > 0. D

It is equally easy to show that in fact Fnj log i n —> 1 in probability
min (p ,1 — p)

(see Kruszewski [25] and CoroUary 2 below).

THE HORTON-STRAHLER NUMBER

We introducé another metric, related to the Balance number. For a node
w in a binary tree, we set

(0 if lui = 0,

[ (B* + ^[H<M] ) Bw + ^ilw|<|vlj) if \u\ ^ -1- a n d

n bas children

v and tu.

(see Fig. 5). We call S* the alternate Balance number of u. It is easy to see
that B*t — 1 for ail leaves u. If Bn is the Balance number of any binary
tree with root u, then Bn — B* because B* is the maximum number of I's
(from the /['s) along any path in the tree. Note however that the Balance
number of individual nodes - the Bu's in the second section - are not
equal to the quantities 5* .

Figure S.'- Alternate Balance number labelling.

We note that the Balance number provides an upper bound on the
Horton-Strahler number.

LEMMA 3: For each binary trie with root u, Su < fî*.

Proof: For a particular tree, this follows by induction on h, the height
of a node (distance from its furthest descendant leaf). At leaves u9

Su — B*t — 1. Assume that the assertion holds for ail nodes of height
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less than h, At height h we take a node u with children v and w. We
have Sv < B*, Sw < B^ by assumption. If Sv = Sw, then, assuming
|v| < \w\, we have 5 * > 5* + 1 > Sv + 1 = Su . If Sv ^ 5^, then
5W = ma>x(Sv,Sw) < max(i?*, B^) < B*, and we are done. G

We observe that the Fill level provides a lower bound for the Horton-
Strahler number.

LEMMA 4: For each binary tree with root u, Su > Fu.

Proof: Trivial. •

We conclude the folio wing tight bound on the Horton-S trahler number
Hn for p-tries.

THEOREM 3: For a p-trie with n strings,

Hn 1

logn "^ log ^ r L r t
inprobability.

Proof: The upper bound follows from Lemma 3 and Corollary 1. The
lower bound follows from Lemma 4 and Theorem 2. D

This theorem together with Lemmas 3 and 4 allow us to conclude the
following.

COROLLARY 2: For a p-trie with n strings,

TD 1

> j in probability

and

F 1
_> inprobability.

Finally, we note that as p-tries and their corresponding Patricia trees have
the same Horton-Strahler numbers, our bound also hold for Patricia trees.

ACKNOWLEDGEMENTS

We would like to thank the anonymous référées for pointing out several
key références.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON THE HORTON-STRAHLER NUMBER FOR RANDOM TRIES 455

REFERENCES

1. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, Data Structures and Algorithms,
Addison-Wesley, Reading, MA, 1983.

2. D. ARQUÉS, N. JANEY and X. G. VIENNOT, Modélisation de la croissance et de la
forme de structures arborescentes par matrice d'évolution. In Actes de MICAD'91,
Paris, 1991, pp. 321-336.

3. L. DEVROYE, A note on the probabilistic analysis of Patricia trees, Random Structures
and Algorithms, 1992, 3, pp. 203-214

4. L. DEVROYE and P. KRUSZEWSKI, A note on the Horton-Strahler number for random
trees, Information Processing Letters, 1994, 52, pp. 155-159.

5. A. P. ERSHOV, On programming of arithmetic opérations, Communications of the
ACM, 1958, 7, pp. 3-6.

6. R. FAGIN, J. NIEVERGELT, N. PIPPENGER and H. R. STRONG, Extendible hashing - a fast
access method for dynamic files, ACM Transactions on Database Systems, 1979,
4, pp. 315-344.

7. P. FLAJOLET, J. C. RAOULT and J. VUILLEMIN, The number of registers required
for evaluating arithmetic expressions, Theoreîical Computer Science, 1979, 9,
pp. 99-125.

8. J. FRANÇON, Sur le nombre de registres nécessaires à l'évaluation d'une expression
arithmétique, RAIRO Theoretical Informaties, 1984, 18, pp. 355-364.

9. E. H. FREDKIN, Trie memory, Communications of the ACM, 1960, 3, pp. 490-500.
10. W. HOEFFDING, Probability inequalities for sums of bounded random variables,

Journal of the American Statistical Association, 1963, 58, pp. 13-30.
11. R. E. HORTON, Erosional development of streams and their drainage basins;

hydrophysical approach to quantitative morphology, Bulletin of the Geological
Society of America, 1945, 56, pp. 275-370.

12. P. JACQUET and W. SZPANKOWSKI, Analysis of digital tries with Markovian dependency,
IEEE Transactions on Information Theory, 1991, IT37, pp. 1470-1475.

13. R. KEMP, The average number of registers needed to evaluate a binary tree optimally,
Acta Informatica, 1979, 77, pp. 363-372.

14. D. E. KNUTH, The Art of Computer Programming. Sorting and Searching, volume 3,
Addison-Wesley, Reading, MA, 1973.

15. P. KRUSZEWSKI, A probabilistic exploration of the Horton-Strahler number for random
binary trees, Master's thesis, School of Computer Science, McGill University, 1993.

16. P. A. LARSON, Dynamic hashing. BIT, 1978, 75, pp. 184-201.
17. W. LITWIN, Trie hashing. In Proceedings of the ACM - SIGMOD Conf. MOD., Ann

Arbor, Michigan, 1981.
18. A. MEIR and J. W. MOON, Stream lengths in random channel networks, Congressus

Numerantium, 1980, 33, pp. 25-33.
19. A. MEIR, J. W. MOON and J. R. POUNDER, On the order of random channel networks,

SIAM Journal of Algebraic and Discrete Methods, 1980, 7, pp. 25-33.
20. J. W. MOON, On Horton's law for random channel networks, Annals of Discrete

Mathematics, 1980, 8, pp. 117-121.
21. J. G. PENAUD, Matrice de ramification des arbres binaires, Discrete Applied

Mathematics, 1991, 31, pp. 1-21.
22. B. PITTEL, Asymptotic growth of a class of random trees, Annals of Probability,

1985, 18, pp. 414-427.
23. H. PRODINGER, Solution of a problem of Yekutieli and Mandelbrot, Technical report,

Technical University of Vienna, Austria, 1995.

vol. 30, n° 5, 1996



456 L. DEVROYE, P. KRUSZEWSKI

24. A. N. STRAHLER, Hypsometric (area-altitude) analysis of erosional topology, Bulletin
ofthe Geological Society of America, 1952, 63, pp. 1117-1142.

25. J. VANNIMENUS and X. G. VIENNOT, Combinatorial Tools for the Analysis of Ramified
Pattems, Journal of Staîistical Physics, 1989, 54, pp. 1529-1539.

26. M. VAUCHAUSSADE de CHAUMONT, Nombre de Strahler des arbres, langages algébriques
et dénombrement des structures secondaires en biologie moléculaire, PhD thesis,
Université de Bordeaux I, 1985.

27. M. VAUCHAUSSADE de CHAUMONT and X. G. VIENNOT, Enumeration of R N A S secondary
structures by complexity, Mathematics in Medicine and Biology, Lecture Notes in
Bïomathematics, 1985, 57, pp. 360-365.

28. X. G. VIENNOT, Trees everywhere. In A. Arnold éd., Proceedings of the 15th
Colloquium on Trees in Algebra and Programming, Copenhagen, Denmark, May
15-18, 1990, Lecture Notes in Computer Science, Springer-Verlag, Berlin 1990,
volume 431, pp. 18-41

29. X. G. VIENNOT, G. EYROLLES, N. JANEY and D. ARQUÉS, Combinatorial analysis of
ramified pattems and computer imagery of trees. In Proceedings of S1GGRAPH'89,
Computer Graphics, 1989, volume 23, pp. 31-40.

Informatique théorique et AppHcations/Theoretieal Informaties and Applications


