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Abstract. — The ability of dvnamical systems of various kinds to simulate Turing machines and
thus manifest a universal computation power (and beyond) has gathered a lot of interest lately, see
e.g. |16). 51 [6] and 14). A similar line of investigation for ordinary differential equations was
started in [ V1] and continued in [12] and [13]. In this context the minimum dimension required for
universal computation is of interest. The dynamical systems in [S) and [6] are of small dimension
and the topic of (4] is to find the smallest dimension for certain types of dynamical systems. The
results in this paper show that for ODEs dimension two can be reached and, allowing somewhat
complicared events, even dimension one.

Résumé. — La capacité de svstemes dyvnamiques de différents types de simuler les machines de
Tiring et uinsi de posséder une puissance de calcul universel (et au-dela) a suscité beaucoup
d'intérér récemment, voir par exemple [16], [S], [6] et [4). Une direction de recherche semblable
sur-les équations différentielles ordinaires a été amorcée en [11] et poursuivie en [12] et [13].
Connaitre la dimension minimale exigée pour obtenir la puissance de calcul universel revét un
intérét particulier. Les svstemes dynamiques de [S] et [6] sont de petite dimension et le sujet de [4]
est de trouver la plus petite dimension pour certains types de systéme dynamiques. Les résultats de
cer article montrent que pour les équations différentielles ordinaires la dimension deux est suffisante
et méme, si des événements légerement plus compliqués sont autorisés, que 1’on peut descendre
en dimension un.

1. INTRODUCTION

Many problems involving finitely given ordinary differential equations
(ODEs) turn out to be algorithmically undecidable, something that
probably has not been sufficiently appreciated. It is true that the classical
noncomputability result of M.B. Pour-El and 1. Richards [8] involves
nonunique solutions and that these are not of much practical interest. There
are however other undecidable problems, the event detection problems, which
involve unique solutions and explicitly given ODEs. Indeed, event detection
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68 K. RUOHONEN

is dynamically undecidable, i.e., the ODE simulates dynamically the steps of
a Turing machine computation and its definition contains only the transition
rules of the Turing machine and not results of whole computations, see [11].

The purpose of this paper is to extend the dynamical undecidability of
event detection to ODEs of small dimension (that is, small number of
dependent variables). This objective is of interest because the dimensions of
the ODEs in [11],[12] and [13] are rather high. Although it is possible to get
lower dimensions by using different types of machines in the simulation, to
reach dimensions one and two requires separate constructs. These constructs
are the subject of the present paper.

There has also been a recent interest in Turing machine simulation by low-
dimensional dynamical systems, and the present paper may be considered
as a contribution to this line of research, see e.g. [4],[5] and [6]. The
conclusions reached here are similar to those in [4]: A rather natural two-
dimensional dynamically undecidable event detection problem exists but
to get to dimension one a much more complicated construct is needed.
Somehow the smallest natural dimension for dynamical computation appears
to be two, getting to dimension one strains naturality a lot.

Only some basic facts of computability, computable analysis and classical
ODE theory are used. A good background is contained in [3],[9] and in
[2] or [10].

2. PRELIMINARIES

An event of an ODE y’ = f(y,t), with the initial value y(0) = yo, occurs
whenever at least one of the given equations

g,i(tv}’(t)vy,(t)) =0 (.7 =1,.. ak)

is satisfied for some ¢ in a given interval /. For aspects of numerical event
detection see [15]. The event detection problem (EDP) is the problem of
deciding for a given initial value problem and event on an interval I whether
or not the event occurs.

If a quite general approach is taken then it is not very difficult to obtain low-
dimensional undecidable event detection problems. Indeed, take a universal
Turing machine M with nonnegative integer inputs and define the sequence
fo, f1, ... of rationals by

Fo = 2™ if M stops in m steps after receiving input n
" 0 if M does not stop after receiving input 7.
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UNDECIDABLE EVENT DETECTION PROBLEMS 69

Following the nomenclature of [9], the sequence fy, f1,... is then not
a computable sequence of rationals but it is a computable sequence of
reals as it can be approximated by the computable double sequence f,i
(n=0,1,...;k = 0,1,...) of rationals where

ot = 2™ if M stops in m < k steps after receiving input n
nk 0 if M does not stop in k steps after receiving input 7.

(A sequence of rationals is computable if there is an algorithm which on
input n (resp. (n, k)) computes the denominator, the numerator and the sign
of the nth (resp. the (n, k)th) term in the sequence. A sequence g, 1, . . .
of reals is computable if it can be approximated by a computable double
sequence rn; (n = 0,1,...;k = 0,1,...) of rationals uniformly in n, i.e.,
|Zn — Tnk| < 27F for all » and k.) Now, detection of the event y(t) = 0
for the ODE 3’ = 0, given n and the initial value y(0) = f,, is undecidable
on any interval containing 0, because f, = 0 is undecidable. A further
modification is obtained as follows. Define the smooth function
9(x) = flas1jage” 2T

It is easy to see that g is computable on [0,00). Detection of the event
y1(t) = 0 for the ODE

{yi =g(y2) -1

yp =0

given an initial value y1(0) = 1,y2(0) = n where n is a nonnegative integer
is then undecidable on [0, 1]. There is a similar construct giving undecidability
of two-dimensional symbolical event detection described in [11].

EDP is dynamically undécidable for time intervals of the form [0,7") and
[0,00), as was shown in [11] through dynamical simulation of a universal
Turing machine by an explicitly given ODE. Indeed, in [11] initial values
Yo are n-tuples of nonnegative integers, f is a fixed explicitly given function
and the event to be detected is of the simple form y;(t) = 0.5. (No
references to computability of reals or functions, or properties of symbolical
expressions actually appear in [11].) Moreover, the solutions are computable.
Even a smooth choice for f is possible. Extensions of the undecidability to
parametric ODESs and to closed finite time intervals are given in [12] and [13].

The ODE used in [11] has a large dimension (that is, number of dependent
variables). Reduction of the number of dependent variables depends heavily
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70 K. RUOHONEN

on the internal structure of the ODE. For this purpose some characteristics
of the construct in [11] are given.

The central idea of [11] is to simulate a counter machine M with m
counters and counter input (and no internal states) by a 2m + 1-dimensional
autonomous ODE

% _ Q(a()

with an initial value at ¢ = 0. As is well known, counter machines have
universal computing power. The following properties of this simulation will
be needed:

(A) The simulation of the i-th step of the computation of M takes place
in two stages, the first stage in the time interval 22 — 2 < ¢t < 24 — 1 and
the second in 2: — 1 < t < 2.

(B) Two copies of counters of M are kept, the first in g1, ..., ¢, and the
second in @41, - - ., g2m, giving the counts of symbols in the counters. The
state gom;m+41 iS the time ¢ (whence Q2,41 = 1).

(C) During the first stage of simulation counter transition of M is

performed on q1,...,qy USIng ¢u41,-.-,@2m+1, a0d Gut1,--., g2 Will
remain unchanged. During the second stage the states gm41,...,q2m are
updated using g1, ..., qm,42m+1, and qi, ..., q, remain unchanged.

(D) Q; is of the form Q;(q) = Pi(gm+1,.--,q2m)s(t) (j = 1,...,m)
where the value of P; is —1, 0 or 1,

2i—1
/ s(t)ydt =1
2i—2

and s(t) is zero during the second stage. Denote for brevity
P = (Pi,...,Pn).

P and s are smooth, and so is q(¢).
(E) If the input count of M is n then the initial value is

c=(0,...,0,n,0,...,0,n,0)

where the n’s are at the m-th and the 2m-th positions.

(F) When M halts at the ith step, then the value of ¢;, which hitherto
has.been 0, is raised to 1 during 2¢ — 2 < ¢ < 2¢ — 1, and will stay there
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UNDECIDABLE EVENT DETECTION PROBLEMS 71

for ¢ > 24 — 1. The ODE does not “halt.” Halting of M is thus signalled by
the event ¢;(¢) = 0.5 which is undecidable.

Structural properties and explicit construction of Q are given in [11]
(Theorem 1 and its proof).

3. ODEs OF DIMENSION TWO

During the first stage the values of ¢y, 1, . . . , g2, are nonnegative integers.
These are coded in the value of the second dependent variable zy. Similarly
during the second stage the values of g¢1,...,q, are nonnegative integers
and these are coded in the value of the first dependent variable z;. In both
cases the coding scheme is the same so only 23 is treated in what follows.
To describe the scheme take m nonnegative integers i1,...,4m. If g1 = 41
then the value of the variable 2z is in the interval

h . 21+1 . . .
Y2 <n< 2V he 1-27M <z <1270
7=1 j=1

Similarly, if in addition g2 = 42 then the value 29 is in the interval
1—270 4270 (] —272) < zp <1 =270 4 27071 (1 — 27 1))

and, in general, if ¢ = 41,...,q = 4 then

l -1
Z2—i1—w—ij_1—j+l(1 _ 2—ij) S 2 < Zz—il—'"—ij—l—j+l(1 _ 2»—ij)
7=1 j=1

foTh T _gmuly (1= 1 m).

To put it in another way, if ¢1 = ¢1,...,¢¢ = ¢ then the binary
representation of 2z is of the form

S—— N S——
71 bits 9 bits 1; bits

It is assumed that binary representations containing only finitely many 0’s
are not allowed. Thus, in general, any number z in the interval [0,1) has
the binary representation

[ee]
= g~ —ha—J+l] _ 9=y . 1...
z Z_: (1-27%)=0.1---1031---10---01---1
=1 i1 bits 4z bits i; bits
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72 K. RUOHONEN

corresponding to the infinite integer sequence %1, 2, - . .. Denote then
9(z) = |~log2(1 — z)],

k(z) = 2(1 — (1 — 2)29))

and .
9i(z) =9 () G =1,2,...)

where &’ denotes j-fold composition power of k. See Figures 1-4.

- 4
1
9
8
7
6
5
4
3
2
1
1/4  1/2  3/4 i 174 1/2  3/4 R
Figure 1. — The graph of g(z). Figure 2. — The graph of k(z).
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Figure 3. — The graph of g(k(2)). Figure 4. — The graph of k(k(z)).
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UNDECIDABLE EVENT DETECTION PROBLEMS 73

Lemma 1: 4 = g;(2) (j = 1,2,...)

Proof: The lemma is proved by induction on j. The case ;7 = 1
is immediate. To proceed by induction it is first shown that if the
integer sequence corresponding to z is 41,12, ... then the integer sequence
corresponding to k(z) is 42,13, .... Indeed if g(z) = 41 and

(e o]
z:Zg—i1—~~—ij_1~j+l(1_2—ij) -0.1---101---10---01---1---
_ S—— —
J=1 11 bits 79 bits 1; bits
then
k(z) =201 — (1 —2)20) =20+ (270 — 1 4 2)

o
:22_i2_"'_ij—1_j+2(1_2_ij> =0.1---101---10---01---1---.
¢ S~ > S—~—
7=2 19 bits 23 bits 1 bits
It is easily checked that if 0 < z < 1 then also 0 < k(z) < 1. Replacing z by

k(z)Arepealedly one sees inductively that the integer sequence corresponding
to k71(z) is 4j,4;41, ... whence g;(z) = g(k’"1(2)) = i;. O

It follows from Lemma 1 that g;(22) = i; ( = 1,...,m) which is
denoted simply by i = g(z2). By h(i) a “typical” value of z; corresponding
to the integers %1,...,%, is denoted and it is chosen to be the midpoint of

the particular interval, i.e.,

m—1

h(i) = 2T T (1 — 97 ) 4 gmh TieeT (g gL gTin ),
=1

Thus the binary representation of A(i) is

h(i)=0.1---101---10---01---101.
N~ N~ S~
11 bits 19 bits im bits
and, by Lemma 1, g(h(i)) = i. Now, to move the value of 2; from one

“typical” value to the next during first stage and using the value of z
one takes

P2 — (h(g(=2) + Ple(=2))) ~ h(g(=2)))s(t) and 2 (0) = A0, .., 0,n).
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74 K. RUOHONEN

(The functions s and P appeared in property (D) in the previous section.) To
update the value 27 during second stage one then simply uses “dragging”:

3
dz _3 Vvz1 — z2 s(t + 1) and z2(0) = h(0,...,0,n).

dt 2
During the operation zy starts from some value within 23 £ 1 and within a
unit interval of time is dragged to the value z; where it stays. There are of
course several ways to get such a dragging operation.

As in the case of the original ODE, if a nonreversible counter machine is
simulated, then the solutions are necessarily nonunique in the backward
direction and this nonuniqueness appears during the dragging. Indeed,
whenever a counter machine configuration has several possible predecessors,
information of which one of them actually appeared will be lost after the
dragging. However, if a reversible counter machine is simulated then the
present configuration uniquely determines the previous one and dragging can
be replaced by a reversible operation similar to the one for z; and a unique
solution is obtained. It should be mentioned that reversible counter machines
can simulate reversible Turing machines, see [11], and the latter are known
to be -comp\itationally universal (see [7] or [11]). In any case, as in [11], the
solutions z1(¢) and z3(t) are smooth and forward unique.

The behaviour of the original ODE

dq
—_ = t
7 = Qal)
is now faithfully emulated and occurrence of the event z; = 0.5 is

undecidable. Of course the infinite time interval [0,00) can be replaced
by a finite half open one, say the interval [0,7/2) obtained via the change
of variable ¢t = tanu. Thus the following theorem is proved.

THEOREM 1: There exists an explicitly given ODE pair

vi = filya, v2,t)
ys = fo(u1,72,1)

for which EDP is undecidable in the time interval [0,00) (or in a finite half
open time interval [0, T)). The solutions vy (t), y2(t) are forward unique and
smooth (and can be chosen to be unique at the expense of getting much more
complicated f1 and f3). O
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UNDECIDABLE EVENT DETECTION PROBLEMS 75

The right hand side of the ODE in Theorem 1 is bounded but discontinuous.
To see this consider the fact that for i = i} = (0,7n,0,%4,...,%n) and
i =1 = (0,n,1,44,...,%m) the typical values h(iy) and h(iz) can
be arbitrarily close and yet the values of h(i; + P(i1)) — h(i;) and
h(iz + P(i2)) — h(iz) may differ considerably depending on whether or
not the value of ¢; is raised from 0 to 1. Let K(z) be defined by

el=Ve ifr>0
0 if <0,

and take the smooth sigmoid
L(z)=1- K(1 - K(x)).

Then a somewhat “more continuous” replacement of g;(z) would be e.g.
di(z) = d(k*~1(z)) where

d(z) = |—logy(1 — 2)] + L(2™k(2)) — 1

(see Figures 5 and 6). It remains an open problem whether Theorem 1 is
valid for continuous f; and fo.

Y

h

>
i 4

H N W s oy N W
O W s Oy N0 W

N 1/2 3/4

/ /4 1/2 3/4 1 / 1/4 / ] H[1

Figure 5. — The graph of d(z) for m = 2  Figure 6. — The graph of d(k(z)) for m = 2

4. ODEs OF DIMENSION. ONE

It is possible to still reduce dimension in the construct of the previous
section. First it is noted that if 1; and i3 contain the counter counts of two
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computationally consecutive steps of the counter machine to be simulated
then the sums of elements of i; and iy differ by at most m. Let then

11,12,...,1p

be a sequence of computationally consecutive counts where the initial count
i1 is (0,...,0,n). Using typical values this can be coded as the number

P
b(il, ey i])) — Z 2~(m+n+1)—(2m+n+1)——»--—((j—l)m+n+1)h(ij)
=1

p
— Z 2—l('n,j—1)h(ij)
J=1

where ]
l(n,j)=j(n+1+ 5m(j —1)).

Denote further
c(n,p,z) = 9l(np) 5 |_2l(”’1’)z_|.

LemMA 2: If z is in the interval b(i1, . .. ,ip) < z < b(iy, ..
gle(n,p — 1,2)) = ip.
Proof: If b(i1,...,1p) < z < b(iy,...,ip41), i€,

< ipt1), then

) ‘ p+1 )
S o7 I =Dp(;) < 2 < 3 27Dy,

then .
p—
Z 2—l(n,p—1)—l(n7j—1)h(ij) + h(ip) < 2!(71,1)—1)z
Jj=1
p—1
< Z 2—l('n,,p—1)——l(n,,j—-1)h(ij) + h(ip) + 2l(n,p—1)—l(n,p) h(ip+1)
=1

and
p—1

lzl(n,p—l)zJ — Z 2l(n,p—l)—l(71,j—l)h(ij),

Jj=1
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UNDECIDABLE EVENT DETECTION PROBLEMS 77

So
Rip) < 200Dz — (200 D2] < hiy) + 277" h(ipy)
and, by Lemma 1,
gle(n,p — 1,2)) = g(2»Dz — 20Dy =5, O

Thus one gets the initial value problem faithfully simulating the one used
in the previous section:

% = o D (el [t],2)) + P(g(elrm, ¢, 2)),

z(0) = h(i1) = h(0,...,0,n).

The values of z start from h(i;) and then move piecewise linearly through
the values

b(i1) = h(i1),b(i1,12), b(i1, 12,13), . - -

attained at ¢ = 0,1,2,.... The event to be detected is

glen, |t],2)) = 1.

The computational history is preserved in the value of z, so the value
n, given in the initial value z(0), can be recalled at any time during the
simulation. Indeed, by Lemma 1,

n = gm(2).
Thus the initial value problem aimed at here is

dz

= 270 D b(g(clgm(2), 18], ) + Ple(elom(2), 18], 2)),

2(0) = h(i1) = h(0,...,0,n)
and the event is
g(clgm(2), [t],2)) = 1.

There is no need for the dragging used in the previous section, as the
history of the computation is preserved. Thus the solution z(¢) is unique. It
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might be noted that the idea of preserving computational history to obtain

reversible computing is an old one. It appears first in the work of Y. Lecerf

{71 and then independently in {1]. The construct used in [11] is from [14].
A smooth solution z(t) is obtained when the change of variable

u
t= a/ K (sin? mw)dw
0

is made where K is given in the previous section and the constant a is
chosen to satisfy

1
a/ K(sin? mw)dw = 1.
0

Note that then {¢{] = |u]. Again the infinite time interval [0,00) can be
replaced by a finite half open one. Thus the following theorem is proved.

TuEOREM 2: There exists an explicitly given ODE y = f(y,t) for which
the EDP is undecidable in the time interval [0,00) (or in a finite half open
time interval {0,T')). The solution y(t) is unique and smooth. [

Note that the price to be paid for getting Theorem 2 is the complicated
structure of the event that must be used. As is easily seen, the event can
be made simpler by adding one more dependent variable, and Theorem 1
follows.

The function f in the theorem is discontinuous, for the same reason as
that in Theorem 1.
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