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ON LINDENMAYERIAN RATIONAL SUBSETS OF MONOIDS (*)

b y J. H O N K A L A (!)

Communicated by J. BERSTEL

Abstract. - We define the family of L rational subsets in an arbitrary monoid. We discuss also L
rational relations, L rational transductions and L rational star height.

Résumé. -Nous définissons la famille des parties L-rationnelles d'un monoïde quelconque. Nous
discutons également les relations L-rationnelles, les transductions L-rationnelles, et la hauteur
d'étoile L-rationnelle.

1. INTRODUCTION

Automata and language theory have close connections to the study of
semigroups and monoids. In the study of free monoids and their subsets
considérations concerning larger classes of monoids are often useful. For
example, Eilenberg showed how varieties of monoids can be used to classify
various classes of regular languages.

Based on ideas from automata and language theory Eilenberg defined in
an arbitrary monoid the classes of recognizable and rational subsets. The
purpose of this paper is to establish another link between language and
semigroup theory by defining in an arbitrary monoid the class of L rational
subsets. This définition, is again based on language theory, more precisely,
the theory of Lindenmayer Systems (see Rozenberg and Salomaa [4]). The
resulting family appears very natural also from an algebraic point of view.
The différence between the définitions of rational and L rational subsets is
that the Kleene closure is replaced by morphic closure.

A brief outline of the contents of the paper follows. Section 2 contains
the définition of L rational subsets of a monoid. In Section 3 we discuss the

(*) Received September 1996, accepted February 1997.
(L) Department of Mathematics, University of Turku, SF-20500 Turku, Finland.

E-mail: jhonkala@sara.cc.utu.fi

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/97/01/$ 7.00/© AFCET-Gauthier-Villars



82 J. HONKALA

connections between L rational sets and HDTOL languages. It is seen that
in the framework of L rationality, DTOL and HDTOL languages play the
sarne role as regular languages in the case of rational subsets. In Section 4
we dëfine L rational relations and transductions. We establish an analogue of
Ni vat's theorem for L rational transductions and give many exarnples. We
also show that rational transductions are L rational transductions. Finally, in
Section 5 we define the star height of an L rational set and show that star
height induces an infinité hierarchy in the genera! case.

We assume that the reader is familiar with the basics conceming rational
sets and transductions (see Berstel [1]) and Lindenrnayer Systems (see
Rozenberg and Salomaa [4]).

2. DEFINITIONS AND EXAMPLES

Suppose M is a monoid. If A, B Ç M and h\,...., hs are endomorphisms
of M we dénote

AB = {ab\a€ A, b e B},

hs)+ (A) = IJ hHht2 ..:hik {A)

and

{ht + . . . + h3y (A) = y hî±hl2 hih (A).

DÉFINITION 2.1: Suppose M is a monoid and Tï is a set of endomorphisms
of M, The family L^ Rat (M) of Lindenmayerian rational subsets of M
(shortly, L rational subsets of M) with respect to H is the least family 1Z of
subsets of M satisfying the following conditions:

(i) 0 e 71, {m} E 71 for ail m e M;

(ii) if A, B E 71 and h G H, then A U B G 72, AB e 7̂  and h (A) E 71;

(iii) if A .G 71 and h\,..., h$ G H, then {h\ + . . . + hs)* (A) G 71.
Hence, L^ Rat (M) is the least family containing the finite subsets of M

and closed under finite union, product, W-morphic image and W-morphic
star. Union, product, W-morphic image and W-morphic star are called the
L rational opérations with respect to 7i. If H = End (M), the set of
endomorphisms of M, we dénote LRat (M) = L^ Rat (M).
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ON LINDENMAYERIAN RATIONAL SUB SETS OF MONOÏDS 83

In the présence of (ii), condition (iii) holds if and only if for ail A E TZ
and / i i , . . . , hs e W w e have (hi + ... + 7 Î 5 ) + (A) E 72.

Suppose A Ç M and h\,...., /i5 are endomorphisms of M. Then the least
solution of the équation

L = A U hj (L) U .... U /i5 (L)

is given by (h\ -h . . . -f hs)* (A). This is the basic reason why we allow
more than one morphism in (iii) of Définition 2.1. Note that in Rat (M) we
can solve the analogous équation

L = AuBiLU ...UBSL

where Ar 5 i , . . . , B 5 Ç M.

Condition (ii) of Définition 2.1 guarantees that LRat (M) is a subsemiring
of V (M) closed under endomorphisms of M. In the case of rational sets
closure under morphisms follows from the other conditions. For L rational
sets, on the contrary, this has to be postulated separately. Indeed, dénote
X — {a, b}, define the morphisms ƒ, g : X* —> X* by f (a) — f(b) = a,
g^a) = 62, g(b) = a2 and consider the least subsemiring TZi of V (X*)
satisfying (i) and (iii) with H — {fr-ff}- It is easy to see that each
infinité set in 1Z\ has minimal alphabet X. Therefore, because the language
{a, fr2,, a4, &8, } belongs to TZi, the family *R,\ is not closed under
W-morphic image.

The other conditions of (ii) cannot be deleted either. The necessity of
A U B E 1Z is seen by considering the case 7i = 0. To see the necessity
of AB E 72- consider again X* = {a, b}* and define the morphism
h : X* -> X* by fe(a) = /i(fr) = 62. Then the least family 722 satisfying (i),
(iii) and the first and third condition of (ii) with H = {h} has the property
that each language in 722 contains only finitely many words having letter a.
On the other hand, the set {a&, ab2

y ab4,...} is clearly L^ rational.

Example 2.1: Let M = X* be the free monoid generated by the finite
nonempty set X. If G — (X, # i , . . . , gn, w) is a DTOL System, then

L (G) = (01 + . . . + flo)* («;) E LRat (M).

Furthermore, if h : X* •—>• X | is a morphism, then h(L(G)) E
LRat((X U Xi)*). Hence, if L is an HDTOL language, there exists a
free monoid y* such that L E LRat (Y*).

vol. 31, n° 1, 1997



8 4 J. HONKALA

Example 2.2: Let M = (N, + ,0) . Dénote by A the set of those
nonnegative integers whose binary expansions have precisely three nonzero
digits. Hence,

A = {2*1 + 2*2 + 2l310 < ii < i2 < 13}-

We claim that A is L rational with respect to 7i = {h} where h is defined
by h(x) = 2x for x G N. First, {1} G L^Rat(N). Hence,

h+ ({1}) = {2i3|ï3 > 1} ̂  L^Rat(N)

and

1 + />+ ({1}) = {1 + 2ï3 |z3 > 1} E LKRat (N).

Therefore,

h+ (1 + h+ ({1})) = {2ï2 + 2 i3 |l <i2< h} e L^Rat (N).

Finally,

h* (1 + h+ (1 + /i+ ({1}))) = A e L^Rat (N).

In what follows we consider the empty seïto be a DTOL and an HDTOL
language. To conclude this section we define the sets corresponding to
HDTOL languages in arbitrary monoids.

DÉFINITION 2.2: Suppose M is a monoid and H Ç End (M). A subset
A Ç M is called an H-DTOL set if there exist m e M and h\,..., hs e H
such that

A= {hi +... + hs)*(m)

or A — %. A subset A Ç M is called an H-HDTOL set if there exist m e M
and h, h\,..., h$ G H such that

or A = 0.
If H = End (M) and A Ç M is an W-HDTOL set, we call A an HDTOL

set of M:

3. CONNECTIONS BETWEEN L RATIONAL SETS AND HDTOL SETS

We first characterize the L rational subsets of free monoids.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON LINDENMAYERIAN RATIONAL SUBSETS OF MONOIDS 85

PROPOSITION 3.1: Each L rational subset of X* is an HDTOL language.

Proof: The proof is by L rational induction. First, 0 and {w}, w G X*,
are HDTOL languages. If A, B are HDTOL languages, so are A U B and
AB. Also, if A is an HDTOL language, so is h(A) for any h : X* -> X*.
Finally, consider the set

(51 + • • • + 9PT h (hx + . . . + h$y (a;).

Without loss of generality, we assume that the his are endomorphisms of
X\, h maps X\ into X* and the gjS are endomorphisms of X* where Xi is
an alphabet such that X n X\ — 0. Extend /i?;, h and #j to endomorphisms
of (X LJ Xi)* by hi (x) — h{x) = x, gj (xi) = xi for x G X, xi G Xi,
1 < * ^ 5, 1 < j < p. Then

(51 + • • • + 9P + h + /ii + . . . + hsy H

- (Ai + . . . + h3y (ou) u (31 + . . . + sP)* /i (/ii + . . . + /i5)* (w).

Hence

... + hs)* (tu)

= (51 + • • • + 5P)* ̂  (̂ 1 + • • • + hsy (u). •

Let Soo be an infinité alphabet and dénote by £(HDTOL) the set of
HDTOL languages included in E ^ .

COROLLARY 3.2: U x ç s ^ . x / i m t e L R a t ^ * ) = £ (HDTOL).

COROLLARY 3.3:

X*) C UA'ÇSTO)X ftnüe LRat (X*).

Proof: Inclusion follows because each regular language is an HDTOL
language (see Culik II [2]). Proper inclusion follows because there are
DTOL languages which are not regular. D

In gênerai, L rational subsets of a monoid M are not HDTOL sets of M.
Note that Proposition 3.1 only shows that an L rational subset of the free
monoid X* is an HDTOL set in a free monoid F* where Y is an alphabet,
usually much larger than X.

Example 3.1: Consider the monoid M — (N, +, 0). Clearly A Ç N is an
HDTOL set of M if and only if there exist k > 0 and x, y i , . . . , yu € N

vol. 31, n° 1, 1997



86 J. HONKALA

sueh that

A- = {xy^yï • ..y^lij > Oforj = 1,..., k}.

In M the DTOL sets and HDTOL sets coincide. We claim that the L
rationa! set

is not an HDTOL set of M. Suppose on the contrary that there exist k > 1,
and x9 2/i, • • •, 2/fc G N such that

B = {xyïy* ...y% \ij > 0 for j = 1,..., k}

and

3/1,.. . , y*-> 1-

Then necessarily x, yi,...,yjfc a r e °dd. Hence, for large é, the binary
représentation of (1 + 2i)yi G B contains more than two nonzero digits.
This contradiction proves the claim.

The next theorem establishes the basic connection between L rational
subsets of a monoid and DTOL languages.

THEOREM 3.4: Suppose M is a finitely generated monoid and A E
LRat (M). Then there exist a finite set X, a DTOL language L C X*
and a morphism h : X* —> M such that A — h(L).

f roof: Let Y be a set with the same cardinality as some generating set
of M and dénote by g the canonical morphism g : F* —> M. Then, if
h e End(M) there exists hl e End(Y*) such that gh! — hg. We flrst
claim that if A € LRat (M) there exists a set L e LRat (F*) such that
g(L) = A. The proof is by L rational induction. The claim is trivial if A = 0
or A = {m} for m e M. Next, if A±, A% G LRat (M) and g{L\) — A\,
g(L2) = A2 where L\, L2 G LRat (F*), then g{L\ U £2) = -Ai'ü A2 and
g{LiL2) = ^4i^2. Suppose then that A £ LRat (M), h G End (M) and
A = g(L) where L G LRat (F*). If h' G End(F*) satisfies gh' = %,
we have

Informatique théorique et Applications/Theoretical informaties and Applications
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Finally, suppose A € LRat(M), h\,...yhs E End (M) and A = g(L)
where L G LRat{F*). Then there exist h!x; , Us e End (F*) such that
gh'i = hig for 1 < % < s.. Therefore

This concludes the proof of the claim.

Suppose now that A = g(L) where L G LRat(F*). By Proposition 3.1
there exist an alphabet X, a DTOL language L\ Ç X* and a morphism
h : X* -> y* such that ft(Li) = L. Therefore A = gh{L\) which proves
the theorem. D

Note that Theorem 3.4 is analogous to the following resuit concerning
rational subsets of a monoid M {see Berstel [1]). If A Ç M is rational there
exist an alpha;bet X, a morphism h : X* —> M and a régula language L
such that /i(Z) = A. Hence, the DTOL and HDTOL languages play the rôle
of regular languages in the framework of L rationality.

4. L RATIONAL TRANSDUCTIONS

To generalize the notion of a rational transduction we first define L
rational relations.

DÉFINITION 4.1: Let X and Y befinite alphabets. A subset A ofX* x y* is
an L rational relation if there exist alphabets X\ and Y\ such that X Ç X\,
Y Ç Y1 and A e LRat{Xf x Y^).

We first establish a counterpart of Nivat's theorem (see Berstel [1]) for
L rational relations.

THEOREM 4.2: Suppose X and Y are finite alphabets. The following
conditions are equivalent:

(i) A Q X* x F* is an L rational relation.

(ii) There exist a finite alphabet Z, two morphisms <j> : Z* -* X
^ : Z* -^ y* and a DTOL language K Ç Z* such that

*

vol. 31, n° 1, 1997
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(iii) There exist afinite alphabet Z, two alphabetic morphisms a:Z*^> X*,
: Z* -^ Y* and a DTOL language K Ç Z* such that

(iv) There exist a finite alphabet Z, two morphisms (j) : Z* —> X*,
ip : Z* ^ Y* and an HDTOL language K Ç Z* such that

A ={(</>(!*), il>(k))\k e K}.

Furthermore, if X C\Y = 0, condition (i) is equivalent with the condition
(v) There exist a finite alphabet Z and a DTOL language K Ç Z* such
that X U Y Ç Z and

where TTX and ny are the projections of Z* onto X* and Y*, respectively.

Proof: Suppose first that (i) holds. Then there exist finite alphabets X\
and Yi such that X Ç Xx, Y Ç Yi, and A e LRat (Xf xY{). Theorem 3.4
implies that there exist a finite alphabet Z, a DTOL language K Ç Z* and a
morphism h: Z* -^ X$ x Y? such that A = h(K). Because A Ç X* x Y*
we may assume that /i is a morphism from Z* into X* x Y*. Define the
morphisms <f> : Z* -> X* and ^ : Z* -* Y* by

for z G Z. Then

Hence (ii) holds true.

Next, suppose that (ii) holds. Fix a sufficiently large integer s and choose
for each z e Z new letters z\,..., zs. Dénote Z\ — ZU{z\,..., zs\z e Z}
and define the morphism g : Z* —y Z\ by g (z) = zz\ ... zs for z G Z'.
Furthermore, if /i : Z* —̂  Z* is a morphism, define the morphism
h :. ^f -> Z\ by A(^) = 5/1 (z) if z e Z and 7ï{z) = 6 if z 6- Zi - Z..
Suppose if = (/ii + . . . + ht)* (w) where h\,...,ht : Z* ~> Z* are
morphisms and w G Z*. Dénote

Informatique théorique et Applications/Theoretical Informaties and Applications
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Then

K = g(h! + ... + ht)* {w) = g(K).

Because 5 is sufficiently large there exist alphabetic morphisms a : Z\ —» X*
and j3 : Z\ -> y* such that

a(zi ...zs) = <£(z), (3(zi ...zs) = ip(z), a(z) = p(z) =e

for ail z G Z. Then

{ ( a (k), P (k))\k G K} = {(ag (k), (3g (k))\k G K}

Hence (iii) holds true.
The équivalence of (ii) and (iv) and is clear.
Next, assume that (ii) holds and X n Y — 0. We may assume that

Z n(X UY) = 0. Define the morphism g : Z* -> (Z U X U Y")* by
g (z) = 0(/> (z) ip (z) for 2; G Z. As in a previous paragraph it is seen that
g(K) is a DTOL language. Hence

, il> (k))\k eK} = A.

Hence (v) holds true.
To conclude the proof it suffices to show that (ii) implies (i). Again, we

may assume that Z n ( l u 7 ) ^ 0 . For the proof dénote Z\ = Z U X U Y.
If h : Z* —> Z* is a morphism, extend /i to a morphism h : Z\ —> Z^ by
h(z) = e if z E Zi — Z and define the morphism / i : Z ^ x F * —> ZJ x y * by
h(z, y) - (h(z), l)for^E Z^9yEY*.JîK = (hi + .. . + M* M, dénote

Then K = ÜT x {1} and if is an L rational subset of Z | x 7*. Now,
extend <fi and t/j to morphisms from Z\ into X* and y*, respectively,
by <f>(z) — i[)(z) = e if z G Z\ — Z, and define the morphism
g : Z\ x F* -> Zf x F* by 5 (^, y) = (0 (z), $ (z)) for « G Z{, y e Y*.

vol. 31, n° 1, 1997



90 J. HONKALA

Then

and hence A is an L rational subset of Z\ x Y*. D

Now we are ready to discuss L rational transductions. In gênerai, a
transduction r from X* into Y* is a mapping from X* into the set of
subsets of Y*. The graph of r is the relation R defined by

DÉFINITION 4.3: A transduction r : X* —>> Y* is L rational if its graph
R is an L rational relation.

The following theorem is a reformulation of Theorem 4.2,

THEOREM 4.4: Suppose X and Y are finite alphabets. The following
conditions are equivalent:

(i) r : X* —* Y* is an L rational transduction.

(ii) There exist a finite alphabet Z, two morphisms <f>:Z*~>X*,
<&: Z* -+ F* and a DTOL language K Ç Z* such that

for ƒ G X*.

(iii) There exist a finite alphabet Zy two alphabetic morphisms a:Z* —> X*,
fi : Z* -± Y * and a DTOL language K C Z* swc/z that

for ƒ E X\

(iv) r/ier^ ^XÎ5^ a finite alphabet Zy two morphisms <j>:Z* -* X*,
^ : Z* -^ F* anrf an HDTOL language K Ç Z* such that

for ƒ G X*.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON LINDENMAYERIAN RATIONAL SUBSETS OF MONOIDS 9 1

Furthermore, if X n Y = 0, condition (i) is equivalent with the condition
(v) There exist a finite alphabet Z and a DTOL language K Ç Z* such
thaï X U Y Ç Z and

for ƒ G -X"*, where TTX cmd iry are the projections of Z* orc/o X* and y*,
respectively.

CoROLLARY 4.5: Rational transductions are L rational transductions.

Proof: Suppose r : X* —> y* is a rational transduction. By Nivat's
theorem there exist an alphabet Z, two morphisms (f> : Z* —̂  X*,
ip : Z* —»- y* and a regular language f Ç 2* such that

for ƒ G X*. The claim follows by Theorem 4.4 (iv) because K is an
HDTOL language. •

COROLLARY 4.6: Ifr : X* —> y* is an L rational transduction and A Ç X*
is a regular language, ihen r (A) is an EDTOL language.

Proof: By Theorem 4.4, we have r (A) = ^ O " 1 (A) H K) where K is
a DTOL language and </> and ^ are morphisms. Because K is an EDTOL
language the claim follows by the closure of EDTOL languages with respect
to morphic image and intersection with a regular language (see Rozenberg
and Salomaa [4]). D

Next we give examples of L rational transductions.

Example 4.1: Because L\ — {ancb2'n\n > 0} is a DOL language, the
mapping T\ : a* —» a* defined by r\ (an) = a2 ' for n > 0, is an L rational
transduction.

Example 4.2: Suppose (ujn)n>o is a DOL séquence over the alphabet
X. Choose two new letters a, c $ X. Then L2 = {anccün\n > 0} is a
DOL language. Therefore the transduction rg defined by r% (an) = a)^ for
n > 0, is an L rational transduction. (Hère \w\ is the length of the word tu)..
It follows that if P (x) G N [x] is a polynomial then the mapping

is an L rational transduction.

vol. 31, n° 1, 1997



9 2 J. HONKALA

Example 4.3: Suppose (un)n>o and (vn)n>o are DOL séquences where
un, vn G X* for n > 0. Suppose that {t%|n > 0} is infinité. Define the
transduction T3 by

"̂3 K ) — Vn iOTÏl > 0.

Hence, T3 translates the séquence (un) to the séquence (i>n). We claim that T3
is L rational. Let y be a new alphabet isomorphic to X such that X H y = 0
and (^Jn) be the isomorphic copy of (t;u). Then the set {unVn\n > 0} is a
DOL language. Hence the claim follows by Theorem 4.2.

Example 4.4: Suppose X is a finite alphabet. Define the mapping
T4 : X* —> X* by T4(w) ~ w, w ^ X*, where w is the reversai of
u>. We claim that T4 is an L rational transduction. For the proof, suppose
Y is an alphabet isomorphic to X such that X DY = $ and dénote the
isomorphic copy of w G X* by wy- Choose a letter c ^ I U Y . Then
it is easy to see that L4 — {wcwy\w G X*} is a DTOL language. This
implies the claim.

Example 4.5: Consider the alphabet X = {a, b} and define the
transduction T5 by rs (am6a™) = amn for m, n > 1. We show that T5
is L rational. For the proof, choose three new letters u, c, d ^ X and define
the morphisms /ii, /i2, ^3 by

hi (UJ) = au;cd,

/13 (6) = ba, /13 (c) = cd,

(In all unlisted cases hi acts as the identity.) Then

(aucd) - ^ / i 2 ({amu; (cd)mjm > 1})

= hl ({amba(cd)m\m > 1}) = {amban {cdn)m\m, n > 1}.

By Proposition 3.1, L5 is an HDTOL language. Therefore the claim follows
by Theorem 4.2.

We conclude this section by showing that L rational transductions are not
closed under composition.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON LINDENMAYERIAN RATIONAL SUBSETS OF MONOIDS 93

First, one can easily construct two DTOL languages L\ and L2 such that
if Ki = Li D {a, b}* and K2 = L2 n {a, 6}* then

Ki = {(am6)n |m, n > 1},

ÜT2 = {a m 6(a T l 6) m - 1 |m ,n> l}

and

Li n L2 - tfi n # 2 = {(am6)ro|m > 1}.

Now, define r\ and r2 by

By Theorem 4.4, ri and r2 are L rational transductions. Furthermore,

(n o r2) (ƒ) - {ƒ} n Li n L2 = {ƒ} n Ki n K2.

Hence (ri o r2) ({a, 6}*) = üfi n if2. Because Ki n £T2 is not an ETOL
language {see Ehrenfeucht and Rozenberg [3]), if follows by CoroUary 4.6
that T\ o r2 is not L rational.

5. L RATIONAL STAR HEÏGHT

In this section we define the notion of star height of an L rational set and
discuss the infinity of the star height hierarchy in various monoids.

Suppose M is a monoid and H Ç End (M). Define inductively the sets
L^Rat^ (M) for i > 0 as follows. First, A G L^Rato (M) if and only
if A is a finite subset of M. For i > 0, A E L^Rat^ (M) if and only
if A is a finite union of sets of the form B1B2 . - .Bn where either Bj
is a singleton or Bj = g\ ...gt (hi + . . . + h$)* (Cj) for some g\,..., gu

hi,..., hs G H and Cj G L^Rat^_i (M), 1 < j < n. It is easy to see that
z (M) Ç L^Ratz +i (M) for i > 0. Dénote

2 > 0

vol. 31, n° 1, 1997



94 J. HONKALA

Clearly, Tl Ç L^Rat (M). Furthermore, 0 £ 7£, {m} G 7£ for each m e M
and 7£ is closed under union, product, ?^-morphic image and Ti-morphic
star. Hence

L-^Rat (Af) = IJ LftRati (M).

By définition, the star height of a set A E L^Rat (M) is the smallest %
such that A £ L-^Rat* (Af).

If each L rationa! subset of M is an HDTOL set, then the star height
hierarchy collapses and

1

LRat (Af) = ( J LRat, (M).

(Here 7i = End (Af).) Hence, an infinité star height hierarchy implies that
there is a large gap between HDTOL sets and L rational sets. Below we
give nontrivial examples of an infinité star height hierarchy and a finite star
height hierarchy.

To obtain an example of an infinité hierarchy, consider the monoid
M = (N, -f, 0) of nonnegative integers and define Tï — {h} by h (x) — 2x
for x 6 N. We need the following technical notion. A set A Ç N has
width 5, 5 > 1, if

A Ç {2Zl + 222 + . . . + 2^+1 \h < h < ..•. < is+i}

and for each i > 1 the set

A n {2?1 + 212 + . . . + 2^+11 i i + i -ij>t for all 1 < j < s}

is nonempty.

LEMMA 5.1: If A G L^Rat (N) kas width greater than or equal to s, s > 1,
then the star height of A is at least s.

Proof: If A C N has width at least 1, the set A is infinité and hence its
star height is at least one. Suppose inductively that the lemma is true for 5,
s > 1, and consider a set A Ç N of width s +-t, t > 1. We have to prove that
A g L^Rat5 (N). Suppose on the contrary that A e L^Rat^ (N). Then A is
a finite union of sets of the form Bi + B\ +... + J3* where Bi is a singleton
and i?2, • • •, Bn G L^Rat s_i (N) are nonempty sets none of which equals
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{0}. Hère we dénote 5* = h* (5), (Notice that (h + ... + h)* (B) = h* (B)
for any B Ç N.)

First, suppose that in at least one of the terms of the union n > 3. Choose
hi G Bj for 1 < i < n and consider the binary expansions of the numbers b{.
The total number of nonzero digits in the expansions equals s + 1 + 1. Next,
choose u and v such that the smallest nonzero term in the binary expansion
of h is 2U and of 63 is 2V, respectively. Then

h + b2 • r + 63 * 2u + 64 + . . . + 6n e S Î + 55 + . . . + 5 ; ç A.

However, the number of nonzero digits in the binary expansion of
bi H- b-2 • 21' + 63 • 2:M + 64 + . . . + bn is less than s +1 +1 . This contradiction shows
that A is a finite union of singletons and sets of the form B\ + B\ where B\
is a singleton and B2 G L^Rat5_i (N) is a nonempty set différent from {0}.

Next, consider a set B\ + B | . Suppose first that B\ + B% has width 5 +1.
Then ^2 has width s + i — 1 or s 4-1. By the inductive hypothesis, the star
height of B2 is at least 5. This is not possible because B2 E L^Rat5_i (N).

Hence A is a finite union of singletons and sets of the form B\ + B\ none
of whieh has width s + t. Therefore the width of A cannot equal s + t. This
contradiction proves the lemma. D

THEOREM 5.2: Consider the monoid M — (N, +, 0) and define Ji as
above. Dénote

As = {2l> + 222 + . . . + 2i*[0 < h < i2 < . . . < is}

for s > 1. Then the star height of As equals s.

Proof: Clearly, the set 1 + h(As) has width s. Hence, by Lemma 5.1, the
star height of As is at least 5. The f act that the star height of A$ is at most
s follows inductively by the équations

Ai = h* (1)

Indeed, Ai has star height one. Furthermore, if As has star height at most 5,
so has 1 + h{As). Hence, As+i has star height at most 5 + 1. •
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9 6 J. HONKALA

To conclude this section we give a nontrivial example of a finite star
height hierarchy.

Let XQO be an infinité alphabet and consider the free monoid M — X^.
Let H be the set of endomorphisms of M such that h(x) — x for almost all
x G XOQ. If A e L^Rat (M) then it is easy to see by L rational induction
that there exists a finite alphabet X such that A E LRat(X*). Hence, by
Proposition 3.1, A is an HDTOL language. It follows that the star height
of an infinité set A G L-^Rat (M) with respect to H is one. Hence, in this
case the star height hierarchy collapses.
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