INFORMATIQUE THÉORIQUE ET APPLICATIONS

S. Dumitrescu

G. PĂUN

On the power of parallel communicating grammar systems with right-linear components

Informatique théorique et applications, tome 31, $\mathrm{n}^{0} 4$ (1997), p. 331-354
http://www.numdam.org/item?id=ITA_1997__31_4_331_0

© AFCET, 1997, tous droits réservés.
L'accès aux archives de la revue «Informatique théorique et applications» implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE POWER OF PARALLEL COMMUNICATING GRAMMAR SYSTEMS WITH RIGHT-LINEAR COMPONENTS (*)

by S. Dumitrescu (${ }^{1}$) and G. Pàun (${ }^{1}$)

Abstract

We settle here two problems concerning the generative power of parallel communicating grammar systems with right-linear components: (1) each linear language can be generated by a non-centralized returning system, (2) the family of languages generated by centralized returning systems is incomparable with the family of languages generated by nonreturning centralized systems. It is also proved that centralized returning systems with right-linear components are strictly more powerful than systems with regular rules in the restricted sense.

1. INTRODUCTION

A parallel communicating (PC) grammar system is a construct consisting of several usual grammars, working synchronously, each on its own sentential form, and communicating by request; special (query) symbols are provided, Q_{i}, with the subscript identifying a component of the system; when a component j introduces a query symbol Q_{i}, the current sentential form of the component i is sent to the component j, where it replaces the occurrence(s) of Q_{i} in the sentential form of component j. The language generated by a specified component of the system (the master), after a series of such rewriting and communication steps (each component starts from its axiom), is the language generated by the system.

Many papers were devoted in the last years to the study of PC grammar systems. We refer to [2], [4] for details.

[^0]Many of these papers deal with PC grammar systems with regular components, where "regular" means in general "right-linear". However, a series of basic problems are still open in this area.

Two important classifications of PC grammar systems concern the communication graph and the returning feature: a system is called centralized when only the master may introduce query symbols and non-centralized in the non-restricted case; a system is called returning if after communicating a component resumes working from its axiom and non-returning when it has to continue processing the current string.

Centralized returning PC grammar systems with right-linear components are known to generate only semilinear languages, but all other types (non-centralized returning, centralized non-returning, and non-centralized non-returning) can generate non-semilinear languages. However, it is not known whether there are centralized returning systems which cannot be simulated by non-returning centralized systems. We show that this is the case, hence the two families are incomparable.

Another important open problem concerns the relationships between the families of linear and of context-free languages and those of languages generated, in the returning or non-returning way, by non-centralized systems with right-linear components. For instance, in [1] it is proved that there are context-free languages which cannot be generated by returning centralized regular PC grammar systems, unless $C F \subseteq N L O G$ (which is not at all expected). We solve here the problem for linear languages: returning noncentralized PC grammar systems with right-linear components can generate all linear languages. (We conjecture that this is not true for the non-returning mode.)

Finally, we show that at least in the returning centralized case, there is a difference between using right-linear rules and using regular rules in the strict sense. This shows that for PC grammar systems this distinction is important. In almost all cases in formal language theory, there is no difference from the generative capacity point of view between mechanisms using regular rules and those using right-linear rules. One of the basic features of a PC grammar system is the synchronization of the rewriting steps, hence the "speed" of producing strings on various components. This is the place where right-linear rules prove to be strictly more powerful than the regular ones. In fact, as we shall see, the chain rules are essential, not the rules of the form $A \rightarrow x B$ with A, B nonterminals and x a terminal string of the length greater than or equal to two: every right-linear system, centralized or not,

[^1]returning or not, can be simulated (modulo λ) by a system of the same type and having only rules of the forms $A \rightarrow a B, A \rightarrow B, A \rightarrow a$, with A, B nonterminals and a terminal.

2. PARALLEL COMMUNICATING GRAMMAR SYSTEMS

For an alphabet V, we denote by V^{*} the free monoid generated by V; λ is the empty string, $|x|$ is the length of $x \in V^{*},|x|_{U}$ is the number of occurrences of symbols in $U \subseteq V$ in $x \in V^{*}$. REG, $C F, C S, R E$ denote the families in the Chomsky hierarchy. For further facts of formal language theory we shall use in the sequel, we refer to [12].

A PC grammar system of degree, $n, n \geq 1$, is a construct

$$
\Gamma=\left(N, T, K,\left(P_{1}, S_{1}\right), \ldots,\left(P_{n}, S_{n}\right)\right)
$$

where N, T, K are pairwise disjoint alphabets, with $K=\left\{Q_{1}, \ldots, Q_{n}\right\}$, $S_{i} \in N$, and P_{i} are finite sets of rewriting rules over $N \cup T \cup K, 1 \leq i \leq n$; the elements of N are nonterminal symbols, those of T are terminals; the elements of K are called query symbols; the pairs $\left(P_{i}, S_{i}\right)$ are the components of the system (often, we call the sets P_{i} components). Note that, by their indices, the query symbols are associated with the components. When discussing the type of the components in the Chomsky hierarchy, the query symbols are interpreted as nonterminals.

For $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$, with $x_{i}, y_{i} \in(N \cup T \cup K)^{*}, 1 \leq i \leq n$ (we call configuration such an n-tuple) with $x_{1} \notin T^{*}$, we write $\left(x_{1}, \ldots, x_{n}\right) \Rightarrow_{r}$ $\left(y_{1}, \ldots, y_{n}\right)$ if one of the following two cases holds:
(i) $\left|x_{i}\right|_{K}=0$ for all $1 \leq i \leq n$; then $x_{i} \Rightarrow_{P_{i}} y_{i}$ or $x_{i}=y_{i} \in T^{*}, 1 \leq$ $i \leq n$;
(ii) there is $i, 1 \leq i \leq n$, such that $\left|x_{i}\right|_{K}>0$; we write such a string x_{i} as $x_{i}=z_{1} Q_{i_{1}} z_{2} Q_{i_{2}} \ldots z_{t} Q_{i_{t}} z_{t+1}$, for $t \geq 1, z_{i} \in(N \cup T)^{*}, 1 \leq i \leq t+1$; if $\left|x_{i_{j}}\right|_{K}=0$ for all $1 \leq j \leq t$, then $y_{i}=z_{1} x_{i_{1}} z_{2} x_{i_{2}} \ldots z_{t} x_{i_{t}} z_{t+1}$, [and $\left.y_{i_{j}}=S_{i_{j}}, 1 \leq j \leq t\right]$; otherwise $y_{i}=x_{i}$. For all unspecified i we have $y_{i}=x_{i}$.

Point (i) defines a rewriting step (componentwise, on all components whose current strings are not terminal), (ii) defines a communication step: the query symbols $Q_{i_{j}}$ introduced in some x_{i} are replaced by the associated strings $x_{i_{j}}$, providing that these strings do not contain further query symbols. The communication has priority over rewriting. The work of the system is blocked when circular queries appear, as well as when no query symbol is
present but point (i) is not performed because a component cannot rewrite its sentential form, although it is a nonterminal string.

The above considered relation \Rightarrow_{T} is said to be performed in the returning mode: after communicating, a component resumes working from its axiom. If the brackets, [and $y_{i_{j}}=S_{i_{j}}, 1 \leq i \leq t$], are removed, then we obtain the nonreturning mode of derivation: after communicating, a component continues the processing of the current string. We denote by $\Rightarrow_{n r}$ the obtained relation.

The language generated by Γ is the language generated by its first component (G_{1} above), when starting from $\left(S_{1}, \ldots, S_{n}\right)$, that is

$$
\begin{aligned}
L_{f}(\Gamma)= & \left\{w \in T^{*} \mid\left(S_{1}, \ldots, S_{n}\right) \Rightarrow_{f}^{*}\left(w, \alpha_{2}, \ldots, \alpha_{n}\right)\right. \\
& \text { for } \left.\alpha_{i} \in(N \cup T \cup K)^{*}, 2 \leq i \leq n\right\}, f \in\{r, n r\}
\end{aligned}
$$

(No care is paid to strings in the components $2, \ldots, n$ in the last configuration of a derivation; clearly, the work of Γ stops when a terminal string is obtained in the first component.)

Two basic classes of PC grammar systems can be distinguished: centralized (only G_{1}, the master of the system, is allowed to introduce query symbols), and non-centralized (no restriction is imposed on the introduction of query symbols). Therefore, we get four basic families of languages: we denote by $P C(X)$ the family of languages generated in the returning mode by noncentralized PC grammar systems with rules of type X (and of arbitrary degree); when centralized systems are used, we add the symbol C, when the non-returning mode of derivation is used, we add the symbol N , thus obtaining the families $C P C(X), N P C(X), N C P C(X)$. In what concerns X, we consider here regular (REG), right-linear (RL) and context-free (CF) rules.

By regular rules we mean rewriting rules of the forms $A \rightarrow a B, A \rightarrow a$, for A, B nonterminals and a terminal. By right-linear rules we mean rules of the forms $A \rightarrow x B, A \rightarrow x$, with A, B nonterminals and x terminal strings.

In all cases, we allow only λ-free rules. If the language we consider contains the empty string, then a rule $S \rightarrow \lambda$ is allowed in the master grammar. (Note that, because the derivation stops when using such a rule, λ cannot be communicated to another component.)

Here are two simple examples. Consider the system

$$
\begin{aligned}
\Gamma_{1}= & \left(\left\{S_{1}, S_{2}, S_{3}\right\}, K,\{a, b, c\},\left(P_{1}, S_{1}\right),\left(P_{2}, S_{2}\right),\left(P_{3}, S_{3}\right)\right) \\
& P_{1}=\left\{S_{1} \rightarrow a S_{1}, S_{1} \rightarrow a Q_{2}, S_{2} \rightarrow b Q_{3}, S_{3} \rightarrow c\right\} \\
& P_{2}=\left\{S_{2} \rightarrow b S_{2}\right\} \\
& P_{3}=\left\{S_{3} \rightarrow c S_{3}\right\}
\end{aligned}
$$

The reader can easily see that

$$
L_{r}\left(\Gamma_{1}\right)=L_{n r}\left(\Gamma_{2}\right)=\left\{a^{n} b^{n+1} c^{n+2} \mid n \geq 1\right\} .
$$

Note that Γ_{1} contains regular rules only, but $L_{f}(\Gamma)$ is not context-free, $f \in\{r, n r\}$. Moreover, consider

$$
\begin{aligned}
\Gamma_{2}= & \left(\{S\}, K,\{a\},\left(P_{1}, S\right),\left(P_{2}, S\right)\right) \\
& P_{1}=\left\{S \rightarrow a Q_{2}, S \rightarrow a\right\} \\
& P_{2}=\{S \rightarrow a S\}
\end{aligned}
$$

We obtain

$$
\begin{gathered}
L_{r}\left(\Gamma_{2}\right)=\left\{a^{2 n+1} \mid n \geq 0\right\} \\
L_{n r}\left(\Gamma_{2}\right)=\left\{\left.a^{\frac{(n+1)(n+2)}{2}} \right\rvert\, n \geq 0\right\}
\end{gathered}
$$

The language $L_{r}\left(\Gamma_{2}\right)$ is regular, but $L_{n r}\left(\Gamma_{2}\right)$ is not regular (it is not even a matrix language, [8]). Again the system contains only regular rules.

The diagram in Figure 1 indicates the relations between the eight basic families of languages discussed in this paper, as well as their relationships with families in the Chomsky hierarchy (MAT denotes the family of languages generated by matrix grammars with λ-free context-free rules and without appearance checking). The arrows indicate inclusions, not necessarily proper; the families which are not connected by a path in this diagram are not necessarily incomparable.

Proofs of these relations can be found in [2], [5], [9], [10].
We shall add to this diagram two important relations: $L I N \subset P C(R L)$ and $C P C(R E G)-N C P C(R L) \neq \emptyset$; in this way we obtain that $C P C(R L)$ and $N C P C(R L)$ are incomparable, the only incomparability result known in this moment in the PC grammar systems area.

3. COMPARING THE PREVIOUS FAMILIES

At the first sight, because systems with right-linear components generate the strings "from the left to the right", linear languages of the form

$$
L=\left\{w c m i(w) \mid w \in\{a, b\}^{*}\right\}
$$

cannot be generated by such systems. This is true for centralized systems (see the proof for point (iv) of Theorem 4.1, in [2], using the linear language $\left\{a^{n} b^{m} c b^{m} a^{n} \mid n, m \geq 1\right\}$, which is shown not to be in $C P C(R L)$, and this

Figure 1.
is probably true also for non-centralized non-returning systems. However, the returning centralized framework provides tools for simulating linear grammars by systems with right-linear components.

Theorem 1: $L I N \subset P C(R L)$.
Proof: Clearly, we have to prove only the inclusion ($P C(R L)$ contains non-context-free languages).

Take a linear language $L \subseteq T^{*}$. We can write

$$
L=(L \cap\{\lambda\}) \cup \bigcup_{a \in T} \partial_{a}^{r}(L)\{a\}
$$

(∂_{a}^{r} denotes the right derivative with respect to the symbol a). The family $P C(R L)$ is closed under union ([2], Theorem 7.56 and the remark after it), hence it is enough to prove that each language $\partial_{a}^{r}(L)\{a\}$ is in $P C(R L)$.

The family $L I N$ is closed under right derivative, hence $\partial_{a}^{r}(L) \in L I N$ for each $a \in T$. Take a linear grammar $G_{a}=\left(N_{a}, T, P_{a}, S_{a}\right)$ such that

$$
\begin{aligned}
& L\left(G_{a}\right)=\partial_{a}^{r}(L), a \in T . \text { Assume that } \\
& \quad P_{a}=P_{a, N} \cup P_{a, T} \\
& \quad P_{a, N}=\left\{r_{i}: A_{i} \rightarrow u_{i} B_{i} v_{i} \mid 1 \leq i \leq n, A_{i}, B_{i} \in N_{a}, u_{i}, v_{i} \in T^{*}\right\} \\
& \quad P_{a, T}=\left\{q_{i}: C_{i} \rightarrow x_{i} \mid 1 \leq i \leq m, C_{i} \in N_{a}, x_{i} \in T^{*}\right\}
\end{aligned}
$$

We construct the system

$$
\Gamma_{a}=\left(N, K, T,\left(P_{0}, S_{0}\right),\left(P_{1}, S_{1}\right),\left(P_{1}^{\prime}, S_{1}^{\prime}\right), \ldots,\left(P_{n}, S_{n}\right),\left(P_{n}^{\prime}, S_{n}^{\prime}\right)\right)
$$

where

$$
\begin{aligned}
N= & \left\{S_{0}, S_{0,1}, S_{0,2}\right\} \cup\left\{S_{i}, S_{i, 1}, S_{i}^{\prime}, S_{i, 1}^{\prime}, S_{i}^{\prime \prime}\right\} \cup \\
& \cup\left\{A, A^{\prime}, A^{\prime \prime}, \bar{A} \mid A \in N_{a}\right\} \\
P_{0}= & \left\{S_{0} \rightarrow x_{i} \bar{C}_{i} \mid C_{i} \rightarrow x_{i} \in P_{a, T}, 1 \leq i \leq m\right\} \cup \\
& \cup\left\{S_{0} \rightarrow S_{0,1}, S_{0,1} \rightarrow S_{0,2}\right\} \cup \\
& \cup\left\{S_{0,2} \rightarrow Q_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup \\
& \cup\left\{A^{\prime \prime} \rightarrow \bar{A} \mid A \in N_{a}\right\} \cup \\
& \cup\left\{S_{a}^{\prime \prime} \rightarrow a\right\}, \\
P_{i}= & \left\{S_{i} \rightarrow S_{i, 1}, S_{i, 1} \rightarrow S_{i}, S_{i} \rightarrow Q_{0}, \bar{B}_{i} \rightarrow v_{i} A_{i}\right\} \\
P_{i}^{\prime}= & \left\{S_{i}^{\prime} \rightarrow S_{i, 1}^{\prime}, S_{i, 1}^{\prime} \rightarrow S_{i}^{\prime}, S_{i}^{\prime} \rightarrow S_{i}^{\prime \prime}, S_{i}^{\prime \prime} \rightarrow u_{i} Q_{i}\right. \\
& \left.A_{i} \rightarrow A_{i}^{\prime}, A_{i}^{\prime} \rightarrow A_{i}^{\prime \prime}\right\}, \quad \text { for } \quad r_{i}: A_{i} \rightarrow u_{i} B_{i} v_{i} \in P_{a, N}, 1 \leq i \leq n .
\end{aligned}
$$

The query symbols Q_{i} are associated with components $P_{i}, 0 \leq i \leq n$, and Q_{i}^{\prime}, with $P_{i}^{\prime}, 1 \leq i \leq n$. All the symbols in N not in N_{a} are new and distinct from each other and from the symbols of $N_{a} \cup T$.

The string to be generated circulates among components as suggested in Figure 2.

Figure 2.

The component P_{0} starts and ends the derivation; at the first step, it simulates the terminal rules of P_{a}, at the last one, it introduces the symbol a (the obtained language is $L_{r}\left(\Gamma_{a}\right)=L\left(G_{a}\right)\{a\}$). In-between these steps, P_{0} only prepares the current string for the components $P_{i}, 1 \leq i \leq n$. Each pair $P_{i}, P_{i}^{\prime}, 1 \leq i \leq n$, simulates a rule in P_{a}, namely that with the index i in $P_{a, N}, r_{i}: A_{i} \rightarrow u_{i} B_{i} v_{i}$. The component P_{i} introduces the right "context" v_{i}, whereas P_{i}^{\prime} introduces the left "context" u_{i}. The derivation in Γ_{a} goes from the center of the string to its ends, on the path

$$
w \rightarrow u_{i_{1}} w v_{i_{1}} \rightarrow u_{i_{2}} u_{i_{1}} w v_{i_{1}} v_{i_{2}} \rightarrow \ldots \rightarrow u_{i_{k}} \ldots u_{i_{1}} w v_{i_{1}} \ldots v_{i_{k}}
$$

that is in the reversed way of producing strings in G_{a} :

$$
\begin{aligned}
u_{i_{k}} v_{i_{k}} \rightarrow u_{i_{k}} u_{i_{k-1}} v_{i_{k-1}} v_{i_{k}} & \rightarrow \ldots \\
\ldots \rightarrow u_{i_{k}} \ldots u_{i_{1}} v_{i_{1}} \ldots v_{i_{k}} & \rightarrow u_{i_{k}} \ldots u_{i_{1}} w v_{i_{1}} \ldots v_{i_{k}}
\end{aligned}
$$

Having these explanations in mind, let us examine in some details the possible derivations in Γ_{a}. When starting from its axiom, each component $P_{i}, P_{i}^{\prime}, 1 \leq i \leq n$, can either choose an "active way" or an "inactive way". The first way leads to a query symbol, hence to the communication of a string, the second one means to use the "waiting rules" $S_{i} \rightarrow S_{i, 1}, S_{i, 1} \rightarrow S_{i}$ in P_{i} and $S_{i}^{\prime} \rightarrow S_{i, 1}^{\prime}, S_{i, 1}^{\prime} \rightarrow S_{i}^{\prime}$ in P_{i}^{\prime}. In this way, the components P_{i}, P_{i}^{\prime} can do nothing an even number of steps, being prepared after that for an "active way" again.

We start from the configuration $\left(S_{0}, S_{1}, S_{1}^{\prime}, \ldots, S_{n}, S_{n}^{\prime}\right)$. For the first step, we can distinguish several cases:

Case 1: The component P_{0} introduces $x_{s} \bar{C}_{s}$, for some $C_{s} \rightarrow x_{s} \in$ $P_{a, T}, 1 \leq s \leq m$, and no component $P_{i}, 1 \leq i \leq n$, introduces the query symbol Q_{0}. The derivation is immediately blocked, because P_{0} cannot rewrite its (nonterminal) string.

Case 2: P_{0} introduces the symbol $S_{0,1}$ and no component $P_{i}, 1 \leq i \leq n$, introduces Q_{0}. We get

$$
\Rightarrow_{r}\left(S_{0,1}, \ldots, S_{i, 1}, S_{i, 1}^{\prime} \mid S_{i}^{\prime \prime}, \ldots\right)
$$

(We have indicated the alternative possibilities of using rules in P_{i}^{\prime}, for a generic $i, 1 \leq g \leq n$, by separating the possible strings obtained in different variants by vertical bars.) We continue with

$$
\Rightarrow_{r}\left(S_{0,2}, \ldots, S_{i}, S_{i}^{\prime} \mid u_{i} Q_{i}, \ldots\right)
$$

If some P_{i}^{\prime} has introduced $u_{i} Q_{i}$, then the derivation is blocked after the communication, because P_{i}^{\prime} cannot rewrite the string $u_{i} S_{i}$. Therefore, in order to continue, we must have obtained the configuration $\left(S_{0,2}, S_{1}, S_{1}^{\prime}, \ldots, S_{n}, S_{n}^{\prime}\right)$. Now, P_{0} will introduce Q_{j}^{\prime} for some $j, 1 \leq j \leq n$. If no $P_{i}, 1 \leq i \leq n$, introduces at the same time the symbol Q_{0}, then the derivation is blocked: we communicate either $S_{j, 1}^{\prime}$ or $S_{j}^{\prime \prime}$ to P_{0}, and P_{0} cannot rewrite these symbols. If some P_{i} has introduced Q_{0}, then first we communicate $S_{j, 1}^{\prime}$ or $S_{j}^{\prime \prime}$ to P_{0}, then to P_{i} and now the derivation is blocked because P_{i} cannot rewrite these symbols.

Case 3: P_{0} introduces $S_{0,1}$ and some component $P_{i}, 1 \leq i \leq n$, introduces Q_{0}. The symbol $S_{0,1}$ is communicated to P_{i} and the derivation is blocked, because P_{i} cannot rewrite $S_{0,1}$.

Therefore, at the first step of the derivation at least one component P_{i} must introduce Q_{0}, whereas P_{0} must introduce some $x_{s} \bar{C}_{s}$, hence the obtained configuration and the next step must be

$$
\left(x_{s} \bar{C}_{s}, \ldots, Q_{0}, S_{i, 1}^{\prime} \mid S_{i}^{\prime \prime}, \ldots\right) \Rightarrow_{r}\left(S_{0}, \ldots, x_{s} \bar{C}_{s}, S_{i, 1}^{\prime} \mid S_{i}^{\prime \prime}, \ldots\right)
$$

Now, if $B_{i} \neq C_{s}$, then the derivation is blocked. Therefore, exactly those components P_{i} must introduce Q_{0}, that are identified by $x_{s} \bar{C}_{s}$; assume that such a component is P_{i}. Thus, the beginning of the derivation must be

$$
\left(S_{0}, \ldots, S_{i}, S_{i}^{\prime}, \ldots\right) \Rightarrow_{r}\left(x_{s} \bar{C}_{s}, \ldots, Q_{0}, S_{i, 1}^{\prime} \mid S_{i}^{\prime \prime}, \ldots, S_{j, 1}, S_{j, 1}^{\prime}, \ldots\right)
$$

with all other components, like indicated for P_{j}, P_{j}^{\prime} above, using the "waiting rules". We continue with

$$
\begin{aligned}
& \Rightarrow_{r}\left(S_{0}, \ldots, x_{s} \bar{C}_{s}, S_{i, 1}^{\prime} \mid S_{i}^{\prime \prime}, \ldots, S_{j, 1}, S_{j, 1}^{\prime}\right), \ldots \\
& \Rightarrow_{r}\left(x_{t} \bar{C}_{t}\left|S_{0,1}, \ldots, x_{s} v_{i} A_{i}, S_{i}^{\prime}\right| u_{i} Q_{i}, \ldots, S_{j}, S_{j}^{\prime}, \ldots\right)
\end{aligned}
$$

The derivation is blocked when P_{i}^{\prime} has introduced S_{i}^{\prime} (no further derivation step is possible in P_{i}), and similarly when P_{0} has introduced a new string $x_{t} \bar{C}_{t}$. Therefore we have

$$
\begin{aligned}
& \left(S_{0,1} \ldots, x_{s} v_{i} A_{i}, u_{i} Q_{i}, \ldots, S_{j}, S_{j}^{\prime}, \ldots\right) \\
& \Rightarrow_{r}\left(S_{0,1}, \ldots, S_{i}, u_{i} x_{s} v_{i} A_{i}, \ldots, S_{j}, S_{j}^{\prime}, \ldots\right) \\
& \Rightarrow_{r}\left(S_{0,2}, \ldots, S_{1, i}\left|Q_{0}, u_{i} x_{s} v_{i} A_{i}^{\prime}, \ldots, S_{j, 1}\right| Q_{0}, S_{j, 1}^{\prime} \mid S_{j}^{\prime \prime}, \ldots\right)
\end{aligned}
$$

The derivation is blocked when any Q_{0} appears ($S_{0,2}$ cannot be rewritten in other components than P_{0}), as well as when some P_{j}^{\prime} has introduced $S_{j}^{\prime \prime}$: at the next step it will introduce Q_{j}, and the received string cannot be rewritten.

Therefore, when P_{i}^{\prime} works, all components $P_{i}, P_{j}, S_{j}^{\prime}, 1 \leq j \leq n, j \neq i$, must use "waiting rules". Thus, we have

$$
\begin{aligned}
& \Rightarrow_{r}\left(S_{0,2}, \ldots, S_{i, 1}, u_{i} x_{s} v_{i} A_{i}^{\prime}, \ldots, S_{j, 1}, S_{j, 1}^{\prime}, \ldots\right) \\
& \Rightarrow_{r}\left(Q_{k}^{\prime}, \ldots, S_{i}, u_{i} x_{s} v_{i} A_{i}^{\prime \prime}, \ldots, S_{j}, S_{j}^{\prime}, \ldots\right)
\end{aligned}
$$

If $k \neq i$, then the derivation will be blocked. If $k=i$, then we get

$$
\begin{align*}
& \Rightarrow_{r}\left(u_{i} x_{s} v_{i} A_{i}^{\prime \prime}, \ldots, S_{i}, S_{i}^{\prime}, \ldots, S_{j}, S_{j}^{\prime}, \ldots\right) \\
& \Rightarrow_{r}\left(u_{i} x_{s} v_{i} \bar{A}_{i}, \ldots, S_{g, 1}\left|Q_{0}, S_{g, 1}^{\prime}\right| S_{g}^{\prime \prime}, \ldots\right) \tag{*}
\end{align*}
$$

where g is a generic index, $1 \leq g \leq n$.
We are in a situation similar to that after the first step of the derivation, but having on the first component the string $u_{i} x_{s} v_{i} \bar{A}_{i}$ corresponding to two rules in P_{a},

$$
A_{i} \rightarrow u_{i} B_{i} v_{i}, C_{s} \rightarrow x_{s}, \quad \text { for } \quad B_{i}=C_{s}
$$

They can produce the derivation in G

$$
A_{i} \Rightarrow u_{i} B_{i} v_{i} \Rightarrow u_{i} x_{s} v_{i}
$$

In order not to block the derivation, we must have exactly one occurrence of Q_{0} in the configuration (*), namely on a position g such that $A_{i}=B_{g}$; correspondingly, P_{g}^{\prime} must have $S_{g}^{\prime \prime}$ as a current string.

Consequently, we can continue the walk in the graph in Figure 2, at each cycle $\left(P_{0}, P_{i}, P_{i}^{\prime}\right)$ simulating the rule r_{i} in $P_{a, N}$. When the string on the first component is of the form $w S_{a}^{\prime \prime}$, hence a rule $S_{a} \rightarrow u_{t} X v_{t}$ has been simulated, P_{0} can finish the derivation using $S_{a}^{\prime \prime} \rightarrow a$.

From the previous explanations, it should be clear that $L_{r}\left(\Gamma_{a}\right)=$ $L\left(G_{a}\right)\{a\}$, which completes the proof.

From [2], Theorem 7.11, we know that each language in $C P C(R L)$ is semi-linear. The second example in the previous section proves that there are non-semilinear languages in $N C P C(R E G)$. Consequently, $N C P C(R E G)$ $-C P C(R L) \neq \emptyset$. Also the reverse difference is non-empty, hence the two families are incomparable.

THEOREM 2: $C P C(R E G)-N C P C(R L) \neq \emptyset$.
Proof: Let

$$
L=\left\{a^{n} b^{n} \mid n \geq 1\right\}^{+}\{a\}
$$

This language is in $C P C(R E G)$, because it can be generated by

$$
\begin{aligned}
\Gamma= & \left(\{S\}, K,\{a, b\},\left(P_{1}, S\right),\left(P_{2}, S\right)\right) \\
& P_{1}=\left\{S \rightarrow a S, S \rightarrow a Q_{2}, S_{2} \rightarrow a\right\} \\
& P_{2}=\{S \rightarrow b S\}
\end{aligned}
$$

Any returning derivation in Γ has the following form:

$$
\begin{aligned}
& (S, S) \Rightarrow_{r}^{*}\left(a^{n_{1}} Q_{2}, b^{n_{1}} S\right) \Rightarrow_{r}\left(a^{n_{1}} b^{n_{1}} S, S\right) \\
& \Rightarrow_{r}^{*}\left(a^{n_{1}} b^{n_{1}} a^{n_{2}} Q_{2}, b^{n_{2}} S\right) \Rightarrow_{r}\left(a^{n_{1}} b^{n_{1}} a^{n_{2}} b^{n_{2}} S, S\right) \\
& \Rightarrow_{r}^{*}\left(a^{n_{1}} b^{n_{1}} \ldots a^{n_{t}} b^{n_{t}} S, S\right) \Rightarrow_{r}\left(a^{n_{1}} b^{n_{1}} \ldots a^{n_{t}} b^{n_{t}} a, b S\right)
\end{aligned}
$$

for some $t \geq 1, n_{i} \geq 1,1 \leq i \leq t$. Consequently, $L_{r}(\Gamma)=L$.
We shall now prove that $L \notin N C P C(R L)$. The intuitive idea of the proof is that in a PC grammar system generating L we have a component i communicating its string arbitrarily many times to the master. Due to the non-returning mode of derivation, the string of this component i will grow from a communication to another one (at least it remains the same), hence the string produced by the system must have as substrings a non-decreasing sequence of strings. However, L contains strings which do not fulfil such a restriction, a contradiction.

Let us formalize the previous idea. Suppose that $L=L_{n r}(\Gamma)$, for some centralized PC grammar system $\Gamma=\left(N, K,\{a, b\},\left(P_{1}, S_{1}\right), \ldots,\left(P_{r}, S_{r}\right)\right)$, with right-linear components. Because $L \notin R E G$, we must have $r \geq 2$. Since the system is centralized, only communications from P_{j} to P_{1} are performed, for $2 \leq j \leq r$. Due to the non-returning mode of working, after communicating, each $P_{j}, 2 \leq j \leq r$, keeps a copy of its sentential form and continues to rewrite it.

For each word $w \in L, w=a^{n_{1}} b^{n_{1}} \ldots a^{n_{t}} b^{n_{t}} a$, with $t \geq 1, n_{1}, \ldots, n_{t} \geq 1$, we call the i-th block of w the subword $a^{n_{i}} b^{n_{i}}, 1 \leq i \leq t$.

Let $w \in L, w=a^{n_{1}} b^{n_{1}} \ldots a^{n_{t}} b^{n_{t}} a, t \geq 1, n_{1}, \ldots, n_{t} \geq 1$, and D be a derivation of w,

$$
D:\left(S_{1}, \ldots, S_{r}\right) \Rightarrow_{n r}^{*}\left(w, \alpha_{2}, \ldots, \alpha_{r}\right)
$$

for $\alpha_{j} \in(N \cup\{a, b\})^{*}, 2 \leq j \leq r$. For $i, 1 \leq i \leq t$, let D_{i} be the subderivation of D which produces the i-th block of w in the string of the component D_{1}. Consequently, D_{i} has the form

$$
D_{i}:\left(w_{1} A_{1}, w_{2} A_{2}, \ldots, w_{r} A_{r}\right) \Rightarrow_{n r}^{*}\left(w_{1} u a^{n_{i}} b^{n_{i}} u^{\prime} B_{1}, w_{2}^{\prime} B_{2}, \ldots, w_{r}^{\prime}, B_{r}\right)
$$

where $w_{1} u=a^{n_{1}} b^{n_{1}} \ldots a^{n_{i-1}} b^{n_{i-1}}, u^{\prime} \in \operatorname{Pref}\left(a^{n_{i+1}} b^{n_{i+1}} \ldots a^{n_{t}} b^{n_{t}} a\right)$, $w_{j}, w_{j}^{\prime} \in\{a, b\}^{*}, A_{j}, B_{j} \in N \cup\{\lambda\}, 2 \leq j \leq r, A_{1} \in N \cup K, B_{1} \in N \cup\{\lambda\}$, and, moreover, D_{i} is minimal, in the sense that both the first and the last derivation step of D_{i} introduce at least one terminal symbol in the i-th block of w. For a triple (w, D, i) as above, we denote by k the number of communication steps in D_{i} where the transmitted string contains terminal symbols, by m the maximum number of terminal symbols introduced in the component P_{1} at a communication step, considering only symbols which contribute to the i-th block, and by p the number of all terminal symbols generated by the component P_{1} and which become a part of $a^{n_{i}} b^{n_{i}}$.

Assertion 1: There is a natural number $k_{0} \geq 1$ such that, for each triple (w, D, i) as above, we have

$$
p \leq k_{0}(k+1)(k m+1)
$$

Proof of Assertion 1: Assume that this assertion is not true. Then there is a triple (w, D, i) for which

$$
p>q_{0}\left(6 q_{1}^{k}+1\right)(k+1)(k m+1)
$$

where

$$
\begin{aligned}
& q_{0}=\max \left\{\mid x \| A \rightarrow x B \in P_{1}, x \in\{a, b\}^{*}, A \in N, B \in N \cup K \cup\{\lambda\}\right\} \\
& q_{1}=\operatorname{card}(N \cup K \cup\{\lambda\})
\end{aligned}
$$

Between the communication steps that introduce at least one terminal symbol and possibly before the first communication and after the last one of D_{i} with this property, the component P_{1} produces at most $k+1$ strings of terminal symbols which participate to obtaining $a^{n_{i}} b^{n_{i}}$. The sum of the lengths of these strings is p, therefore there is at least one such string x with $|x| \geq \frac{p}{k+1}$.

Let D^{\prime} be the subderivation of D_{i} which produces x. It follows that D^{\prime} has the form

$$
D^{\prime}:\left(z_{1} X_{1}, z_{2} X_{2}, \ldots, z_{r} X_{r}\right) \Rightarrow_{n r}^{*}\left(z_{1} v_{1} x v_{2} Y_{1}, z_{2} x_{2} Y_{2}, \ldots, z_{r} x_{r} Y_{r}\right)
$$

where $X_{j}, Y_{j} \in N \cup\{\lambda\}, z_{j}, x_{j} \in\{a, b\}^{*}, 2 \leq j \leq r, z_{1}, v_{1}, v_{2} \in$ $\{a, b\}^{*}, X_{1} \in N, Y_{1} \in N \cup K$, and v_{1} maybe different from λ if D^{\prime} is the subderivation of D_{i} which starts with the same configuration as D_{i} and stops before the first communication step, v_{2} may be different from λ if D^{\prime} is the subderivation of D_{i} which follows after the last communication
step, and $v_{1} v_{2}=\lambda$ if D^{\prime} is a subderivation between two communication steps. Note that, D^{\prime} contains rewriting steps and communications when only nonterminals are transmitted. Consequently, x is a subword of $a^{n_{i}} b^{n_{i}}$. Moreover, $\left|x_{j}\right| \leq m$ for those $j, 2 \leq j \leq r$, for which communications from P_{j} to P_{1} will follow in D_{i} (this follows from the definition of m).

We divide the subderivation D^{\prime} in subderivations such that at least $k m+1$ terminal symbols are produced in each of them in the string of P_{1}. Since q_{0} is the maximal number of symbols that can be introduced in P_{1} at a rewriting step ($q_{0} \geq 1$ because $p>0$), it follows that we can impose, in addition, the condition that any of the generated strings of these subderivations does not have more than $q_{0}(k m+1)$ symbols, without losing the first condition. Then, the total number of these subderivations is at least $\frac{|x|}{q_{0}(k m+1)}$. As $|x| \geq \frac{p}{k+1}$ and $p>q_{0}\left(6 q_{1}^{r}+1\right)(k+1)(k m+1)$, it follows that we have at least $6 q_{1}^{r}+1$ such subderivations. Since q_{1}^{r} is the maximum number of different r-tuples $\left(Y_{1}, \ldots, Y_{r}\right), Y_{i} \in N \cup K \cup\{\lambda\}, 1 \leq i \leq r$, it follows that there are $\left(Z_{1}, \ldots, Z_{r}\right), Z_{i} \in N \cup K \cup\{\lambda\}, 1 \leq i \leq r$, and seven different configurations C_{1}, \ldots, C_{r}, not two of them in the same subderivation as defined above, such that C_{s} has the nonterminal Z_{j} in the component j (and maybe terminal symbols), $1 \leq j \leq r, 1 \leq s \leq 7$. Assume that these seven configurations occur in D^{\prime} in the order of their indices. Then in at least one of the derivations $C_{2} \Rightarrow{ }_{n r}^{*} C_{4}$ and $C_{4} \Rightarrow{ }_{n r}^{*} C_{6}$, occurrences of only one terminal symbol are introduced (because in $C_{2} \Rightarrow{ }_{n r}^{*} C_{6}$ only terminal symbols which contribute to $a^{n_{i}} b^{n_{i}}$ are introduced; in order to be sure of this we have left apart the configurations C_{1} and C_{7} - they could be the first and the last ones of D_{i}). Let us assume, without loss of the generality, that $C_{2} \Rightarrow{ }_{n r}^{*} C_{4}$ is this derivation. Then $C_{2}=\left(y_{1} Z_{1}, y_{2} Z_{2}, \ldots, y_{r} Z_{r}\right)$, $C_{4}=\left(y_{1} u_{1} Z_{1}, y_{2} u_{2} Z_{2}, \ldots, y_{r} u_{r} Z_{r}\right), u_{1} \in\{\alpha\}^{*}, \alpha \in\{a, b\}$. Clearly, $\left|u_{1}\right| \geq k m+1$. Replacing in D the subderivation $C_{2} \Rightarrow{ }_{n r}^{*} C_{4}$ by the subderivation obtained by repeating $C_{2} \Rightarrow{ }_{n r}^{*} C_{4}$ for q times, $q \geq 2$, we obtain a terminal derivation $D^{\prime \prime}$, which generates a word $w^{\prime} \in L$ having the first $i-1$ blocks identical with those in w. The i-th block of w^{\prime} has in addition to the i-th block of $w(q-1)\left|u_{1}\right|$ occurrences of α generated by P_{1} and at most $(q-1) k m$ occurrences of symbols introduced by the communication steps (that follow after the iteration of the subderivation $C_{2} \Rightarrow{ }_{n r}^{*} C_{4}$).

Since $(q-1)\left|u_{1}\right| \geq(q-1)(k m+1)>(q-1) k m$, it follows that the number of occurrences of a in the i-th block of w^{\prime} is not equal to the number of occurrences of b in that block. This contradicts the relation $w^{\prime} \in L$, hence concludes the proof of Assertion 1.

Assertion 2: There is a natural number $k_{1} \geq 1$ such that

$$
k \leq k_{1}(r m+1)
$$

for each triple (w, D, i) as above.
Proof of Assertion 2: Assume that this is not true, hence there is a triple (w, D, i) for which

$$
k>5\left(q_{1}^{r}+1\right)(r m+1)
$$

Consider the subderivation D_{i} of D

$$
D_{i}:\left(w_{1} A_{1}, w_{2} A_{2}, \ldots, w_{r}, A_{r}\right) \Rightarrow_{n r}^{*}\left(w_{1} u a^{n_{i}} b^{n_{i}} u^{\prime} B_{1}, w_{2}^{\prime} B_{2}, \ldots, w_{r}^{\prime} B_{r}\right)
$$

We do not take into account the first and the last communication steps (when strings from $b^{+} a^{+}(N \cup\{\lambda\})$ can be communicated) and one step when a string from $a^{+} b^{+} N$ can be communicated. Then $k-3$ communication steps remain, when strings in $\{a, b\}^{+} N$ are communicated. It is clear that there is $\alpha \in\{a, b\}$ such that the number k^{\prime}, of communication steps when strings in $\alpha^{+} N$ are transmitted, is at least $\frac{k-3}{2}$. Consequently,

$$
k^{\prime} \geq \frac{2\left(q_{1}^{r}+1\right)(r m+1)}{2}+\frac{3\left(q_{1}^{r}+1\right)(r m+1)}{2} \geq\left(q_{1}^{r}+1\right)(r m+1)
$$

These communications are consecutive (all possible intermediate communications are transmitting only nonterminal symbols). Denote by D^{\prime} the subderivation of D_{i} which starts with the first and finishes with the last of these communication steps. Since D^{\prime} has at least $\left(q_{1}^{r}+1\right)(r m+1)$ communication steps when strings from $\alpha^{+} N$ are transmitted and, because between two communications at least one rewriting step is performed, it follows that there is a subderivation D_{1}^{\prime} of D^{\prime} with $q_{1}^{r}+1$ communications; moreover

$$
D_{1}^{\prime}:\left(z_{1} X_{1}, \ldots, z_{r} X_{r}\right) \Rightarrow_{n r}^{*}\left(z_{1} x_{1} Y_{1}, z_{2}^{\prime} Y_{2}, \ldots, z_{r}^{\prime} Y_{r}\right)
$$

$z_{1} \in\{a, b\}^{*}, x_{1} \in \alpha^{*}, X_{1}, Y_{1} \in N \cup K, z_{j}, z_{j}^{\prime} \in\{a, b\}^{*}, X_{j}, Y_{j} \in N \cup$ $\{\lambda\}, 2 \leq j \leq r$, and for the components $P_{j}, 2 \leq j \leq r$, which communicate strings to P_{1} in D^{\prime} we have $z_{j}^{\prime}=z_{j}$. Indeed, the number of derivations when in at least one component P_{j} which communicates to P_{1} in D^{\prime}, at least one terminal symbol is produced, is less than or equal to $(r-1) m$, because m is the maximal number of terminal symbols that can appear in such a component P_{j} in D^{\prime} and $\left(q_{1}^{r}+1\right)(r m+1) \geq\left(q_{1}^{r}+1\right)(r-1) m$.

The derivation D_{1}^{\prime} has $q_{1}^{r}+1$ communication steps, hence there are two configurations C_{1} and C_{2} which have the same nonterminals in the corresponding components and the derivation $C_{1} \Rightarrow{ }_{n r}^{*} C_{2}$ contains at least one communication step of those mentioned above. Then $C_{1}=$ $\left(y_{1} Z_{1}, y_{2} Z_{2}, \ldots, y_{r} Z_{r}\right), C_{2}=\left(y_{1} u_{1} Z_{1}, y_{2}^{\prime} Z_{2}, \ldots, y_{r}^{\prime} Z_{r}\right)$, for some $y_{1} \in$ $\{a, b\} *, u_{1} \in \alpha^{*}, Z_{1} \in N \cup K, Z_{j} \in N \cup\{\lambda\}, y_{j}, y_{j}^{\prime} \in\{a, b\}^{*}, 2 \leq j \leq r$, and for each $j, 2 \leq j \leq r$, such that there is a communication from P_{j} to P_{1} in D^{\prime}, we have $y_{j}^{\prime}=y_{j}$. It follows that $\left|u_{1}\right|>0$ because at the communication step in D^{\prime} some terminal symbols have been introduced in P_{1}. If we replace in D the subderivation $C_{1} \Rightarrow{ }_{n r}^{*} C_{2}$ by the derivation obtained by iterating it q times, $q \geq 2$, then we obtain a terminal derivation $D^{\prime \prime}$, generating a string w^{\prime}. This string must be in L and has the first $i-1$ blocks identical with those of w. In the i-th block, w^{\prime} has in addition to w the substring u_{1}^{q-1} (due to the form of C_{1} and C_{2}, the substring communicated in D_{i} are not modified after iterating $C_{1} \Rightarrow{ }_{n r}^{*} C_{2}$). As u_{1}^{q-1} is non-empty and contains occurrences of only one symbol, it follows that w^{\prime} does not have the same number of occurrences of a and b in the i-th block, a contradiction which completes the proof of Assertion 2.

Assertion 3: Let D be a terminal derivation in Γ in which a communication of a string $x a^{s} b^{n} a y A$ is performed, for some $x, y \in:\{a, b\}^{*}, A \in$ $N \cup\{\lambda\}, n \geq 1, s \geq 0$. Then

$$
s<q_{2}\left(q_{1}^{r}+3\right)
$$

where
$q_{2}=\max \left\{|u| \mid B \rightarrow u C \in P_{j}, u \in\{a, b\}^{*}, B \in N, C \in N \cup\{\lambda\}, 1 \leq j \leq n\right\}$.
Proof of Assertion 3: Assume that the assertion is not true, hence there is a terminal derivation D^{\prime} in Γ of the form

$$
\begin{aligned}
D^{\prime} & :\left(S_{1}, \ldots, S_{r}\right) \Rightarrow_{n r}^{*}\left(z Q_{j}, \ldots, x a^{s} b^{n} a y A, \ldots\right) \\
& \quad{ }_{n r}\left(z x a^{s} b^{n} a y A, \ldots, x a^{s} b^{n} a y A, \ldots\right) \Rightarrow_{n r}^{*}\left(w, \delta_{2}, \ldots, \delta_{r}\right)
\end{aligned}
$$

where $x, y, z \in\{a, b\}^{*}, A \in N \cup\{\lambda\}, \delta_{i} \in(N \cup\{a, b\})^{*}, 2 \leq i \leq r$, for some $j, 2 \leq j \leq r, n \geq 1$, and $s \geq q_{2}\left(q_{1}^{r}+3\right)$. Then in the derivation $S_{j} \Rightarrow{ }_{n r}^{*} x a^{s} b^{n} a y A$ in the component P_{j} at least $q_{1}^{r}+1$ rewriting steps using rules of the form $B \rightarrow u C, u \in a^{+}, B, C \in N$, were necessary for obtaining the string a^{s}. At least two configurations of D from the beginning
of these rewriting steps have the same nonterminals in the corresponding components. Assume that $C_{1}=\left(z_{1} X_{1}, z_{2} X_{2}, \ldots, x a^{t} X_{j}, \ldots, z_{r} X_{r}\right)$ and $C_{2}=\left(z_{1}^{\prime} X_{1}, z_{2}^{\prime} X_{2}, \ldots, x a^{t} a^{v} X_{j}, \ldots, z_{r}^{\prime} X_{r}\right)$, are such configurations, z_{i}, $z_{i}^{\prime} \in\{a, b\}^{*}, 1 \leq i \leq r, i \neq j, X_{i} \in N \cup\{\lambda\}, 1 \leq i \leq r, X_{1}, X_{j} \neq \lambda$, $t \geq 0, v \geq 1$. We replace in D^{\prime} the subderivation $C_{1} \Rightarrow{ }_{n r}^{*} C_{2}$ by an iteration of it for q times. In this way a terminal derivation D_{q}^{\prime} is obtained,

$$
\begin{aligned}
D^{\prime} & :\left(S_{1}, \ldots, S_{r}\right) \Rightarrow_{n r}^{*}\left(z^{\prime} Q_{j}, \ldots, x a^{s+q v} b^{n} a y A, \ldots\right) \\
& \Rightarrow{ }_{n r}\left(z^{\prime} x a^{s+q v} b^{n} a y A, \ldots, x a^{s+q v} b^{n} a y A, \ldots\right) \Rightarrow_{n r}^{*}\left(w_{q}^{\prime}, \delta_{2}^{\prime}, \ldots, \delta_{r}^{\prime}\right),
\end{aligned}
$$

where $z^{\prime}, w_{q}^{\prime} \in\{a, b\}^{*}, \delta_{i}^{\prime} \in(N \cup\{a, b\})^{*}, 2 \leq i \leq r$. Consequently, $w_{q}^{\prime} \in L, q \geq 1$. For $q=n, w_{n}^{\prime}$ contains the subword $a^{s+n c} b^{n} a$, which is not in L, a contradiction completing the proof of Assertion 3.

Let now w be an arbitrary word in $L, w=a^{n_{1}} b^{n_{1}} \ldots a^{n_{t}} b^{n_{t}} a, t \geq 1, D$ a derivation of w and D_{i} a subderivation which produces the i-th block of w, for some $i, 1 \leq i \leq t$. According to Assertions 1 and 2, we have

$$
\begin{gather*}
p \leq k_{0}(k+1)(k m+1), \tag{1}\\
k \leq k_{1}(r m+1) \tag{2}
\end{gather*}
$$

where p, k, m are the numbers associated to the triple (w, D, i) and k_{0}, k_{1} are constants.

The length of the i-th block of w is $2 n_{i} ; p$ of the symbols appearing in this block are introduced by P_{1} during the subderivation D_{i}, and the other symbols by the communication steps when strings $x X, x \in\{a, b\}^{+}, X \in$ $N \cup\{\lambda\}$, are transmitted. As the number of symbols in x which contribute to $a^{n_{i}} b^{n_{i}}$ is at most m, it follows that

$$
2 n_{i} \leq p+k m
$$

Using relations (1) and (2), we obtain

$$
\begin{aligned}
2 n_{i} & \leq k_{0}(k+1)(k m+1)+k m \leq k_{0}(k+2)(k m+1) \leq \\
& \leq k_{0}\left(k_{1}(r m+1)+2\right)\left(k_{1}(r m+1) m+1\right) \leq \\
& \leq k_{0}\left(k_{1}(r m+1)+2\right)\left(k_{1}(r m+1)^{2}+1\right) \leq \\
& \leq k_{0}\left(k_{1}(r m+1)+2\right)^{3}=k_{0}\left(k_{1} r m+k_{1}+2\right)^{3} .
\end{aligned}
$$

Consequently, $2 n_{i} \leq k_{0}\left(k_{1} r m+k_{1}+2\right)^{3}$. It follows that

$$
\begin{equation*}
k_{1} r m+k_{1}+2 \geq \sqrt[3]{\frac{2 n_{i}}{k_{0}}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
m \geq \frac{\sqrt[3]{\frac{2 n_{i}}{k_{0}}}-k_{1}-2}{k_{1} r} \tag{4}
\end{equation*}
$$

Consider the mapping $f: \mathbf{N} \rightarrow \mathbf{R}$ defined by

$$
f(n)=\frac{\sqrt[3]{\frac{2 n}{k_{0}}}-k_{1}-2}{k_{1} r}
$$

This is an increasing mapping and $\lim _{n \rightarrow \infty} f(n)=\infty$. Denote by n_{0} the smallest natural number such that $f\left(n_{0}\right) \geq 1$.

From (4) we have $m \geq f\left(n_{i}\right)$ and $f\left(n_{i}\right)$ does not depend on w or on D_{i}, but only on the length of the i-th block of w. Consequently, for any word $w \in L$ and any derivation D of a derivation producing it, for obtaining a block $a^{n} b^{n}$ of $w, n \geq n_{0}$, at least one communication step is performed, when a string of the form $x X, x \in\{a, b\}^{*}, X \in N \cup\{\lambda\}$, is transmitted, such that the number of symbols appearing in x which contribute to $a^{n} b^{n}$ is at least equal to $f(n)$. Note that $f(n)<2 n$.

Denote $k_{2}=q_{2}\left(q_{1}^{r}+3\right)$. As $\lim _{n \rightarrow \infty} f(n)=\infty$, there are natural numbers $n_{1}, n_{2}, \ldots, n_{2 r-1}$ such that $n_{1} \geq \max \left(k_{2}, n_{0}\right)$ and for each i, $1 \leq i \leq 2 r-2, f\left(n_{i+1}\right)>2 n_{i}$. Since $f(n)<2 n$, for all natural numbers n, it follows that $n_{2 r-1}>n_{2 r-2}>\ldots>n_{1}$, hence $n_{i} \geq k_{2}, 1 \leq i \leq 2 r-1$. Let $w=a^{n_{2 r-1}} b^{n_{2 r-1}} \ldots a^{n_{1}} b^{n_{1}} a$ in L, and let D be a derivation of w. For each $i, 1 \leq i \leq 2 r-1$, there is a component $P_{j_{i}}, 2 \leq j_{i} \leq r$, which communicates to P_{1} a string of the form $z_{i}=x_{i} a^{m_{i}^{\prime}} b^{m_{i}-m_{i}^{\prime}} y_{i} X_{i}$ with $x_{i}, y_{i} \in\{a, b\}^{*}, X_{i} \in N \cup\{\lambda\}, m_{i}^{\prime} \geq 0, m_{i} \geq f\left(n_{i}\right)$, and $a^{m_{i}^{\prime}} b^{m_{i}-m_{i}^{\prime}}$ contributes to the i-th block. Denote by p_{i} this communication step, $1 \leq i \leq 2 r-1$. It follows that $2 n_{i} \geq m_{i}>2 n_{i-1}, 2 \leq i \leq 2 r-1$.

Assume that $j_{i}=j_{s}$ for some $i, s, 3 \leq i \leq 2 r-1,1 \leq s \leq i-2$. If $p_{i}=p_{s}$, then at this communication step also the $(i-1)$-th block is introduced in the string of P_{1}, hence $z_{j_{i}}=x b a^{n_{i-1}} b^{n_{i-1}} a y X_{j_{i}}, x, y \in\{a, b\}^{*}$. But $n_{i-1} \geq k_{2}$ and according to Assertion 3, a string like $z_{j_{i}}$ cannot be communicated, a contradiction. It follows that $p_{i} \neq p_{s}$. Because the step p_{s} is performed after p_{i} (and the system is non-returning), the string $x_{i} a^{m_{i}^{\prime}} b^{m_{i}-m_{i}^{\prime}} y_{i}$ is a subword of $z_{j_{s}}$. Hence, when $z_{j_{s}}$ is communicated, also the string $a^{m_{i}^{\prime}} b^{m_{i}-m_{i}^{\prime}}$ is introduced, but this is not a subword of any block $s, \ldots, i-1$, because $m_{i} \geq 2 n_{i-1}>\ldots>2 n_{s}$. Consequently, the communication step p_{s} contributes both to the s-th and to the i-th blocks of w and we obtain the same conclusion as in the previous case.

In conclusion, $j_{i} \neq j_{s}, 3 \leq i \leq 2 r-1,1 \leq s \leq i-2$. It follows that $j_{2 r-1}, j_{2 r-3}, \ldots, j_{1}$ are r different numbers. On the other hand, all
of them are in the set $\{2, \ldots, r\}$, which contains only $r-1$ elements. Contradiction.

4. REGULAR VERSUS RIGHT-LINEAR RULES

In many papers (this is true, for instance, for [2]), for "regular" PC grammar systems one works with right-linear rules, but the proofs are given (when possible) for the stronger variant: using strictly regular rules in examples and right-regular rules in proofs which can work in a general set-up. However, up to now no comparison of the two types of systems is made. We will show that such a comparison is necessary, there are cases when the right-linear rules are strictly more powerful than the regular ones, a situation which is quite unfrequent in formal language theory.

Theorem 3: $C P C(R E G) \subset C P C(R L)$.
Proof: The inclusion is trivial, we have to prove only its strictness. To this aim, we consider the language

$$
L=\left\{a^{m} w d^{m} \mid m \geq 1, w \in\left\{b^{2}, c^{3}\right\}^{*}, \frac{|w|_{b}}{2}+\frac{|w|_{c}}{3}=m\right\}
$$

Consider the centralized PC grammar system

$$
\Gamma=\left(\left\{S_{1}, S_{2}, S_{3}, A, B, C, D\right\}, K,\{a, b, c, d\},\left(P_{1}, S_{1}\right),\left(P_{2}, S_{2}\right),\left(P_{3}, S_{3}\right)\right)
$$ with

$$
\begin{aligned}
& P_{1}=\left\{S_{1} \rightarrow a A, S_{1} \rightarrow a Q_{2}, A \rightarrow a A, A \rightarrow a Q_{2}, B \rightarrow Q_{3}, D \rightarrow d\right\} \\
& P_{2}=\left\{S_{2} \rightarrow b^{2} B, S_{2} \rightarrow c^{3} B, B \rightarrow b^{2} B, B \rightarrow c^{3} B\right\} \\
& P_{3}=\left\{S_{3} \rightarrow C, C \rightarrow D, D \rightarrow d D\right\}
\end{aligned}
$$

Each returning derivation in Γ is of one of the following forms:

$$
\begin{align*}
& \left(S_{1}, S_{2}, S_{3}\right) \Rightarrow_{r}^{*}\left(a^{m} Q_{2}, w B, d^{m-2} D\right) \Rightarrow_{r}^{*}\left(a^{m} w B, S_{2}, d^{m-2} D\right) \tag{1}\\
& \quad \Rightarrow_{r}\left(a^{m} w Q_{3}, x B, d^{m-1} D\right) \Rightarrow_{r}\left(a^{m} w d^{m-1} D, x B, S_{3}\right) \\
& \quad \Rightarrow_{r}\left(a^{m} w d^{m}, x x^{\prime} B, C\right)
\end{align*}
$$

where $m \geq 2, w \in\left\{b^{2}, c^{3}\right\}^{+}, \frac{|w|_{b}}{2}+\frac{|w|_{c}}{3}=m$, and $x, x^{\prime} \in\left\{b^{2}, c^{3}\right\}$,

$$
\begin{align*}
& \left(S_{1}, S_{2}, S_{3}\right) \Rightarrow_{r}^{*}\left(a Q_{2}, w B, C\right) \Rightarrow_{r}\left(a w B, S_{2}, C\right) \tag{2}\\
& \quad \Rightarrow_{r}\left(a w Q_{3}, x B, D\right) \Rightarrow_{r}\left(a w D, x B, S_{3}\right) \Rightarrow_{r}\left(a w d, x x^{\prime} B, C\right)
\end{align*}
$$

where $w, x, x^{\prime} \in\left\{b^{2}, c^{3}\right\}$.

Consequently, $L_{r}(\Gamma)=L$, hence $L \in C P C(R L)$.
Let us now assume that $L=L_{r}(\Gamma)$ for some centralized PC grammar system with regular components, $\Gamma=\left(N, K, T,\left(P_{1}, S_{1}\right), \ldots,\left(P_{n}, S_{n}\right)\right)$, $T=\{a, b, c, d\}$.

Assertion 1: There is a natural number k such that for any derivation $\left(S_{1}, \ldots, S_{n}\right) \Rightarrow_{r}^{*}\left(a^{m} w d^{m}, \alpha_{2}, \ldots, \alpha_{n}\right)$ in Γ, where $m \geq 1, w \in\left\{b^{2}, c^{3}\right\}^{+}$, the number of the communication steps which contribute to w (hence the steps when strings of the form $x X, x \in a^{*}\{b, c\}^{+} d^{*}, X \in N$, are communicated) is less than or equal to k.
Proof of Assertion 1: Assume that there is no natural numbers k satisfying the required condition. Then there is a derivation $D:\left(S_{1}, \ldots, S_{n}\right) \Rightarrow_{r}^{*}$ $\left(a^{m} w d^{m}, \alpha_{2}, \ldots, \alpha_{n}\right), w \in\left\{b^{2}, c^{3}\right\}^{+}$, for which the number of the communication steps that participate to obtaining the substring w is at least $(p+1)^{n}+2$, where $p=\operatorname{card}(N \cup K)$. Let C_{1} be the configuration obtained after the first such communication step and C_{2} that obtained before the last such communication step. Then the string in the first component, both in C_{1} and in C_{2}, is of the form $a^{m} x A, A \in N \cup K, x \in\{b, c\}^{+}$, and the strings communicated during the subderivation $C_{1} \Rightarrow_{r}^{*} C_{2}$ are of the form $y X, y \in\{b, c\}^{+}, X \in N$. Also, the subderivation $C_{1} \Rightarrow_{r}^{*} C_{2}$ contains at least $(p+1)^{n}$ steps (communication or rewriting steps), hence it has at least $(p+1)^{n}+1$ configurations. As the maximal number of different n-tuples of the form $\left(A_{1}, \ldots, A_{n}\right), A_{i} \in N \cup K \cup\{\lambda\}, 1 \leq i \leq n$, is $(p+1)^{n}$, it follows that there are two configurations $C_{3}=\left(x_{1} A_{1}, \ldots, x_{n} A_{n}\right)$ and $C_{4}=\left(y_{1} A_{1}, \ldots, y_{n} A_{n}\right)$, such that $C_{1} \Rightarrow{ }_{r}^{*} C_{3} \Rightarrow{ }_{r}^{*} C_{4} \Rightarrow{ }_{r}^{*} C_{2}$. Since the grammar system is centralized and has regular productions, it follows that $y_{1}=x_{1} z_{1}, z_{1} \neq \lambda$. From the definition of C_{1} and C_{2}, we obtain $z_{1} \in\{b, c\}^{+}$.

The derivation steps between C_{3} and C_{4} can be repeated s times, for any natural number s. At each iteration a symbol b or c is introduced in the first component. If, after these s iterations of the subderivation $C_{3} \Rightarrow{ }_{r}^{*} C_{4}$, the derivation is continued using the same steps as in $C_{4} \Rightarrow{ }_{r}^{*} C_{2} \Rightarrow{ }_{r}^{*}\left(a^{m} w d^{m}, \alpha_{2}, \ldots, \alpha_{n}\right)$, then we obtain a derivation of a terminal word of the form $a^{m} w^{\prime} u, u \in T^{*}, w^{\prime} \in\{b, c\}^{+},\left|w^{\prime}\right| \geq s$. Take $s=4 m$. Then $\left|w^{\prime}\right| \geq 4 m$ and

$$
\frac{\left|w^{\prime}\right|_{b}}{2}+\frac{\left|w^{\prime}\right|_{c}}{3} \geq \frac{\left|w^{\prime}\right|_{b}}{3}+\frac{\left|w^{\prime}\right|_{c}}{3}=\frac{\left|w^{\prime}\right|}{3} \geq \frac{4}{3} m>m .
$$

Hence $a^{m} w^{\prime} u \notin L$, a contradiction finishing the proof of Assertion 1 .

For $s \geq 1,2 \leq i \leq n, X, Y \in N$, we denote
$A(s, i, X, Y)=\left\{t \geq 0 \mid\right.$ there is $y \in\left\{b^{2}, c^{3}\right\}^{+},|y|=s,|y|_{b}=t$, and there is a derivation $X \Rightarrow{ }_{r}^{*} y Y$ in P_{i} which will contribute to the generation of a string which will be communicated to P_{1} during a terminal derivation $\}$,
and for $s \geq 1, X \in N, Y \in N \cup K$, we denote

$$
\begin{aligned}
A(s, 1, X, Y)= & \left\{t \geq 0 \mid \text { there is } y \in\left\{b^{2}, c^{3}\right\}^{+},|y|=s,|y|_{b}=t,\right. \text { and } \\
& \text { there is a derivation } X \Rightarrow_{r}^{*} y Y \text { in } P_{1} \text { which is used } \\
& \text { in a terminal derivation in } \Gamma\} .
\end{aligned}
$$

Assertion 2: $\operatorname{card}(A(s, i, X, Y)) \leq 1,1 \leq i \leq n, X \in N, Y \in N \cup K$, $s \geq 1$.

Proof of Assertion 2: We consider first the case $i=1$. Assume that there is $s_{0} \geq 1$ and $X, Y \in N$ such that $\operatorname{card}\left(A\left(s_{0}, 1, X, Y\right)\right) \geq 2$. Then there is a derivation

$$
D:\left(S_{1}, \ldots\right) \Rightarrow_{r}^{*}(x X, \ldots) \Rightarrow_{r}^{*}(x y Y, \ldots) \Rightarrow^{*}(z, \ldots)
$$

where $z \in L, x \in T^{*}, y \in\left\{b^{2}, c^{3}\right\}^{+},|y|=s_{0}$ and between the configurations $(x X, \ldots)$ and $(x y Y, \ldots)$ there is no communication step and, moreover, there is $y^{\prime} \in\left\{b^{2}, c^{3}\right\}^{+}$such that $X \Rightarrow_{r}^{*} y^{\prime} Y$ in $G_{1},\left|y^{\prime}\right|=s_{0}$ and $\left|y^{\prime}\right|_{b} \neq|y|_{b}$.

Then in the derivation D we can replace the subderivation $(x X, \ldots) \Rightarrow_{r}^{*}$ $(x y Y, \ldots)$ by $(x X, \ldots) \Rightarrow_{r}^{*}\left(x y^{\prime} Y, \ldots\right)$ (only the rewriting steps from the first component are changed, the others remain the same). Thus we obtain a terminal derivation

$$
D^{\prime}:\left(S_{1}, \ldots\right) \Rightarrow_{r}^{*}(x X, \ldots) \Rightarrow_{r}^{*}\left(x y^{\prime} Y, \ldots\right) \Rightarrow_{r}^{*}\left(z^{\prime}, \ldots\right)
$$

where, if $z=x y u$, then $z^{\prime}=x y^{\prime} u, u \in T^{*}$. Since $z \in L_{r}(\Gamma)=L$ and $y \in\left\{b^{2}, c^{3}\right\}^{+}$, it follows that $z=a^{m} v_{1} y v_{2} d^{m}, v_{1}, v_{2} \in\left\{b^{2}, c^{3}\right\}^{+}$, hence $z^{\prime}=a^{m} v_{1} y^{\prime} v_{2} d^{m}$. From the definition of L, since $z, z^{\prime} \in L$, we obtain

$$
\frac{\left|v_{1} y v_{2}\right|_{b}}{2}+\frac{\left|v_{1} y v_{2}\right|_{c}}{3}=m=\frac{\left|v_{1} y^{\prime} v_{2}\right|_{b}}{2}+\frac{\left|v_{1} y^{\prime} v_{2}\right|_{c}}{3}
$$

hence,

$$
\frac{|y|_{b}}{2}+\frac{|y|_{c}}{3}=\frac{\left|y^{\prime}\right|_{b}}{2}+\frac{\left|y^{\prime}\right|_{c}}{3}
$$

We know that $|y|_{c}=|y|-|y|_{b}=s_{0}-|y|_{b}$ and $\left|y^{\prime}\right|_{c}=\left|y^{\prime}\right|-\left|y^{\prime}\right|_{b}=s_{0}-\left|y^{\prime}\right|_{b}$. Replacing the corresponding terms in the equality above, we obtain $|y|_{b}=\left|y^{\prime}\right|_{b}$, which contradicts our assumption. Hence Assertion 2 is proved for $i=1$.
Assume now that there are $i, 1 \leq i \leq n, s_{0} \geq 1$, and ${ }^{-} X, Y \in N$ such that $\operatorname{card}\left(A\left(s_{0}, i, X, Y\right)\right) \geq 2$. Then there is a derivation in Γ

$$
\begin{aligned}
& D:\left(S_{1}, \ldots, S_{i}, \ldots\right) \Rightarrow_{r}^{*}\left(x_{1} B, \ldots, y_{1} X, \ldots\right) \Rightarrow_{r}^{*}\left(x_{1} x_{2} C, \ldots, y_{1} y Y, \ldots\right) \\
& \Rightarrow{ }_{r}^{*}\left(x_{1} x_{2} x_{3} Q_{i}, \ldots, y_{1} y y_{2} Z, \ldots\right) \Rightarrow_{r}^{*}\left(x_{1} x_{2} x_{3} y_{1} y y_{2} Z, \ldots, S_{i}\right) \Rightarrow_{r}^{*}(z, \ldots),
\end{aligned}
$$

where $z \in L, x_{1}, x_{2}, x_{3}, y_{1}, y_{2} \in T^{*}, y \in\left\{b^{2}, c^{3}\right\}^{+},|y|=s_{0}$, $B \in N \cup K, C, Z \in N$, and between the configurations ($x_{1} B, \ldots, y_{1} X, \ldots$) and $\left(x_{1} x_{2} x_{3} Q_{i}, \ldots, y_{1} y y_{2} Z, \ldots\right)$ there is no communication step, and, moreover, there is $y^{\prime} \in\left\{b^{2}, c^{3}\right\}^{+}$such that $X \Rightarrow{ }_{r}^{*} y^{\prime} Y$ in P_{i} and $\left|y^{\prime}\right|=s_{0},\left|y^{\prime}\right|_{b} \neq|y|_{b}$. Therefore, we can replace in D the subderivation $\left(x_{1} B, \ldots, y_{1} X, \ldots\right) \Rightarrow_{r}^{*}\left(x_{1} x_{2} C, \ldots, y_{1} y Y, \ldots\right)$ by $\left(x_{1} B, \ldots, y_{1} Y, \ldots\right) \Rightarrow_{r}^{*}$ $\left(x_{1} x_{2} C, \ldots, y_{1} y^{\prime} Y, \ldots\right)$ (the change is performed only in the component P_{i}). In this way we obtain a new derivation, which generates the terminal string $z^{\prime}=x_{1} x_{2} x_{3} y_{1} y^{\prime} y_{2} u$, where $u \in T^{*}, z=x_{1} x_{2} x_{3} y_{1} y y_{2} u$. Continuing as in the case $i=1$ we obtain a contradiction; this completes the proof of Assertion 2.

For every $s \geq 1$, denote

$$
A(s)=\bigcup_{i=1}^{n} \bigcup_{X, Y \in N} A(s, i, X, Y)
$$

and

$$
A^{\prime}(s)=\left\{t \geq 0 \mid \text { there is } y \in\left\{b^{2}, c^{3}\right\}^{+},|y|=s,|y|_{b}=t\right\} .
$$

Moreover, denote $k_{0}=n \cdot p^{2}$. According to Assertion 2, $\operatorname{card}(A(s)) \leq k_{0}$ for all $s \geq 1$. Let $s_{0}=6 k_{0}$. Then $\operatorname{card}\left(A^{\prime}\left(s_{0}\right)\right) \geq k_{0}+1$. Indeed, let $x_{j}=$ $b^{6 j} c^{6\left(k_{0}-j\right)}, 0 \leq j \leq k_{0}$. Then $x_{j} \in\left\{b^{2}, c^{3}\right\}^{+}$and $|x|_{j}=6 k_{0}, 0 \leq j \leq k_{0}$. Since $\operatorname{card}\left(A^{\prime}\left(s_{0}\right)\right)>\operatorname{card}(A(s))$, it follows that there is $t_{0} \in A^{\prime}\left(s_{0}\right)-A(s)$. Let $y \in\left\{b^{2}, c^{3}\right\}^{+}$such that $|y|=s_{0}$ and $|y|_{b}=t_{0}$. Denote $m=\frac{|y|_{b}}{2}+\frac{|y|_{c}}{3}$ (m is a natural number, because $y \in\left\{b^{2}, c^{3}\right\}^{+}$). Clearly

$$
2(k+1) m=\frac{\left|y^{2(k+1)}\right| b}{2}+\frac{\left|y^{2(k+1)}\right|_{c}}{3}
$$

and $y^{2(k+1)} \in\left\{b^{2}, c^{3}\right\}^{+}$, where k is the number in Assertion 1. Let $z=a^{2(k+1) m} y^{2(k+1)} d^{2(k+1) m}$. Obviously, $z \in L=L_{r}(\Gamma)$. According to Assertion 1, any derivation of z has at most k communication steps which contribute to the string $y^{2(k+1)}$. It follows that there is a substring y^{\prime} of $y^{2(k+1)},\left|y^{\prime}\right| \geq\left|y^{2}\right|$, such that either y^{\prime} is generated entirely using rules in P_{1}, or $y^{\prime} Y^{\prime}$ is generated in a component $P_{i}, 2 \leq i \leq n$, and then communicated to P_{1}, for $Y^{\prime} \in N$. As $\left|y^{\prime}\right| \geq\left|y^{2}\right|=2 s_{0}$ and y^{\prime} is a substring of $y^{2(k+1)}$, it follows that y is a subword of y^{\prime} and, according to the definition of the sets $A(s, i, X, Y), s \geq 1,1 \leq i \leq n, X \in N, Y \in N \cup K$, it follows that there are $X \in N, Y \in N \cup K$, such that y satisfies the condition in the definition of the set $A\left(s_{0}, i, X, Y\right)$. Consequently, $|y|_{b} \in A\left(s_{0}\right)$; however $|y|_{b}=t_{0} \notin A\left(s_{0}\right)$, a contradiction.

We dot not know whether the previous result is true also for non-centralized systems. Somehow surprisingly, the following counterpart of it is true, proving that in right-linear systems the chain rules are important, not the rules $A \rightarrow x, A \rightarrow x B, A \rightarrow x Q_{i}$ with $|x| \geq 2$.

Theorem 4: For every PC grammar system Γ with right-linear rules, centralized or not, there is a PC grammar system Γ^{\prime}, of the same type as Γ as concerns centralization, with rules of the forms $A \rightarrow c B, A \rightarrow B, A \rightarrow c$, with A nonterminal, B nonterminal or query symbol, and c terminal, such that $L_{f}(\Gamma)-\{\lambda\}=L_{f}\left(\Gamma^{\prime}\right), f \in\{r, n r\}$.

Proof: Take $\Gamma=\left(N, K, T,\left(P_{1}, S_{1}\right), \ldots,\left(P_{n}, S_{n}\right)\right)$. Denote

$$
q=\max \left\{|x| \mid A \rightarrow x \in P_{i}, 1 \leq i \leq n, A \in N, x \in T^{*}(N \cup K \cup\{\lambda\})\right\}
$$

If $q \leq 1$, then Γ is already of the desired form. Assume that $q \geq 2$. We construct the system

$$
\Gamma^{\prime}=\left(N^{\prime}, K, T,\left(P_{1}^{\prime}, S_{1}\right), \ldots,\left(P_{n}^{\prime}, S_{n}\right)\right)
$$

with

$$
\begin{aligned}
N^{\prime}= & N \cup\left\{[r, j] \mid r: A \rightarrow \alpha_{1} \ldots \alpha_{s} \in P_{i}, A \in N\right. \\
& \left.\alpha_{t} \in T, 1 \leq t \leq s-1, \alpha_{s} \in N \cup K \cup T, s \geq 1,1 \leq j \leq q\right\}, \\
P_{i}^{\prime}= & \{A \rightarrow[r, 1],[r, 1] \rightarrow[r, 2], \ldots,[r, q-s] \rightarrow[r, q-s+1] \\
& {[r, q-s+1] \rightarrow \alpha_{1}[r, q-s+2],[r, q-s+2] \rightarrow \alpha_{2}[r, q-s+3], } \\
& \ldots,[r, q-1] \rightarrow \alpha_{s-1}[r, q],[r, q] \rightarrow \alpha_{s} \mid r: A \rightarrow \alpha_{1} \ldots \alpha_{s} \in P \\
& \left.A \in N, \alpha_{t} \in T, 1 \leq t \leq s-1, \alpha_{s} \in N \cup K \cup T, s \geq 1\right\},
\end{aligned}
$$

for each $i, 1 \leq i \leq n$.
The equality $L_{f}(\Gamma)-\{\lambda\}=L_{f}\left(\Gamma^{\prime}\right)$ is obvious, for each $f \in\{r, n r\}$: each rule $r: A \rightarrow \alpha_{1} \ldots \alpha_{s}$ of Γ is simulated in Γ^{\prime} by exactly $q+1$ rules, starting with $A \rightarrow[r, 1]$, and ending with $[r, q] \rightarrow \alpha_{s}$. Starting from a configuration of Γ (initially we have $\left(S_{1}, \ldots, S_{n}\right)$), Γ^{\prime} produces in this way another configuration of Γ. The query symbols can be introduced only by rules $[q, r] \rightarrow \alpha_{s}$, hence the communication steps are performed as in Γ, without involving symbols $[r, j]$. The type of derivation - returning or non-returning - plays no role in this argument. Clearly, Γ^{\prime} is centralized when Γ is centralized, which completes the proof.

The previous theorem corresponds to the obvious fact that each right-linear grammar is equivalent (modulo λ) with a grammar having rules of the forms $A \rightarrow c B, A \rightarrow B, A \rightarrow c$. In the case of context-free derivations in a Chomsky grammar, also the rules of the form $A \rightarrow B$ can be eliminated. In the case of PC grammar systems the difference is due to the synchronization of rewriting steps.

Note that the previous construction does not work for PC grammar system with context-free components, because of multiple queries: it is necessary that in each rule $A \rightarrow x$ with $|x| \geq 2$ we have $x=x^{\prime} \alpha$ with $x^{\prime} \in(N \cup T)^{*}$.

REFERENCES

1. L. CaI, The computational complexity of PCGS with regular components, Proc. of Developments in Language Theory Conf., Magdeburg, 1995.
2. E. Csuhaj-Varuu, J. Dassow, J. Kelemen and Gh. Păun, Grammar Systems. A Grammatical Approach to Distribution and Cooperation, Gordon and Breach, London, 1994.
3. J. Dassow and Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer, Berlin, Heidelberg, 1989.
4. J. Dassow, Gh. Păun and G. Rozenberg, Generating languages in a distributed way: Grammar systems, in Handbook of Formal Languages (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin, Heidelberg, 1997.
5. S. Dumitrescu, Non-returning PC grammar systems can be simulated by returning systems, Theoretical Computer Sci., 1996, 165, pp. 463-474.
6. S. Dumitrescu, Gh. Päun and A. Salomaa, Pattern languages versus parallel communicating grammar systems, Intern. J. Found. Computer Sci., to appear.
7. S. Ginsburg, The Mathematical Theory of Context-free Languages, McGraw Hill Book Comp., New York, 1996.
8. D. Hauschild and M. Jantzen, Petri nets algorithms in the theory of matrix grammars, Acta Informatica, 1994, 31, pp. 719-728.
9. V. Mihalache, Matrix grammars versus parallel communicating grammar systems, in vol. Mathematical Aspects of Natural and Formal Languages (Gh. Păun, ed.), World Sci. Publ., Singapore, 1994, pp. 293-318.
10. V. Mihalache, On the generative capacity of parallel communicating grammar systems with regular components, Computers and AI, 1996, 15, pp. 155-172.
11. Gh. Păun and L. Sântean, Parallel communicating grammar systems: the regular case, Ann. Univ. Buc., Series Matem.-Inform., 1989, 38, pp. 55-63.
12. A. Salomat, Formal Languages, Academic Press, New York, 1973.

[^0]: (*) Received November 1995, Accepted May 1997.
 ${ }^{1}$) Research supported by the Academy of Finland, project 11281.
 Institute of Mathematics of the Romanian Academy, PO Box 1-764, 70700 Bucureşti, Romania, E-mail: gpaun@imar.ro

[^1]: Informatique théorique et Applications/Theoretical Informatics and Applications

