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ON SEMIDIRECT AND TWO-SIDED SEMIDIRECT
PRODUCTS OF F1NITE J-TRIVIAL MONOIDS (*) (**)

by F. BLANCHET-SADRI (*)

Communicated by RYTHER

Abstract. - In this paper, using results of Almeida and Weil, we give criteria for the semidirect
or two-sided semidirect product of two locally finite pseudovarieties V and W to satisfy an identity
u = v. We illustrate these criteria with varions semidirect and two-sided semidirect products of
pseudovarieties of J-trivial monoids. In particular, let J x dénote the class of all finite semilattice
monoids and let W i be the séquence of pseudovarieties of monoids defined by W i — J i and
Wj+i = J i * * W i (the two-sided semidirect product of J i by W J . Each Wfc turns out to be
perfectly related to the k-move standard Ehrenfeucht-Fraïssé game. The union Ufc>i Wfc is then
the class A of ail finite aperiodic monoids. ~

Résumé. — Dans cet article, utilisant des résultats d'Almeida et de Weil, nous donnons des critères
pour que le produit semidirect ou semidirect bilatère de deux pseudovariétés localement finies V
et W satisfasse une identité u = v. Nous illustrons ces critères avec plusieurs produits semidirects
ou semidirects bilatères de pseudovariétés de monoïdes J-triviaux. En particulier, soit J i la classe
des demi-treillis finis et soit W i la suite de pseudovariétés de monoïdes définie par W i = J i et
Wj-|-i = J i * * W i (le produit semidirect bilatère de 31 parWi). Chaque W& devient parfaitement
lié au jeu standard de Ehrenfeucht-Fraïssé avec k tours. L'union Ufc>i ^k est alors la classe A
des monoïdes apériodiques finis. ~

1. INTRODUCTION

Given two pseudovarieties of semigroups V and W, their semidirect
product V * W (respectively two-sided semidirect product V * *W) is
defined to be the pseudovariety of semigroups generated by ail semidirect
(respectively two-sided semidirect) products of the form S *T (respectively
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458 F. BLANCHET-SADRI

S • *T) with S G V and T G W. This paper relates to the following
two problems:

1. Does a given finite semigroup belong to V * W (respectively V**W)?

2. Does V^rW (respectively V **W) satisfy a given identity u = vl

The knowledge of identities for V * W (respectively V * *W) may help
solve the membership problem (1). For instance, if V * W (respectively
V **W) admits a finite basis of identities (or a finite set of generators), then
V i W (respectively V **W) has a decidable membership problem.

Almeida [2, 4] (respectively Almeida and Weil [5]) proposes a new
approach to treat problems that ask for algorithms to décide whether a given
finite semigroup belongs to the semidirect product V * W (respectively
two-sided semidirect product V * *W) of pseudovarieties V and W for
which such algorithms are known. We illustrate their methods in this paper
(and also in the papers [14, 17]). Hère, we are converting bases of identities
for pseudovarieties of ^-trivial monoids into bases of identities for various
semidirect and two-sided semidirect products of such pseudovarieties (if S
is a monoid and s, t E S, then s is said to be JT-below t, written s <jt9 if
s = xty for some x, y G S, and 5, t are said to be J'-equivalent, written
s ~jt9 if s <jt and t <js\ S is said to be JT-trivial if this équivalence
relation is the identity).

Results related to those above include: A resuit of Albert, Baldinger
and Rhodes which implies that the join of two decidable pseudovarieties
of semigroups may be undecidable [1], and the authors mention that an
analogous resuit holds with join replaced by semidirect product. The authors
establish the existence of two finitely based pseudovarieties of semigroups
whose join does not have a decidable membership problem. A resuit of
Irastorza which implies that the semidirect product of two pseudovarieties
of semigroups admitting finite bases of identities may be equational without
such a basis [25].

1.1 Preliminaries

The reader is referred to the books of Almeida [4], Burris and
Sankappanavar [20], Eilenberg [23] or Pin [27] for terminology not defined
in this paper.

1.1.1. Varieties of finite monoids

A Semigroup is a set 5 together with an associative binary opération
(generally denoted multiplicatively). If there is an element 1 of S such that
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1 s = s 1 = s for each s G 5, then S is called a monoid and 1 is its unit. A
subset of S is a subsemigroup (respectively submonoid) of 5 if the induced
binary opération makes it a semigroup (respectively monoid).

Let 5 and T be monoids. A monoid morphism tp : 5 —>• T is a mapping
such that <^(ss') — <p(s)<p(s') for ail 5, s' G 5 and y>(l) = 1. We say
that S divides T, and write S < T, if 5 is the image by a morphism of
a submonoid of T.

Let A be a finite alphabet and let A* dénote the free monoid on the set A
(A+ will dénote the free semigroup on A), A+ is the set of all finite strings
(called words) ai, . . . , ai of éléments of A and A* = A + U {1}, where 1 is
the empty word. The opération in A* is the concaténation of these words.

A variety of finite monoids or pseudovariety of monoids is a class of
finite monoids closed under morphic images, submonoids and finite direct
products (or closed under division and finite direct products). A variety of
monoids is a class of monoids closed under morphic images, submonoids
and direct products. Given a class C of finite monoids, the intersection of all
pseudovarieties containing C is still a pseudovariety, called the pseudovariety
generated by C.

1.1.2. Varieties of languages

Let A be a finite alphabet. A language on A is a subset L of A*. A
language L in A* is said to be recognizable if there exists a finite monoid
S and a morphism <p : A* —> 5 such that L — (p~x (<p (L)). In that case,
we say that S (or ip) recognizes L. The notions of recognizable sets (by
finite monoids and by finite automata) are equivalent. To each language L,
we associate a congruence ~£, defined, for u, f G A*, by u ~LV if and
only if xuy and xi;y are both in L or both in A*\L, for ail #, y in A*.
The congruence ~ £ is called the syntactic congruence of L and the monoid
M (L) — A*/ ~£ is called the syntactic monoid of L. A monoid recognizes
L if and only if it is divided by M (L).

A *-variety V is a family A* V of classes of recognizable languages of A*
defined for ail finite alphabets A and satisfying the following conditions:

• A* V is a boolean algebra, that is, if K and L are in A* V, then so are
KUL, K n i and A*\L.

• If tp : A* -> B* is a morphism and L G J3* V, then if'1 (L) G A* V.

• If L G A* V and a G A, then both {u G A*|au G L} and
{w G A*\ua G L} are in A* V.
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4 6 0 F. BLANCHET-SADRI

Eilenberg [23] proved that pseudovarieties of monoids and *-varieties are
in one-to-one correspondence. If V is a pseudovariety of monoids, then
A* V = {L Ç A*\M(L) G V} defines the corresponding *-variety V. If V
is a *-variety, then the pseudovariety generated by {M(L)\L G A* V for
some A} defines the corresponding pseudovariety V.

Let V be a pseudovariety generated by the monoids Si, . . . , Sm. Thus
V is generated by 5 = Si x • • • x 5 m . Let V be the *-variety associated to
V. Then A* V is the boolean closure of the sets ip"1 (s) for ail s G S and
ail morphisms tp : A* —> S. Consequently, A* V is flnite.

1.1.3. Products of varieties offinite monoids

Let 5 and T be monoids. By a left unitary action of T and S, we mean a
monoid morphism tp from T into the monoid of monoid endomorphisms of
S with functions written and composed on the left. If we write S additively
and let 0 dénote its unit, T multiplicatively and let 1 dénote its unit, and
abbreviate cp (t) (s) by ts, the condition that tp is a monoid morphism mean
that

• (ti/)s = t{tf s)
• 1 s — s

for ail s e S and t, t* G T, and the condition that tp(t) is a monoid
endomorphism of S means that t (s + sf) = ts 4- ts' and tO = 0 for ail 5,
s' G 5 and t G T. By a n'g/tf unitary action ofT on 5, we mean a function

(t. s) i-> st

satisfying the following conditions:
• 5(tt') = (st)tf

• Si = 5

• 0 + Sl)t = 5t + 57t

• 0 * = 0

for ail 5, s' € 5 and t, tf G T.
Given a left unitary action, we define the associated semidirect product

S *T as the monoid with underlying set the cartesian product S x T and
opération defined by

(s, t)(s', t1) = (s + tsf, ttf).

An easy calculation shows that S • T is a monoid with unit (0, 1).

Informatique théorique et Applications/Theoretical Informaties and Applications
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Now, given a left and a right unitary actions in such a way that
t(stf) — (ts)t' for all s e S and t, tf G T, we define the associated
two-sided semidirect product S * *T as the monoid with underlying set
S x T and opération defined by

(s, t)(s', t') = (st' + t/, «0-
An easy calculation shows that S**T is a monoid with unit (0, 1). When the
right unitary action of T on 5 is trivial, then S * *T is in fact a semidirect
product. Two-sided semidirect products were introduced by Rhodes and
Tilson [31].

Neither • nor ** is associative on monoids,
Given two pseudovarieties of monoids V and W, their semidirect product

V*W (respectively two-sided semidirect product V**W) is defined to be the
pseudovariety of monoids generaled by all semidirect (respectively two-sided
semidirect) products S*T (respectively S**T) with S G V and T G W. The
opération • on pseudovarieties is associative and commutes with directed
unions [4]. The opération ** on pseudovarieties is not associative. We will
represent by V2 the semidirect product of i copies of the pseudovariety V.

For a pseudovariety V of monoids, we will dénote by FA (V) the free
object on the set A in the variety generated by V. The following lemmas
are représentations of FA (V * W) and FA (V **W) as submonoids of
FB (V) * FA (W) and FB (V) **FA (W) respectively (where B is an
appropriate set) (these lemmas apply more generally [4, 5]).

LEMMA 1.1 (Almeida [2]): Let V and W be pseudovarieties of monoids that
admit finite free objects onfinite sets. Then so does the pseudovariety V * W .

Moreover, for a finite set A, let T = FA (W) and S = FB (V) where
B = T x A. There is an embedding of FA (V * W) into S *T defined
by a i—> ((1, a), a), where the left unitary action of T on S is given by
t(tf, a) = (££', a) for t, t1 G T and a G A.

LEMMA 1.2 (Almeida and Weil [5]): Let V and W be pseudovarieties
of monoids that admit finite free objects on finite sets. Then so does the
pseudovariety V * *W.

Moreover, for a finite set A, let T = F^(W) and S = Fg (V) where
B = T x A x T. There is an embedding of FA (V **W) into S **T
defined by a ^ ((1, a, 1), a) , where the left unitary action of T on
S is given by t{t\1 a. £2) = (#1) a, £2) ond the right unitary action by
(tl, a, t2) t = (ti, a, t2 t) /or t, t i , t2 G Tand a e A.
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462 F. BLANCHET-SADRI

1.1.4. Identifies and varieties of finite monoids

We end this section with a few more définitions and notations. Let A be a
set. A monoid identity is an expression u ~ v with u, v G A*. The identity
u = v is said to &oM in a monoid S (or 5 satisfies u = v) and we write
S f= u = v if, for every morphism <p : A* —• 5, we have <p(u) = <p(v).
A monoid 5 satisfies a set of identities £ (S f= £) if 5 [= e for every
e G £. We write V |= u = v if for every 5 E V we have 5 J= u = v.
An identity u = v is deducible from a set 5 of monoid identities and
we write £ (= w = t; if, there exist words wo, wi, . . . , u^ G A* with
u — WQ7 V — W£, and there exist words a;, bi G A*, uu Vi G A*, and a
morphism ^ : A* —• A* such that ^ — ai <pi (ui) bi, Wi+i — ai (fi (vi) bû
and m = Vi G £ or ^ — Ui G £ for every 0 < i < .̂

Given a set £ of monoid identities, the class of all finite monoids that
satisfy every identity in £ is a pseudovariety V (£) that is said to be defined
by £. The set £ is also said to be a basis (of monoid identities) for V {£).
Pseudovarieties are ultimately defined by séquences of identities (that is,
a monoid belongs to the given pseudovariety if and only if it satisfies ail
but finitely many of the identities in the séquence), and finitely generated
pseudovarieties are defined by séquences of identities (that is, a monoid
belongs to the given pseudovariety if and only if it satisfies all the identities
in the séquence) [24].

1.2. Games and aperiodic monoids

Let A be a finite alphabet. The set A* Vo = {0. A*} constitutes le vel O of
Straubing's hierarchy of star-free languages on A The set A* Vfc+i which
constitutes level k + 1 of the hierarchy is then defined as the boolean algebra
generated by the languages of the form LQ ai L\ . . . a% L% where % > 0,
Lch • • - ? Li G A* Vfc and ai, . . . , a; G A. We are led to *-varieties of
languages 14 for every k > 0. We will dénote by V& the pseudovariety of
monoids corresponding to V&. In particular, Vo is the trivial pseudovariety
of monoid I. Sraubing's hierarchy which was defined in [35] is related to
Brzozowski's dot-depth hierarchy defined in [21]. Straubing's hierarchy is
strict [19, 38] and Ufc>o ^k is the pseudovariety of aperiodic monoids A.

Each level of the hierarchy A* Vi, A* V2, .. • contains a subhierarchy
that can be defined in the following way. For every m > 1, we define
A*Vfc+ii7n as the boolean algebra generated by the languages of the
form Loa\ Li . . . ai L{ where 0 < i < rn, LQ: • • • > Lt G A* Vjt and
ai , . . . . ai G A. We have then A* Vk = U în>i ^* H,m- w e are led to
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*-varieties of languages V^.m for every k, m > 1. We will dénote by V ^ m

the pseudovariety of monoids corresponding to V^m .

The set A* Vi is the boolean algebra generated by the languages of the
form A* a\ A* . . . ai A* where i > 0 and ai, . . . , a« G A, and hence V\
is the *-variety of piecewise testable languages. From a resuit of Simon
[32, 33], Vi is the pseudovariety of JT-trivial monoids J. We then have an
algorithm to test whether a recognizable language is of level 1 in Straubing's
hierarchy.

For each integer m > 1 and each u G A*, we define am (u) to be the set of
all the subwords of u of length less than or equal to m (a word a\ . . . a% G A*
is a subword of a word v G A* if there exist words t?o, - . . , Vi G A* such
that i? = t;o ai v\ . . . a« VJ). We consider the équivalence relation a m on A*
defined by uam v if a m (u) = am (v). We will abbreviate cei (u) by a (u)
the set of letters that occur in u. Note that am is a congruence of finite
index on A*. By définition, a language is piecewise testable if and only if it
is the union of classes modulo am for some m. More precisely, a language
is in A* Vi,m if and only if it is the union of classes modulo am. We will
also dénote Viî?7î by J m .

We proceed with a generahzation of am related to an Ehrenfeucht-Fraïssé
game. We identify each u G A* with a word model u = ({1, . . . , |it|}}

< u , (jR^)aeA)wnere the universe {1, . . . , \u\} represents the set of positions
of letters in the word u, < u dénotes the usual order relation on {1, . . . , |u|},
and JRQ are unary relations on {1, . . . , \u\} containing the positions with
letter a, for each a G A. The game GïTl (u, v), where m — (mi, . . . , m^) is
a /c-tuple of positive integers and u, v G A*, is played between two players /
and / / on the word models u and v. A play of the game consists of k moves.
In the zth move, Player / chooses, in u or in v, a séquence of mi positions;
then, Player / / chooses, in the remaining word (v or u\ also a séquence of
mi positions. Before each move, Player I has to décide whether to choose
his next éléments from u or from v. After k moves, by concatenating the
position séquences chosen from u and from v, two séquences p\, . . . , pn

from u and q\, . . . , qn from v have been formed where n — m\ -\ h m&.
Player II has won the play if the following two conditions are satisfied:

1. Pi < uPj if and only if qi < uqj for all 1 < i, j < n.

2. R^pi if and only if R^qi for all 1 < i, j < n and a G A.

Equivalently, the two subwords in it and v given by the position séquences
pi, . . . , pn and ci, . . . , qn should coincide. If there is a winning strategy
for Player / / in the game to win each play we say that Player / / wins
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464 F. BLANCHET-SADRI

Gfh (u, v) and write uam v. The special case G\k (u, v) where ïju dénotes
the &-tuple of I's is the standard &-move Ehrenfeucht-Fraïssé game [22].
The équivalence relation am naturally defines a congruence on A*. For
fixed m, we define the pseudovariety V ^ as follows: an A-generated
monoid 5 is in V?^ if and only if 5 is a morphic image of i* / a m-
It is known that each Vm is decidable [15], Note that the equalities
a(m) = am and VVm) = J m hold. The pseudovariety V& (respectively
Vk_m) turns out to be the union U(m1;..,mfc)

V(mi,.,mfc) (respectively
U(m,mlf ....m*-!) V(m ; mu - , mfc_0 t37> 38> 2 6 ] - If m = (mx, . . . , m*), then
(m, m) will dénote (m, mi, . . . . m^).

1.3. Identities and aperiodic monoids

Blanchet-Sadri [11, 12] describes a simple basis of identities Am for J m .
Let m > 1 and let X be a countable set of variables :ri, X2, x$,... Letting
rc = a;i, the basis v4m consists of the following type of identities on

U% . . . U\ XV\ . . . Vj = Ui . . . U\ V\ . . . Vj (1)

where {x} Ç a (m) Ç • * • C a(ui) and {a:} Ç a (vi) Ç • • • Ç a (UJ), and
where i ' + j = m. The basis A\ is equivalent to the identities xy = yx
and x2 = x, ^2 to (xy)2 — (yx)2 and xyxzx = xyzx, and ^3 to
(xy)3 — (yrr)3, xyxzxuxvz ~ xyzxuxvz and zvxuxzxyx — zvxuxzyx,
The pseudovarieties J i , J2 and J3 are hence finitely based. However, for
every m > 4, the pseudovariety J m is not. Also, in [12] we show that
V*2,i is ultimately defined by the following two types of identities on
(x — x\ and y — x%)'-

Ui . . . U\ X2 V\ . . . Vi = Ui . . . U\

w h e r e { x } Ç a ( u \ ) Ç • • • C a ( i t i ) a n d { x } Ç a ( v i ) Ç • • • Ç a (vi) a n d

iii . . . u\ xy v\ ... Vi = Ui ... uiyxvi . . . v%

where {or, y} Ç a (u\) Ç • • - C a (ui) and {x. y} Ç a (v\) Ç - • • C a (VJ),
and where i > 1.

Almeida [3] gives a basis of identities Bm for J" ï + 1 which we now
describe. Let m > 1. Letting a; — ̂ 1 and y ~ X2, the basis Bm consists of
the two following types of identities on X+:

2
I4m . . . U\ X — Um . . . U\ Xy

vm ... vi xy = vm ... viyx

Informatique théorique et Applications/Theoretical Informaties and Applications
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w h e r e { x } O a ( u \ ) Ç ••• C a ( u m ) a n d { # , y ] Ç a ( v \ ) Ç ••• C a ( v m ) .
There, he also shows that for every m > 3, the pseudovariety J™ is not
finitely based. Almeida's basis B\ is equivalent to the identities xux2 = xux
and xuyvxy = xuyvyx (previously shown in [29] to describe Jf). It is
known that | J m > 1 J™ is the pseudovariety R of all 7?.-trivial monoids [34]
and that each J f is decidable [28].

In this paper, we discuss a technique to produce indentities for
the semidirect or two-sided semidirect product of two locally finite
pseudovarieties V and W. In this case both V and W have finite free
objects on finite alphabets.

The notion of congruence plays a central role in our approach. For any
finite alphabet A, we say that a monoid S is A-generated if there exists a
congruence 7 on A* such that S is isomorphic to A* ƒ7. A pseudovariety of
monoids V is locally finite if for any A there are finitely many A-generated
monoids in V. Equivalently, there exists for each A a congruence 74 of
finite index such that an A-generated monoid S is in V if and only if S
is a morphic image of A*/JA*

Let V and W be two locally finite pseudovarieties of monoids. Let 7
be the congruence generating W for the finite alphabet A and let (3 be the
congruence generating V for the finite alphabet FA (W) X A (FA (W)) is
isomorphic to the quotient A*/j). The idea is to associate with V * W a
congruence ~#. 7 on A*. Section 2 gives a criterion to détermine when an
identity on A holds in V * W with the help of ~/3} 7 . This leads to a proof that
such V i W are locally finite and hence decidable. The essential ingrediënt
in our proof is a semidirect product représentation of the free objects in
V * W due to Almeida [2]. If ƒ3 dénotes instead the congruence generating
V for the finite alphabet FA (W) X A X FAÇW), we can associate with
V ik ̂ W a congruence s ^ 7 on A* and obtained similar results by applying
a resuit of Almeida and Weil [5],

In Section 3, further exploration of the basic criteria of Section 2 leads
to bases of identities for the products V * J m (Section 3.1) and V **Jm

(Section 3.2) where V dénotes a locally finite pseudovariety of monoids
whose generating congruence is included in a i . Case studies are then
proposed. We study semidirect products of the form J m i * . . .* Jmfc (Section
3.1.1-3.1.2) and (Ji * imi)

Q • Jm 2 (Section 3.1.3) where V^ dénotes the
reversai of V. A simple basis of identities is described for each of these
semidirect products. Our results imply the relations J i ^ J m = J™"^1 and
J m i * . . . • Jmfc = J m i • Jm2+..._|_mfc; We also study two-sided semidirect
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466 F. BLANCHET-SADRI

products of the form J m i **Jm 2 (Section 3.2.1) and some iterated two-sided
semidirect products of J i (Section 3.2.2). We give a basis of identifies for
J m i **Jm 2 and for each Wi where Wi = J i and Wi+i = Wi *kJ\. Our
results imply that the fc-more standard Ehrenfeucht-Fraïssé game is perfectly
related to W'fc where W[ = J i and for alH > 1, Wf

i+1 = J i **W^ (we
have W'k = V ^ ) . Our results also imply the relations J i **V™ = V ^ m^
and A =

2. IDENTITY CRITERIA FOR SEMIDIRECT PRODUCTS OF LOCALLY FINITE
PSEUDOVARIETIES

In this section, we give criteria to détermine when an identity is satisfied
in the semidirect or two-sided semidirect product of two locally finite
pseudovarieties of monoids.

2.1. Preliminaries on locally finite pseudovarieties

Let A be a finite alphabet. Let W be a locally finite pseudovariety of
monoids and let 7,4 be the congruence of finite index on A* such that an
A-generated monoid S belongs to W if and only if S is a morphic image
of A*/^A- The pseudovariety W admits finite free objects on finite sets.
Let TT7A from A* into FA (W) be the canonical projection that maps a to
the generator a of FA (W). If u, v G A*, then TT7A(U) = TVJA(V) if and
only if UJA V-

DÉFINITION 2.1: Let A be a finite alphabet. Let u = a\ . . . ai G A*. We
write alA {u) for the word

( 1 , a i ) (TT7A ( a i ) , a 2 ) . . . (TT7A (a i . . . a ; _ i ) , ai)

on the alphabet B = FA (W) x A. Also, if w e A*, we write cr™A(u) for
the word

( T T 7 A ( W ) , a i ) ( 7 T 7 A ( w a i ) , a 2 ) . . . ( 7 r 7 A ( w a i . . . a * _ i ) , ai).

DÉFINITION 2.2: Let A be a finite alphabet Let u = ai . . . a% G A*. We
write rlA (u) for the word
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on the alphabet B = FA (W) X AX FA (W). Also, ifw, wf e A*9 we write
T7AW (U) for the word

( T T 7 A ( I U ) , a i , T T 7 A ( a 2 . . . a j u / ) ) ( T T 7 A ( t u a i ) , a 2 , T T 7 A ( a 3 . . . a j u / ) )

. . . ( T T 7 A

2.2. On semidirect products of two locally finite pseudovarieties V and W

Fix two locally finite pseudovarieties of monoids V and W. Let PA
(respectively 74) be the congruence of finite index generating V (respectively
W) for the finite alphabet A.

2.2.1. The case V * W

Let A be a finite alphabet and let B = FA (W) x A. If u, v e A*9 we
write u ~pB^Av for alA (u)0B <?yA(v

LEMMA 2.1: T/ie équivalence relation ~ / 5 B ; 7 A W a congruence of finite
index on A*.

Proof: We will abbreviate $B by fi and 7̂ 4 by 7 throughout the proof.
Assume u ~p^v and ti' ~p%1v*. We have

a7 (it) /3a7 (v) and u 71;

and similarly with u and v replaced by u' and vf. Since 7 is a congruence
we have uuf 'jvv'. The above, the fact that TT7 (W) = ?r7 (v), and the fact
that j3 is a congruence imply that

a7 ( W ) = a7 (u) a™ (uf) = a7 (u) ̂  (u') ̂ a 7 (v) a" (vf) = a7 (W) .

Thus wu7 ~ ^ ) 7 W showing that ~/?.7 is a congruence. This obviously is a
congruence of finite index since ƒ? and 7 are. D

The following lemma pro vides an identity criterion for V • W.

LEMMA 2.2: Let A be a finite alphabet, let B = FA (W) X A and let u,
v G A*. We have

V i W satisfies u = v if and only if u ~pB.yAv>

Consequently, an A-generated monoid S belongs to V * W if and only if S
is a morphic image of A*/ ~ pB.<yA

Proof: We will abbreviate PB by ƒ? and 7^ by 7 throughout the proof.
Let u = v be an identity on A Then « = v holds in V * W if and only if
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u and v represent the same element of FA (V * W). By Lemma 1.1, this
is equivalent to u and v having the same image under the embedding of
FA (V * W) into FB (V) * FA(W) defined b y a ^ ((1, a ) , a), where the
left unitary action of FA(W) on FB (V) is given by t(tf, a) = (ttf

7 a) for
U tf G F A (W) and a G A.

Let u = ai . . . ai and v = b\ ... bj. Then, w is mapped to

((1, ai) + (aua2) + '" + (ai . . . a,_x, a,), ai . . . a*), (2)

and v to

((1, h) + (6i, 62) + • - • + (6i . . . &;-i, &;), 61 .-. &;), (3)

(hère, i7^ (V) is written additively). The identity u — v holds in V * W
if and only if corresponding components of the pairs (2) and (3) coincide.
The condition "the first components of (2) and (3) coincide" is equivalent
to a1 (u) j3a1 (v), and the condition "the second components of (2) and (3)
coincide" is equivalent to wyv. •

COROLLARY 2.1: If A is afinite alphabet and if Y and W are two locally
finite pseudovarieties of monoids, then V * W is locally finite and it is
decidable in polynomial time whether a finite A-generated monoid belongs
to V * W.

Proof: Let A be a finite alphabet. A finite A-generated monoid S belongs
to V * W if and only if S is a morphic image of FA (V * W) (which is
isomorphic to A*/ ~ /? S ] 7 A and hence finite). This is equivalent to saying that
S satisfies all the identities of FA (V*W) in \A\ variables. But, by a theorem
of Birkhoff (see [20]), this set of identities is finitely based and so there is a
polynomial time algorithm to décide whether S belongs to V * W. D

2.2.2. The case V

Let A be a finite alphabet and let B = FA (W) x A x FA (W). If ur

v e A*r we write u w /3 B , 7 A ^ for T7A (U) J3B T7A (V) and ulA v.

LEMMA 23 : The équivalence relation w pB ^A is a congruence of finite
index on A*.

Proof: We will abbreviate /3B by /3 and JA by 7 throughout the proof.
Assume u ~j3^v and v! ~p.7v

f. We have

T7 (u) j3r7 (v) and wyv
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and similarly with u and v replaced by v! and v*. Since 7 is a
congruence we have uv! 7 W . The above, the f acts that ?r7 (u) — n7 (v) and
7T7 (v!) — 7r7 (v

f), and the fact that ƒ3 is a congruence imply that

= r*'«' {U)T*>1 (U')PTY' {v)r^ (v') = r7 (W).

Thus uu* ttp^yvv' showing that ^ ) 7 is a congruence. This obviously is a
congruence of finite index since /? and 7 are. D

We end this section by giving an identity criterion for V

LEMMA 24: Let A be a finite alphabet, let B = FA (W) x A x FA (W)

satisfies u = vif and only if u ~j3B^Av.

Consequently, an A-generated monoid S belongs to V **W if and only if
S is a morphic image of A* f ~/?B .7 A .

Proof; We will abbreviate fy by ƒ? and 7,4 by 7 throughout the proof. Let
u — v be an identity on A. Then u = v holds in V**W if and only if u and v
represent the same element of FA (V**W). By Lemma 1.2, this is equivalent
to u and v having the same image under the embedding of F A (V^O^W) into
FB (V) * * F A ( W ) defined by a»-> ((1, a, 1), a), where the left unitary
action of F4 (W) on FB (V) is given by t (£1, a, £2) = (**ij <̂  £2) a nd the
right unitary action by (ti, a, £2)* = (*ij ^, £2*) for f, *i, £2 € FA (W)
and a G A.

Let u = ai . . . a2 and v — b\ ... bj. Then, u is mapped to

h (ai . . . a ^ - i , ^ , 1), a i . . . a z ) ;

(4)
and v to

( ( 1 , 6 1 , 6 2 •••

(5)
(hère, FB (V) is written additively). The identity u — v holds in V **W
if and only if corresponding components of the pairs (4) and (5) coincide.
The condition "the first components of (4) and (5) coincide" is equivalent
to r7 (u) PT7 (V), and the condition "the second components of (4) and (5)
coincide" is equivalent to wyv.
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COROLLARY 2.2: If A is afinite alphabet and if V and W are two locally
finite pseudovarieties of monoids, then V **W is locally finite and it is
decidable in polynomial time whether a finite A-generated monoid belongs
to V * * W

Proof: The proof is similar to that of Corollary 2.1.

3. ON SEMIDIRECT PRODUCTS OF A LOCALLY FINITE PSEUDOVARIETY V
BY J m

Fix a locally finite pseudovariety of monoids V and let (3A be the
congruence of finite index generating V for the finite alphabet A. Hère
we assume that (3 A Ç a i . In Section 3.1, we give a basis of identifies for
V * J m and in Section 3.2, a basis for V * * J m .

We will need the following properties of the congruence am or a^
repeatedly.

LEMMA 3.1 (Simon [33]): Let m > 1. Let A be afinite alphabet and let
u, v € A*. We have uam uv (respectively uam vu) if and only ifthere exist
words uiy . . . , um such that u = um . . . u\ (respectively u — u\ . . . um)
and a (v) Ç a (u\) Ç • • - C a (um).

LEMMA 3.2: Let m > 1. Let A be afinite alphabet and let u, v e A*. If
a«m (u) a i aoim (v), then uam v.

Proof: Put u — a\ . . . a/, v = b\ ... b3. Since aam(u) a\ aarn(v), the
letter (?ram (ai . . . a^-i), ai) which is in <ram (u) is also in aarn (v), and
the letter {^arn (&i • • • &?-I)J &i) which is in aam (v) is also in aGrn (u). So
there exist 1 < k < i and 1 < i < j satisfying

We conclude that am (u) = am (ai . . . aj) = a m (6i . . . &c) Ç a m (v) and
a m (v) Ç a m (u) follows similarly. •

LEMMA 3.3: Let k > 1 a tó /er m be a k-tuple of positive integers. Let A
be afinite alphabet and let u, v e A*. Ifra^ (u) ai ra^ (v), then u a p ^ j v
and therefore ua^v.

Proof: The condition ra^ (u) a\ ra.^ (v) is equivalent to ua^i m\ v. D
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We will also need the following property of the congruence a ^ m ) - If
u — a\ . . . an is a word on A and 1 < i < j < n, then u [i, j], u (z, j ) ,
u (z, j] and u [i} j) dénote the segments ai . . . CLJ, a2+i . . . aj_i, a^+i . . . a^,
and a% . . . a^-i respectively (u [i, i) dénotes the empty word).

Given a finite alphabet A and a word u E A+, the (m) first positions
in u are defined as follows: Let u\ dénote the smallest prefix of u such
that a{u\) — a(u)\ call pi the last position of u\. Then, let u<i be the
smallest prefix of u(p\, \u\] such that a (112) — a(u{p\, \u\})\ call P2 the
last position of U2 if Ü (pi, \u\] is nonempty, otherwise let P2 = Pi • Continue
this way. Then having defined um-i and pm-i, let wm be the smallest
prefix of u (p m _ i , |u|] such that a ( u m ) = a(ifc(pm_i, |u|]); call p m the
last position of um if u ( p m - i , |u|] is nonempty, otherwise let p m = p m _ i .
If |a (ii)| — 1 (|o; (u)| dénotes the cardinality of a(u))9 pi, . . . , p m are the
(m) first positions in u and the procedure ends. If |a (u)\ > 1, pi , . . . , p m

are among the (m) first positions in w. The rest are found by repeating the
process to find the (m) first positions in u [1, pi) (if nonempty) and the
(m — i) first positions in u(pi: Pi+i) (if nonempty) for all 1 < i < m.
Similarly, the (m) last positions in u are defined by finding suffixes of
u. Together, the (m) first and (ra) last positions in u are called the (m)
positions in w. These positions were defined in [9].

LEMMA 3.4 (Blanchet-Sadri [9]): Let m > 1. Le? A be a finite alphabet
and let n, v G A + . Let p\, . . . , p& (pi < • • • < pfc) (respectively q\, . . . , qg
{c[\ < - * • < qi)) be the (ra) positions in u (respectively v). We have
ua(i.m) v tfand only if the following three conditions are satisfied:

1. k = L

2. K% Pi if and only if R™ qi for all 1 < i < k and a £ A.

3. u{pu Pi+i)®iv(qi, qi+i) for all 1 < i < k.

For sections 3.1 and 3.2, fix a séquence ui = Vi, i > 1 of identities on
X* defining V and call it £.

3.1. The case V * J m

We now give a basis of identities for the pseudovariety V * J m .

Let m > 1. The basis S*m consists of the following type of identities on Af* :

wm ... wiui = wm ... wi vi (6)

where a {ui v%) Ç a (w\) C • • • C a (wm), and where i > 1.
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THEOREM 3.1: Let m > 1. The pseudovariety V * J m is defined by £f
m.

Proof: Fix m > 1. For the inclusion V * J m Ç V (Sf
m), we use Lemma

2.2. Let tt = v be any identity of type (6), that is

u =

where a(uiV{) Ç a(u>i) Ç •• • • C a(wm), and where i > 1. Then we
need to show that u ~ ƒ?#, a m v, or aa^(u) PB cram (^) and u a m f where
A = a (uv) and B = FA (Jm) x A. By Lemma 3.2, this amounts to
verifying that aarn(u) {3B ̂ a^ (v) (hère /3B Ç Oi\ by assumption). First, we
note that for every w on A satisfying a (w) Ç a (w\), we have the equality
Kavn {wm ... wiw) = -Kam (wm ... Wi) since a (wi) Ç . • - C a (wm). This
cornes from Lemma 3.L It then follows that

for every prefix w of u% since a(ui) Ç a(wi). A similar statement can be
made for every prefix w of V{. These statements are used in the computation
of aarn (u) and aŒrn(v) which follows. If w = a\ . . . an on A, we will
abbreviate the word

(wm . . . w i ) , a i ) (7ram (iwm . . . lu i ) , a 2 ) . . . (7vam (wm . . . wi), an)

on the alphabet B by a (tu). We have the equalities

Now, we have a (ui) PB & (vi) since UÏPAVU
 and therefore a a m (u) and

<Tarn_ (t?) are /?g-equivalent. This shows that V * J m satisfies u~v.
For the reverse inclusion, it suffices to show that if an identity u — v

holds in V * J m , then it is a conséquence of £f
m. Again by Lemma 2.2

and Lemma 3.2, our hypothesis on the identity u — v means that
aam (y) PB &am (y) where A = a(uv) and 5 = ^ ( J m ) x ^- Let
v! a be the shortest prefix of u satisfying Tram(u/a) = irarn(u). The
word u can hence be factorized as u = ufau" for some u1', uff G A*.
Since 7ram{ufau") = ?rctm (u'a), there exist iü i , . . . ,w; m E A+ with
n'a = xt;m . . . wi and a(uff) Ç a(iüi) Ç ••• C a(tfï7î) by Lemma 3.1.
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Now, let v!b be the shortest prefix of v satisfying 7ram {vf b) — 7ram (v)
giving a factorization v = v}bvn for some vf, vN E A*. We have

aarn (u) = aam (uf) (TTQ^ (U') , a) o (u" ),

where for every w = ai . . . an on A, the word

(^am O ) , a i ) ( 7 T a m ( » , a 2 ) . . . (7T^m ( u ) , a n )

on the alphabet B has been abbreviated by a* (w) (?rarn (u) = 7ram (r;) by
Lemma 3.2). We first note that am (u}) is lacking an element of am (u)
ending with a, and am (vf) is lacking an element of am (v) ending
with b. The sets a(aarn(u% {(narn(u

f), a)}9 a{a!{u")), a(<jam(vf)),
{(7ram (vf)., b)} and a {o-f(v;/)) are pairwise disjoint except possibly for the
pair a(aam(u% a(aQm(v% the pair {(TT^ (U'), a)}, {(>ram (*/), 6)}
and the pair a (a'(«")), a(a /(t' / /)) (this fact will be used in the rest of
the proof). To see this, the letters in aam (V)> aam(vf) a nd the letters
(TTQ^ (U'), a), (7raTTi (^

;), b) cannot appear in af(uf/) nor in a\v11) since
every letter in af{un) or af(vf/) has TT^ (rt) as first coordinate; the
letter (TT^ (W7), O) (respectively (7ra^ (v;), 6)) cannot appear in aam (uf)
(respectively aam{vf)) because of the choice of u'a (respectively vfb\ and the
letter (7ram (u;). a) cannot appear in <7am{vf) since every letter in aarn(v

f)
has as first coordinate a word that is lacking an element of am (v) ending with
b but contained in v! (similarly {-Karn (vf), b) cannot appear in aarn (uf)).
Second, if a ^ 6, then the letter (narn (wy), a) which is in a(aam(u))
is not in a(cram(v)). We get a contradiction since aarn (u) ai aa^ (v).
So (TTCV̂  (uf). a) = (7ram (vf)^ 6), yielding a = b. Consequently, we
get aam(u')0B<ram(v')9lmd af(u/f) )3B a'(v") or u"/3Av/f. The identity
u!f — vn is deducible from the defining basis of V since u!l 0AVff. We hence
see that ufau/f = wm . . . w\ v!! = wm . . . w\ vn = v!avN is deducible from
£f

m. Now, since aarn (uf) and cram (vf) are (3B-equivalent, we can repeat
the process. Since u and v obviously start with the same letter (aam (u)
and aam (v) have the same alphabet and their first letter is the only one
to have 1 as first coordinate), the process terminâtes with a déduction of
u = v from £*. D

•'m'

COROLLARY 3.1: The pseudovariety V * J is ultimately defined by £'m,
m > 1.
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Proof: The resuit follows from V • J = V • (Jm>i ^m ~ Um>i V * J m

and Theorem 3.1. D

3.3.1. A basis of identifies for J m i * Jm 2

In this section, we give a basis of identities for the pseudovariety J m i * J m 2 •
Let mi, m2 > 1. Letting x — xi, the basis (AmiYm2 consists of the

following type of identities on +

Wm2 . . . W\ U% . . . U\ X V \ . . . Vj =

where a(uiVj) Ç a(iui) Ç ••- Ç a(tum2), where

{x} Ç a(i t i) Ç . . . Ç a(u{) and {x} Ç a (vi) Ç • • • Ç a (VJ),

and where i + j = m\,

COROLLARY 3.2: Let m\, m<i > 1. The pseudovariety J m i ̂ r Jm 2 w defined
by (AaJ ' m 2 .

Proof: By Theorem 3.1 using the fact that ami Ç ai and

Jm1=V(Ami)- •

COROLLARY 3.3 (Blanchet-Sadri [14]): Let m > 1. We have the relation

Proof: Since we are dealing with equational pseudovarieties, the equality
J 2 * J m = J" l + 1 means that J i • 3m and J ^ + 1 satisfy the same identities.
Almeida [3] shows that J" ' + 1 is defined by Bm and Corollary 3.2 shows
that J i • 3m is defined by {Ai)f

m. But it is easy to see that Bm is equivalent
to (Ai)f

m. a
The relation J i • J = R is known to Brzozowski and Fich [18]. The

equality J i • J m — J ^ + 1 gives a proof that a conjecture of Pin [28]
concerning tree-hierarchies of pseudovarieties of monoids is false [14]
(another proof using different techniques is given in [15]). Almeida [3]
implies that J i * J m admits a finite basis of identities if and only if m = 1.

3.L2. A basis of identities for J m i * . . . * 3mk

In this section, we give a basis of identities for the pseudovariety

COROLLARY 3.4: If k > 2 and m i , . . . . m& are positive integers, then the

pseudovariety J m i • . . . • Jmfc is defined by (Aïi1)ma+-+mfc-
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Proof: The proof is by induction on k. For k — 2, the result is
Corollary 3.2. Assume the results holds for k, Now, Lemma 2.2 provides a
congruence fa generating J m i • . . . • Jmfc. For k = 2, /32 =~ami,aTO2 ; then

have fa Ç amk Ç ai for fc > 2. Using the inductive
fc 3 •hypothesis, Theorem 3.1 and the inclusion fa Ç a i , we get that

is defined by ((<Ami)
f
mg+...+mk)

f
mk+1. But t n e la t t e r *s equivalent to

COROLLARY 3.5: If k > 2 and mi, . . . , m^ are positive integers, then we
have the relation Jm x • . . . • Jmfe = J m i * Jm2+...+mfc.

Proof: Since we are dealing with equational pseudovarieties, the equality
J m i • . . . • Jmfc = J m i * Jm2+...+mjb means that J m i • . . . * Jmfc and
J m i r̂ Jm2-\ |_mfc satisfy the same identities. Corollary 3.2 shows that
Jmi * Jm2+...+mfc is defined by (Xmi)m2+...+mfc and Corollary 3.4 shows
that J m i • . . . • Jmfc is also defined by (Ami)

/
m2+...+mk. •

3.1.3. A basis of identities for (Ji * J m i )
e • Jm 2

Given any pseudovariety of monoids V, define V^ = {SÛ\S G V}
(here, 5^ is the monoid 5 reversed). The set Yg is a pseudovariety of
monoids. In this section, we give a basis of identities for the pseudovariety
(Jl *Jmi)

e * Jm3.
Let mi, 77i2 > 1* Letting x — x\ and y = X2, the basis Cini,m2 consists

of the following two types of identities on

Wm2 • • • U\ X2 V\ . . . Vmi = Um2

where {x} Ç a(vi) Ç • • - C a (vmi) Ç a (u\) Ç • • - C a (vm2), and

... vmi — um2 . . . ui yxvi . . . vvmi — um2 . . . ui yxvi . . . vmi

where {x, y} Ç a ( u i ) Ç ••• C a(vmi) Ç a ( u i ) C •-• Ç a(vm2). The

basis C m ) ? n turns out to be close to a basis in Section 3.2.I .

COROLLARY 3.6: Let m i , 7712 > 1. The pseudovariety ( J i * J ™ ^ * J m 2

is defined by Cmum2.

Proof: Let A be a finite alphabet and let u, v G A*. We have (Ji * JmJ^
satisfies u = ^ if and only if J i • J m i satisfies uQ — vQ if and only if
°ami ( ^ ) ûfi aoïrai (ve) and ŵ  a m i i^ (the notation tüe refers to the reversai
of w). We therefore conclude that the congruence generating (Ji * J m J e
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for A is included in a i . The latter, Theorem 3.1 and J'i * J m i — V ( S m i )
implies the resuit.

3.2. The case V **Jm

We now give a basis of identities for the pseudovariety V **Jm.
Let m > 1. The basis £"% consists of the following type of identities on X*:

Wm . . . W\ Ui w[ . - . V)'m = Wm . . • W\ Vi w[ . . . Wf
m (7)

where a (u-i vt) Ç a (wi) Ç • • • Ç a (wm) and

a (u% Vi) Ç a (tui) Ç • -. Ç a {wf
m),

and where i > 1.

THEOREM 3.2: Le? m > 1. The pseudovariety V ^ J m zs defined by £^%,

Proof: Fix m > 1. For the inclusion V * J m Ç V ( f ^ ) , we use Lemma 2.4.
Let îx — v be any identity of type (7), that is

u = iwm . . . w\ UÎ w[ . . . wl
m,

v =• tfm . . . wi Vi w[ .. • v/m,

where

« {ni Vi) Ç a(wj) Ç -" Ç a (wm)y

et (ui Vi) Qa(wi)Ç'"Ça (wf
m),

and where i > 1. Then we need to show that ram (u) 0B Tam (v) and u am v
where A — a (uv) and B ~ FA ( J m ) x i x F ^ (Jm ) . By Lemma 3.3, this
amounts to verifying that rarn (u) /3B ?am (v) (hère /îg Ç ai by assumption).
First, we note that for every w on A satisfying

a (w) Ç a (ttfi),

we have the equality ?ram (tüm . . . wi tu) = TTQ-̂  (tym . . . tüi) since
a(wi) Ç ••• C a(ium) . This cornes from Lemma 3.1. It then follows
that 7rarn (wm . . . w\ w) — 7Tarn (wm ... wi) for every prefix w of U{ since
a{ui) Ç a(wi). A similar statement can be made for every prefix w of
Vi. Second, we note that for every w satisfying a(w) Ç a(w/

l), we have
the equality
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7Tam (ww[ . . . w!
m) = 7Tam (w[ . . . w!

m) since

<x(w\) C . . . Ç a(wf
m).

This also comes from Lemma 3.1. It then follows that

l . . . Wf
m) = 7Ttt

for every suffix w of m since a(itj) Ç a(iüi). A similar statement can be
made for every suffix w of Vi. These statements are used in the computation
of rarn (u) and ram (v) which follows. If w = a\ . . . an on A we will
abbreviate the word

) , ai, 7raTu (tüi . . . w'm))

on the alphabet S by r(w). We have the equalities

Now, we have r {ui) fis T (vi) since UifiAVi and therefore r a m (w) and
ram (v) are /3^-equivalent. This show that V **Jm satisfies u — v.

For the reverse inclusion, it suffices to show that if an identity u — v
holds in V **Jm, then it is a conséquence of S!^. Again by Lemma 2.4,
our hypothesis on the identii) a = v means that rarn (u) PB i~am (v) and
uamv with A — a(uv) and B = i ^ i ( J m ) x A x F^ ( J m ) . First of all,
ram (u) PB Tam (v) implies ua^^^v by Lemma 3.3. Since u and v are
either both empty or both nonempty, we treat the case where u and v are
both nonempty (the other case is trivial). Let pi, • •., Pk (pi < • - < Pk)
(respectively çi , . . . , f f t (QI < ••• < Qe)) be the (m) positions in u
(respectively v). The three conditions of Lemma 3.4 are satisfied. In fact,
since ra m (u) PB ̂ "am {v)9 we can say better (in the sense that the following
three conditions imply the three conditions of Lemma 3.4 since 0A Ç » I ) :

• k = L

• R'aPj if and only if R^ qj for all 1 < j < k and a G A.

• u(pj, PJ+I)PAV(QJI Qj+i) f°r all 1 < j < fc (this follows by an
argument similar to that of the proof of u" PA vf/ in Theorem 3.1).

The latter implies that u(pj, Pj+i) — v(qJ: qj+i) is a conséquence of
£ for all 1 < j < k.

vol. 30, n° 5, 1996



478 F. BLANCHET-SADRI

Fix jf. If u(pj. Pj+i) is nonempty, rewrite u [1, pj] as wm . . . wi and
u [pj+ 1 , |u|] as w[ . . . lu^ for some w\, . . . , wm, w[, . . . , u>'?, with

a(u(pj, pj+i)) Ç a ( t ü i ) Ç ••• Ç

This can be done based on the choice of the Pj's. Since £ h u (pj,
w e Eet

We can repeat the process for each j , and we get a déduction of u — v
from £^. D

COROLLARY 3.7: The pseudovariety V **J «• ulîimately defined by £^,
m > 1.

Proof: The resuit follows from V **J = Um>i
Theorem 3.2. D

3.2.1. A basis of identities for J m i

In this section, we give a basis of identities for the pseudovariety

Let mi, m2 > 1. Letting x = xi, the basis (*Ami)m2 consists of the
following type of identities on X+\

l l . . . Vj w[ . . . Wf
m2

= Wm2 . . . WlUi . . . UiVi . . . Vjw'i . . . Wm2

where

(v>iVj) Ç a(wi) Ç •.. Ç a(wm2)

and

a(uiVj) Ç a (lui) C . . . Ç a ( ^ 2 ) ,

where

{x} Ç a (wi) Ç -" Ça (m)

and

{x} Ç a (v\) Ç • •. C a (VJ),

and where i + j ' = TOI .
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In the case mi = 1 and m<i = m, the basis (-4i)™ is equivalent to the
set consisting of the following two types of identities on X+ (x = xi and

u\ x2 v\ . . . vm = um ... u\xv\ . . . vm

where {x} Ç a(u\) Ç -- Ça (um) and {x} Ç a (vi) Ç • • • Ç a (vm), and

tim . . . u\ xy vi ...vm = Um ...myxvi . . . v m

where {x, y} Ç a (ui) Ç •. . C a (um) and {x, y} Ç a (v\) Ç . •. Ç a (i/m)

COROLLARY 3.8: Let mi, rri2 > 1. Thepseudovariety J m i ^^JÏ7Ï2 w defined

Proof: By Theorem 3.2 using the facts that

a m i Ç ai and J m i = V {Ami). •

COROLLARY 3.9: Let m > 1. We have the relation J i • r̂ J m = V(i.m) .
More generally, if k > 1 an^ m w a k-tuple of positive integers, then

Proof: By Lemma 2.4 using the fact that u & aii(X¥fiv if and only if

The relation J i **Vk = V&+i,i is known to Weil (this is a particular
case of Proposition 2.12 in [40]).

3.2.2. On iterated two-sided semidirect products of J i
In this section, we study some iterated two-sided semidirect products of J i .

Let k > 2. Letting x = xi and y — X2 the basis P& consists of the
following two types of identities on X+:

Uk_i . . . U\ X 2 Vl . . . Vk-l = U k - 1 . . . U l X V i . . . V k - l

where {x} Ç a(u\) and {x} Ç a(v\), where a(mvi) Ç a(ui+i) and
a (ui vi) Ç a (vi+i) for 1 < i < k — 1, and

i t / c - i . . . u i xy vi . . . v f e _ i = Uk-i . . . uiyxvi . . . Ufc_i

where {x. y} Ç a(t i i) and {x. y} Ç a(t?i), where a{u%v%) Ç a{ui+\)
and a{uiVi) Ç a(vt-+i) for 1 < i < k - 1.

COROLLARY 3.10: Let Wz èe the séquence of pseudovarieties of monoids
defined by Wi = J i ató W^+i = Wj**Ji . TjTifc > 2, rAen the pseudovariety

is defined by Vk.
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Proof: The proof is by induction on k. For k = 2, the resuit is
Corollary 3.8. Assume the resuit holds for k. Now, Lemma 2.4 provides a
congruence (3k generating Wk. For k - 2, ƒ% =«a l l a x ; then /?fc+1 = « ^ a i .
We have ƒ?& Ç ai for k > 2. Using the inductive hypothesis, Theorem 3.2
and the inclusion (3k Ç a i , we get that W^+i = Wk **Ji is defined by
(Vky{. But the latter is equivalent to Vk+1.

We end this section with an iterated two-sided semidirect product of J i
perfectly related to the standard Ehrenfeucht-Fraïssé game.

COROLLARY 3.11: Let W^ be the séquence ofpseudovarieties of monoids
defined by W[ = J i and W^+1 — J i b̂̂ W .̂ Let k > 1, let A be afinite
alphabet and let u, v G ^4*. We have W ,̂ satisfies u = v if and only if
ua\k v. In other words, W'k = Vjfc.

Proof: The proof is by induction on k. For k — 1, the resuit trivially
holds. Assume the resuit holds for k. Then W^ + 1 = J i **W^, — J i ^^Vïfc

(by the inductive hypothesis). But the latter equals V p y or Vjfc ± by
Corollary 3.9.

COROLLARY 3.12: Let W£ be the séquence of pseudovarieties of monoids
defined by W^ = J i and W^+1 = J i ^ W j . We have the relation
A = U>iWi,

Proof: Let k > 1 and let m be a fc-tuple of positive integers. We
have Vîfc Ç V ^ Ç Vj where n = m\ -h Y mk [6]. We have then
A = U > i Vîfc - U > r w ^ by Corollary 3.11. D

REFERENCES

1. D. ALBERT, R. BALDINGER and J. RHODES, Undecidability of the identity problem for
fmite semigroups, Journal of Symbolic Logic, 1992, 57, pp. 179-192.

2. J. ALMEIDA, Semidirect products of pseudovarieties from the univers al algebraist's
point of view, Journal of Pure and Applied Algebra, 1989, 60, pp. 113-128.

3. J. ALMEIDA, On iterated semidirect products of finite semilattices, Journal of Algebra,
1991, 142, pp. 239-254.

4. J. ALMEIDA, Semigrupos Finitos e Algebra Universal (Institute of Mathematics and
Statistics of the University of Sâo Paulo, 1992; Finite Semigroups and Universal
Algebra (World Scientifîc, Singapore, 1994.

5. J. ALMEÏDA and P. WEIL, Free profinite semigroups over semidirect products, Izvestiya
Vysshikh Ucebnykh Zavedeniï Matematica, 1995, 1, pp. 3-31.

6. F. BLANCHET-SADRI, Some logical characterizations of the dot-depth hierarchy and
applications, Ph. D. Thesis, McGill University, 1989.

Informatique théorique et Applications/Theoretical Informaties and Applications



SEMIDIRECT AND TWO-SIDED SEMIDIRECT PRODUCTS OF HNITE J-TRIVIAL MONOIDS 4 8 1

7. F. BLANCHET-SADRI, Games, équations and the dot-depth hierarchy, Computers and
Mathematics with Applications, 1989, 18, pp. 809-822.

8. F. BLANCHET-SADRI, On dot-depth two, RAIRO Informatique Théorique et
Applications, 1990, 24, pp. 521-529.

9. F. BLANCHET-SADRI, Games, équations and dot-depth two monoids, Discrete Applied
Mathematics, 1992, 39, pp. 99-111.

10. F. BLANCHET-SADRI, The dot-depth of a generating class of aperiodic monoids is
computable, International Journal of Foundations of Computer Science, 1992, 3,
pp. 419-442.

11. BLANCHET-SADRI, Equations and dot-depth one, Semigroup Forum, 1993, 41,
pp. 305-317.

12. F. BLANCHET-SADRI, Equations and monoid varieties of dot-depth one and two,
Theoretïcal Computer Science, 1994, 123, pp. 239-258.

13. F. BLANCHET-SADRI, On a complete set of generators for dot-depth two, Discrete
Applied Mathematics, 1994, 50, pp. 1-25.

14. F. BLANCHET-SADRI, Equations on the semidirect product of a finite semilattice by a
J"-trivial monoid of height k, RAIRO Informatique Théorique et Applications, 1995,.
29, pp. 157-170.

15. F. BLANCHET-SADRI, Some logical characterizations of the dot-depth hierarchy and
applications, Journal of Computer and System Sciences, 1995, 57, pp. 324-337.

16. F. BLANCHET-SADRI, Inclusion relations between some congraences related to the
dot-depth hierarchy, Discrete Applied Mathematics, 1996, 68, pp. 33-71.

17. F. BLANCHET-SADRI and X. H. ZHANG, Equations on the semidirect product of a finite
semilattice by a finite commutatïve monoid, Semigroup Forum, 1994, 49, pp. 67-81.

18. J. A. BRZOZOWSKI and F. E. FICH, Languages of 7^-trivial monoids, Journal of
Computer and System Sciences, 1980, 20, pp. 32-49.

19. J. A. BRZOZOWSKI and R. KNAST, The dot-depth hierarchy of star-f ree languages is
infinité, Journal of Computer and System Sciences, 1978, 16, pp. 37-55.

20. S. BURRIS and H. P. SANKAPPANAVAR, A Course in Universal Algebra, Springer-Verlag,
. New York, 1981.

21. COHEN R. S. and J. A. BRZOZOWSKI, Dot-depth of star-free events, Journal of Computer
and System Sciences, 1971, 5, pp. 1-15.

22. A. EHRENFEUCHT, An application of games to the completeness problems for
formalized théories, Fundamenta Mathematicae, 1961, 49, .pp. 129-141.

23. S. EILENBERG, Automata, Languages, and Machines, Vol. A, Academie Press, New
York, 1974; Vol B, Academie Press, New York, 1976.

24. S. EILENBERG and M. P. SCHÜTZENBERGER, On pseudovarieties, Advances in
Mathematics, 1976, 79, pp. 413-418.

25.. C. IRASTORZA, Base non finie de variétés, in STACS'85, Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1985, 182, pp. 180-186.

26. D. PERRIN and J. E PIN, First order logic and star-free sets, Journal of Computer and
System Sciences, 1986, 32, pp. 393-406.

27. J. E. PIN, Variétés de Langages Formels, Masson, Paris, 1984; Varieties of Formai
Languages, North Oxford Academie, London, 1986 and Plenum, New York, 1986.

28. J. E. PIN, Hiérarchies de concaténation, RAIRO Informatique Théorique et
Applications, 1984, 18, pp. 23-46.

29. J. E. PIN, On semidirect products of two finite semilattices, Semigroup Forum, 1984,
28, pp. 73-81.

30. J. REITERMAN, The Birkhoff theorem for varieties of finite algebras, Algebra
Universalis, 1982, 14, pp. 1-10.

vol. 30, n° 5, 1996



482 F. BLANCHET-SADRI

31. J. RHODES and B. TILSON, The kernel of monoid morphisms, Journal of Pure and
Applied Algebra, 1989, 62, pp. 227-268.

32. I. SIMON, Hiérarchies of events of dot-depth one, Ph. D. Thesis, University of
Waterloo, 1972.

33. I. SIMON, Piecewise testable events in Proc. 2nd GI Conf, Lecture Notes in Computer
Science, 1975, 33, Springer-Verlag, Berlin, pp. 214-222.

34. P. STIFFLER, Extension of the fundamental theorem of finite semigroups, Advances
in Mathematics, 1973, 77, pp. 159-209.

35. H. STRAUBING, Finite semigroup varieties of the form V * D, Journal of Pure and
Applied Algebra, 1985, 36, pp. 53-94.

36. H. STRAUBING and P. WEIL, On a conjecture concerning dot-depth two languages,
Theoretical Computer Science, 1992, 104, pp. 161-183.

37. W. THOMAS, Classifying regular events in symbolic logic, Journal of Computer and
System Sciences, 1982, 25, pp. 360-376.

38. W. THOMAS, An application of the Ehrenfeucht-Fraïssé game in formai language
theory, Mémoires de la Société Mathématique de France, 1984, 16, pp. 11-21.

39. B. TILSON, Catégories as algebra: an essential ingrédient in the theory of semigroups,
Journal of Pure and Applied Algebra, 1987, 48, pp. 83-198.

40. P. WEIL, Closure of varieties of languages under products with counter, Journal of
Computer and System Sciences, 1992, 45, pp. 316-339.

Informatique théorique et Applications/Theoretical Informaties and Applications


