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UNDECIDABLE EVENT DETECTION PROBLEMS
FOR ODES OF DIMENSION ONE AND TWO (*)

K e i j o R U O H O N E N ( ] )

Communicated by XAFFRAY

Abstract. - The ability of dynamitai Systems of varions kinds to simulate Turing machines and
f fms manifest a uni versai corn pu talion power (and beyond) has gathered a lot of interest lately, see
\,;\ |16J. .[5], [6| and |4j. A similar Une of investigation for ordinary differential équations was
ia ried in MM and continue d in \ 12] and [13]. In this context the minimum dimension requiredfor

•miversai computation is of interest. The dynamical Systems in [5] and [6] are of small dimension
nui the topic of [4| is to find the smallest dimension for certain types of dynamical Systems. The
e suft s in this paper show that for ODEs dimension two can be reached and, allowing somewhat

complicated events, even dimension one.

Résumé. - La capacité de systèmes dynamiques de différents types de simuler les machines de
Turing et ainsi de posséder une puissance de calcul universel (et au-delà) a suscité beaucoup
d'intérêt récemment, voir par exemple [16], [5], [6] et [4]. Une direction de recherche semblable
sur les équations différentielles ordinaires a été amorcée en [11] et poursuivie en [12] eî [13].
Connaître la dimension minimale exigée pour obtenir la puissance de calcul universel revêt un
intérêt particulier. Les systèmes dynamiques de [5] et [6] sont de petite dimension et le sujet de [4]
est de trouver la plus petite dimension pour certains types de système dynamiques. Les résultats de
cet article montrent que pour les équations différentielles ordinaires la dimension deux est suffisante
et même, si des événements légèrement plus compliqués sont autorisés, que Von peut descendre
en dimension un.

1. INTRODUCTION

Many problems involving finitely given ordinary differential équations
(ODEs) turn out to be algorithmically undecidable, something that
probably has not been sufficiently appreciated. It is true that the classical
noncomputability resuit of M.B.. Pour-El and I. Richards [8] involves
nonunique solutions and that these are not of much practical interest. There
are however other undecidable problems, the event détection problems, which
involve unique solutions and explicitly given ODEs. Indeed, event détection
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6 8 K. RUOHONEN

is dynamically undecidable, i.e., the ODE simulâtes dynamically the steps of
a Turing machine computation and its définition contains only the transition
rules of the Turing machine and not results of whole computations, see [11].

The purpose of this paper is to extend the dynamical undecidability of
event détection to ODEs of small dimension (that is, small number of
dependent variables). This objective is of interest because the dimensions of
the ODEs in [11],[12] and [13] are rather high. Although it is possible to get
lower dimensions by using different types of machines in the simulation, to
reach dimensions one and two requires separate constructs. These constructs
are the subject of the present paper.

There has also been a recent interest in Turing machine simulation by low-
dimensional dynamical Systems, and the present paper may be considered
as a contribution to this line of research, see e.g. [4],[5] and [6], The
conclusions reached here are similar to those in [4]: A rather natural two-
dimensional dynamically undecidable event détection problem exists but
to get to dimension one a much more complicated construct is needed.
Somehow the smallest natural dimension for dynamical computation appears
to be two, getting to dimension one strains naturality a lot.

Only some basic facts of computability, computable analysis and classical
ODE theory are used. A good background is contained in [3],[9] and in
[2] or [10].

2. PRELIMINAIRES

An event of an ODE y' = f (y, t), with the initial value y(0) = yo, occurs
whenever at least one of the given équations

is satisfied for some t in a given interval I. For aspects of numerical event
détection see [15]. The event détection problem (EDP) is the problem of
deciding for a given initial value problem and event on an interval I whether
or not the event occurs.

If a quite gênerai approach is taken then it is not very difficult to obtain low-
dimensional undecidable event détection problems. Indeed, take a universal
Turing machine M with nonnegative integer inputs and define the séquence
/ o , / i , . . . of rationals by

- _ f 2~m if J\A stops in m steps after receiving input n
\ 0 if Ai does not stop after receiving input n.
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UNDECIDABLE EVENT DETECTION PROBLEMS 69

Following the nomenclature of [9], the séquence /o, ƒi, - - - is then not
a computable séquence of rationals but it is a computable séquence of
reals as it can be approximated by the computable double séquence fnk
(n — 0 , 1 , . . . ; k = 0,1,...) of rationals where

r _ f 2~m if A4 stops in m < k steps after receiving input n
\ 0 if M does not stop in k steps after receiving input n.

(A séquence of rationals is computable if there is an algorithm which on
input n (resp. (n, k)) computes the denominator, the numerator and the sign
of the nth (resp. the (n, fc)th) term in the séquence. A séquence #o, #i, • • •
of reals is computable if it can be approximated by a computable double
séquence rnk (n — 0 , 1 , . . . ; k — 0,1,...) of rationals uniformly in n, i.e.,
%n — ^nk\ < %~k for all n and k.) Now, détection of the event y(t) — 0

for the ODE yf = 0, given n and the initial value y(0) = fn, is undecidable
on any interval containing 0, because fn = 0 is undecidable. A further
modification is obtained as follows. Define the smooth function

It is easy to see that g is computable on [0,oo). Détection of the event
yi(t) = 0 for the ODE

|Yi = (̂2/2) — 1

given an initial value yi(0) = 1,2/2(0) = n where n is a nonnegative integer
is then undecidable on [0,1], There is a similar construct giving undecidability
of two-dimensional symbolical event détection described in [11].

EDP is dynamically undecidable for time intervals of the form [0, T) and
[0,oo), as was shown in [11] through dynamical simulation of a universal
Turing machine by an explicitly given ODE. Indeed, in [11] initial values
yo are n-tuples of nonnegative integers, f is a fixed explicitly given function
and the event to be detected is of the simple form yi(t) = 0.5. (No
références to computability of reals or functions, or properties of symbolical
expressions actually appear in [11].) Moreover, the solutions are computable.
Even a smooth choice for f is possible. Extensions of the undecidability to
parametric ODEs and to closed finite time intervals are given in [12] and [13].

The ODE used in [11] has a large dimension (that is, number of dependent
variables). Réduction of the number of dependent variables dépends heavily
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70 K„ RUOHONEN

on the internai structure of the ODE. For this purpose some eharaeteristics
of the construct in [11] are given.

The central idea of [11] is to simulate a counter machine M with m
counters and counter input (and no interna! states) by a 2m 4- 1-dimensional
autonomous ODE

with an initial value at t — 0. As is well known, counter machines have
universal Computing power. The following properties of this simulation will
be needed:

(A) The simulation of the i-th step of the computation of A4 takes place
in two stages, the first stage in the time interval 2% — 2 < t < 2% — 1 and
the second in 2% — 1 < t < 2%.

(B) Two copies of counters of .M are kept, the first in q\...., qn, and the
second in g m +i , . . . . , q-im, giving the counts of symbols in the counters, The
state <72m+i is the time t (whence Qtm+i — !)•

(C) During the first stage of simulation counter transition of M is
performed on qu.. .rqm using g m + i , . . . . , g2m+i, and g m + i , . . . . ,g2m will
remain unchanged. During the second stage the states çm+i, . . . . , q2m

 a r e

updated using q\,.... qm, q-2m+i > a n d Qi j • • • ; Qm remain unchanged.

(D) Qj is of the forrn Qj{q) = Pj{qm+ir... rqim)s(t) (j = 1, - •. ,m)
where the value of P} is — 1, 0 or 1,

[2l~l

I s(t)dt = 1

and s{t) is zero during the second stage. Dénote for brevity

P and s are smooth, and so is q(t).

(E) If the input count of A"! is n then the initial value is

c - ( 0 , . . . , 0 , n , 0 , ,0,n,.0)

where the n 's are at the m-th and the 2m-th positions.

(F) When A4 halts at the zth step, then the value of qi, which hitherto
has been 0, is raised to 1 during 2% — 2 < t < 2% — 1, and will stay there
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UNDECIDABLE EVENT DETECTION PROBLEMS 7 1

for t > 2% — 1. The ODE does not "halt." Halting of M is thus signalled by
the event qi(t) = 0.5 which is undecidable.

Structural properties and explicit construction of Q are given in [11]
(Theorem 1 and its proof).

3. ODEs OF DIMENSION TWO

During the first stage the values of qm+i,..., Q2m are nonnegative integers.
These are coded in the value of the second dependent variable z%. Similarly
during the second stage the values of q\,..., qm are nonnegative integers
and these are coded in the value of the first dependent variable z\. In both
cases the coding scheme is the same so only Z2 ïs treated in what follows.
To describe the scheme take m nonnegative integers i i , , in%. If q\ — i\
then the value of the variable z% is in the interval

^l ii + l
2~J ^z'2- < Yl 2~3 Le-1 - 2~H ^ ̂ 2 < i - 2 ~ H ~ \

Similarly, if in addition #2 = «2 then the value Z2 is in the interval

1 - 2~H + 2 - i l " 1 ( l - 2'12) <z2<l - 2"*1 + . 2 ~ i l " 1 ( l - 2"*3

and, in gênerai, if qi = z i , . . . . , qi = %% then

2~l>) <z2< J2

To put it in another way, if qi — i\, , qi = ï\ then the binary
représentation of Z2 is of the form

Z2 = 0 . 1 - - - 1 0 1 - - - 1 0 - - 0 1 1.

il bits %2 bits %\ bits

It is assumed that binary représentations containing only finitely many O's
are not aliowed. Thus, in gênerai, any number z in the interval [0,1) has
the binary représentation

z - J22~ll~"-Ï>-1~J+1(1 - 2'**) = 0
•7~1 ii bits %2 bits
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72 K. RUOHONEN

corresponding to the infinité integer séquence «i, 22, - - -- Dénote then

g(z)=[-log2(l-z)\,

k(z) = 2(1 - (1 - z)29^)

and
9](z) = g(V-1(z))(j = 1,2,...)

where *k? dénotes j-fold composition power of k. See Figures 1-4.

1/4 1/2 3/4 1

Figure 1. - The graph of g(z).

1/4 1/2 3/4 1

Figure 2. - The graph of k(z).

- •
1/4 1/2 3/4 1 1/4 1/2 3/4

Figure 3. - The graph of g(k(z)). Figure 4. - The graph of k(k(z)).

Informatique théorique et Applications/Theoretical Informaties and Applications



UNDECIDABLE EVENT DETECTION PROBLEMS 73

LEMMA 1: ij — gj(z) (j = 1,2,.. .)

Proof: The lemma is proved by induction on j . The case j = 1
is immédiate. To proceed by induction it is first shown that if the
integer séquence eorresponding to z is i i , *2, - • • then the integer séquence
eorresponding to k(z) is 22,^3, Indeed if g(z) = i\ and

z =
•7=1 zi b i t s Z2 b i t s ^ bits

then

k(z) = 2(1 - (1 - z)2jl) = 2ll+1(2-!:i - 1 + z)

2-b) = o . ^ j . o r ^ o - • -o 4 ^ 1 • • •
7 = 2 Z2 bits Ï3 bits ij bits

It is easily checked that if 0 < z < 1 then also 0 < k(z) < 1. Replacing z by
fc(z) repeatedly one sees inductively that the integer séquence eorresponding
to y~l{z) is i j j i j + i , . . . whence <?j(z) = ^(fcJ~1(^)) = ij* •

It follows from Lemma 1 that gj(z2) = ij (j = l , . . . , m ) which is
denoted simpiy by i — g(^2)- By /i(i) a "typical" value of Z2 eorresponding
to the integers i i , . . . , i m is denoted and it is chosen to be the midpoint of
the particular interval, Le.,

m - l
l i i + 1 2"?:0 + 2"Zl *m-i-"*(2 - 3 • 2 " ^ - 1 ) .

Thus the binary représentation of h(i) is

/i(i) = 0 .1_^J .0]_^J > 0 0 1 . . - 1 0 1 .

il bits %2 bits im bits

and, by Lemma 1, g(h(ï)) = i. Now, to move the value of z\ from one
"typical" value to the next during first stage and using the value of 2:2
one takes

^ = (h(g(z2) + P ( g ( z 2 ) ) ) - h(g(z2)))s(t) and Zl(0) = h(0, ...,0,n).
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74 K. RUOHOMEN

(The fonctions s and P appeared in property (D) in the previous section.) To
update the value z<i during second stage one then simply uses "dragging":

and z% (0) =• h% . . . , 0, n).

During the opération Z2 starts from some value within zi±l and within a
unit interval of time is dragged to the value z\ where it stays. There are of
course several ways to get such a dragging opération.

As in the case of the original ODE, if a nonreversible counter machine is
simulated, then the solutions are necessarily nonunique in the backward
direction and this nonuniqueness appears during the dragging. Indeed,
whenever a counter machine configuration has several possible predeeessors,
information of which one of them actually appeared will be lost after the
dragging. However, if a réversible counter machine is simulated then the
present configuration uniquely détermines the previous one and dragging can
be replaced by a réversible opération similar to the one for z\ and a unique
solution is obtained. It should be mentioned that réversible counter machines
can simulate réversible Turin^ machines, see [11], and the latter are known
to be computationally universal {see [7] or [11]). In any case, as in [11], the
solutions z\{t) and .2*2{£) are smooth and forward unique.

The behaviour of the original ODE

is now faithfully emulated and occurrence of the e vent z\ — 0.5 is
undecidable. Of course the infinité time interval [0, 00) can be replaced
by a finite half open one, say the interval [0, TT/2) obtained via the change
of variable t = tanu. Thus the following theorem is proved.

THEOREM 1: There exists an explicitly given ODE pair

iy'i = /l(2/1,2/2,*)

for which EDP is undecidable in the time interval [0. 00) (or in afinite half
open time interval [0, T)), The solutions yi(t), 2/2(*} are forward unique and
smooth (and can be chosen to be unique at the expense of getting much more
complicated f\ and f2). ö
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ÜNDECIDABLE EVENT DETECTION PROBLEMS 75

The right hand side of the ODE in Theorem 1 is bounded but discontinuous.
To see this consider the faet that for i = ij ^ (0,n,0, i±,.,. rim) and
i == i2 = (0, n, 1, «4,,..... ,zm) the typical values h{\\) and hfa) can
be arbitrarily close and yet the values of h{\\ + P(ï i )) — h(i\) and
h{\2 + P(Î2)) - hfa) may differ considerably depending on whether or
not the value of i\ is raised from 0 to 1. Let K(x) be defined by

O if x < O,

and take the smooth sigmoid

L(x) = l -

Then a somewhat "more continuons" replacement of gi(z) would be e.g.
l\z)) where

d(z) = [- log2(l - z)\ + L(2mk(z)) - 1

(see Figures 5 and 6). It remains an open problem whether Theorem 1 is
valid for continuous f\ and j%.

9

8

7

6-
5
4
3
2

1/2 3 /4
1/2 3 / 4

1/4

Figure 5. - The graph of d(z) for m = 2 Figure 6. - The graph of d(k(z)) for m = 2

4. ODEs OF DIMENSION ONE

It is possible to still reduce dimension in the construct of the previous
section. First it is noted that if ii and Î2 contain the counter counts of two
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76 K. RUOHONEN

computationally consécutive steps of the counter machine to be simulated
then the sums of éléments of ii and 12 differ by at most m. Let then

be a séquence of computationally consécutive counts where the initial count
il is ( 0 , . . . , 0, n). Using typical values this can be coded as the number

where

Dénote further

LEMMA 2: If z is in the interval &(ii,.'.., ip) < z < ö( i i , . . . , ip+i), then
g(c(n,p - M ) ) = ip.

Proef: If'fe(ii,...,ip) < z < 6(i i , . . . ,iP+i), i.e.,

then

p - 1
/ ( n ^ 1 ) ' ^ 1 ) / ( i i ) + fc(ip) +

and
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UNDECIDABLE EVENT DETECTION PROBLEMS 77

So

h(ip) < 2l^v~^z - [2l(n'p-Vz\ < h(ip) + 2-pm-n-1h(ip+1)

and, by Lemma 1,

g(c(n,p - 1, z)) = g(2l^-^z - [2/(n'*-1)*J) = ip. D

Thus one gets the initial value problem faithfully simulating the one used
in the previous section:

f c(n, Lij,*)) + P(g(cK [tj,

The values of z start from /i(ii) and then move piecewise linearly through
the values

attained at t — 0,1,2, The event to be detected is

g{c{n,\t\,z)) = l.

The computational history is preserved in the value of z, so the value
n, given in the initial value z(0), can be recalled at any time during the
simulation. Indeed, by Lemma 1,

n = 9m(z).

Thus the initial value problem aimed at here is

and the event is

g(c(gm(z),{t\yz)) = l.

There is no need for the dragging used in the previous section, as the
history of the computation is preserved. Thus the solution z(t) is unique. It
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7 8 K. RUOHONEN

might be noted that the idea of preserving computational history to obtain
réversible Computing is an old one. It appears first in the work of Y. Lecerf
[7] and then independen tly in [1]. The construct used in [11] is frorri [14].

A smooth solution z(t) is obtained when the change of variable

t = a K(sin2 7vw)dw

is made where K is given in the previous section and the constant a is
chosen to satisfy

a f iT(si
io

sin 7rw)dw — 1.

Note that then \t] = [̂ J • Again the infinité time interval [0, oo) can be
replaced by a finite half open one. Thus the following theorem is proved.

THEOREM 2: There exists an explicitly given ODE yf — f{y,t) for which
the EDP is undecidable in the time interval [0,oo) (or in a finite kalf open
time interval [0, T)j. The solution y(t) is unique and smooth. O

Note that the priée to be paid for getting Theorem 2 is the complicated
structure of the event that must be used. As is easily seen, the event can
be made simpler by adding one more dependent variable, and Theorem 1
follows.

The funetion ƒ in the theorem is discontinuous, for the same reason as
that in Theorem 1.
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