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A SELECTION PROPERTY OF THE BOOLEAN /i-CALCULUS
AND SOME OF ITS APPLICATIONS (*)

by André ARNOLD (*)

Abstract. - We prove thaï every closed Boolean \i-term r has the same value as a (i-term r'
obtained by replacing any sum by one of ils summand.

1. INTRODUCTION

The //-ealculus, that is concernée with monotonie mappings between
complete lattices, plays a central rôle in the study of the relations between
logies and automata (see, for instance, [4] and [2]).

Depending on the complete lattices under considération and the basic
monotonie mappings that are used, one can define a lot of different \i-
calculi. The most fundamental one, the Boolean //,-calculus, is based on the
lattices B7, equipped with pointwise Boolean sum and product.

Although this calculus has been used for studying model-checking
algorithms [3, 7, 1], it has not been studied "per se".

Indeed, it has a fundamental property, that we name "sélection property"
that has several interesting conséquences. At the end of the paper, we
mention three of these conséquences:

• the fact that a McNaughton game with a chain (or parity) condition on
any graph has a memoryless winning strategy [5, 8, 9],

• the fact that any satisfiable formula of the modal ju-calculus has a
bounded-branching model [6],

• the Rabin's regularity theorem for parity automata.

(*) Received February 1997, acceptée June 1997.
C1) La BRI, Université Bordeaux-I, Unité de Recherche Associée au CNRS, URA 1304.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/97/04/© AFCET-Elsevier, Paris



3 7 2 A. ARNOLD

This property is an extension of the quite trivial property of the Boolean
sum in B: if (bi)iej is any family of Boolean values, then there exists
j in / such that Yli^i ^ — bj. Now, let us consider ƒ : B —> B be
defined as f (x) — J2i£i fî(x)- Then there still exists j E I such that
jjix . ƒ (x) = \xx . fi (x). This is because JJLX . ƒ (x) = ƒ (0) and we apply the
sélection property to ƒ (0) = X^e/ f* (0)- Inductively, we can also prove
that there exists j G I such that

fz(x, y, z , . . . ) = px .vy .iJ.z...fj (x, y, z,...).

What is far less trivial is that the same holds for vectorial fixed points.
When there is one fixed point operator, say the least one, the sélection
property in the vectorial case reads as follows. Let / be a set of indices, let
x be a family of variables indexed by / , and let f (x) be a family, indexed
by / , of monotonie mappings from B7 to B. For any % in I, let Ji be another
set of indices and assume that f% (x), the component of f of index i, is
equal to J2jsJi A i (x)- Then for each i there exists an index jl in Ji such
that ^ x . f (x) = / ix . f' (x) where f (x) is the vector whose component of
index i is / ï ; ?\ (x). In other words, for each component f% of f, we can
select only one summand fij, and still have the same least fixed point.

It should be noted that this sélection property can be easily obtained as a
straightforward conséquence of the determinacy property for games with a
parity condition, mentioned above. However, it might be of some interest to
have a purely Boolean algebraic proof of it.

2. THE BOOLEAN -̂CALCULUS

Let B be the classical Boole algebra with two éléments, 0 and 1.

For any set I of indices, of arbitrary cardinality B J , is a complete lattice.
We dénote respectively by 0 and 1 the minimum and the maximum of
this complete lattice, Le., the vectors, indexed by / , whose all components
are 0 or 1.

By Knaster-Tarski Theorem, any monotonie mapping f : B1 —» B7 has
a least fixed point, denoted by f7', and a greatest fixed point, denoted by
f", both éléments of B7.

It is well known that these fixed points can be characterized as follows:

1. F* = n { b E B7 |f(b) < b}, F - £ { b G B7|b < f ( b ) } .
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THE BOOLEAN ^-CALCULUS AND SOME OF ITS APPLICATIONS 373

2. Let (a.a)a and ( b a ) a be the séquences of éléments of BJ, indexed by
ordinal numbers, defined by

a0 = 0, b0 = 1,

aQ+i = f (aft), b a + i = f (b a) , fora + 1 a successor ordinal,

a.p = 2_] a«? b/3 = ] [ bQ , for j3 a limit ordinal.
a<(3 a<j3

Then there is an ordinal 7 such that fA* = a 7 and P — b 7 .

More generally, for any set E, if f (x, y) is any mapping from B x E
into B J that is monotonie in its first argument, we dénote by / ix . f (x, y)
(resp. zvx. f (x, y)) the mapping from E into B7 defined by: for any e e E,
jitx.f (x, e) (resp. i /x . f (x, e)) is the least (resp. greatest) fixed point of
the mapping f (x, e) : B J —> B7 .

If, moreover, E is an ordered set, and if f (x, y) is monotonie in its
second argument too, then / /x . f (x, y) and i/x . f (x, y) are also monotonie
with respect to the argument y.

Therefore, if f (xi , . . . , x„ , y) : (B 7) n x E —• B7 is monotonie with
respect to any XÏ, öi x i . . .Ö n x n . f (xi , . . . , x n , y), where each Öj is /xor z/,
is a well-defined mapping from E into B J .

3. THE THEOREM

Let f (xi , . . . , xra) : (B J ) n —> B J be monotonie in all its arguments,
where I is a set of indices of arbitrary cardinality. For each i e l let
f% (xi , . . . , x n ) : (B J)U —• B be the component of f of index i.

We assume that for each index i e l there exists a set Ji of indices, also
of arbitrary cardinality, such that

xra) =

A selector is a mapping er that associâtes, with each i in / , an element
a (i) of Jx. Given a selector a, we define fa (xi,..., xn) : (B7)n —> B7 as
the mapping whose the i-th component is fl^(T(l) (xi,..., xn) : (B7)n —* B.

THEOREM 1 : Lef f be defined as above and let

a = öixi . . ,0 n x„.f (xi,..., xn) G B7.

exists a selector a such that a =~-#i xi...Ön xn . fcr (xi,..., xn) .

vol. 31, n° 4, 1997



3 7 4 A. ARNOLD

In order to keep notations simple enough, we first prove this theorem in
the case where each set J* has only two éléments (dyadic case). Then we
explain how to extend this proof in the gênerai case where each J% has
any cardinality.

3.1. The dyadic case

Let us assume that each component fi of f is written / ï ; i + fa^. Let y
and z be two families of variables, indexed by 7. We consider the mapping

whose the i-tb component is y%. fa i + z*. fa%. It is clear that

f (xi,..., xn) = g ( l , 1, xi,.. . , x„).

Moreover, with each selector a we associate the element ua of BJ whose
the i-th component is 0 if a(i) — 2, 1 if a (i) = 1. It follows that
fà (xi,..., xra) = g (%, ü a , xi , »., xn), where ï v is the complement of u a

in the Boolean algebra EB7.
Since the correspondence between a and ua is bijective, the theorem

can be stated:
There exists u G B1 such that

( 3 i x i . . A x n . g ( l , 1, X!,..., x n ) = ö ix i . . .Ö n x n .g (u , U, xi, . . . , xra).

To prove this theorem we need a définition.

DÉFINITION 1: We say that a monotonie mapping f (y, z, x) : B* x B1 x
(B7)m -» B7 has property S if Vu, u', v, v' E B7 such that u < v and
u' < v', Vei, e2 e (B7)m such that ei < e2, if u + u ; < f (u, u', ei) then
there exist w,. w7 G B7 such that

• u < w < v and u' < w7 < v7

• u . u7 = w . w',
• w + w7 = f (w, w7, B2) — f (v, v7, e2),

where u + u7 and u . u7 are the pointwise extensions to B7 of the sum and
product of B.

LEMMA 2: If f (y, z, x) is such that f% = yi. fa i (x) + z%. fa 2 (x), then
it has property 5.

Informatique théorique et Applications/Theoretical Informaties and Applications



THE BOOLEAN /j-CALCULUS AND SOME OF ITS APPLICATIONS 375

Proof: It is sufficient to show that ƒ (y, z, x) = y. gi (x) + 2: .52 (x.)
has property 5 in the following restricted sense: Vu, u7, v,.vf' E B such
that u < v and v! < v\ Vei , e2 E (B 7 ) m such that ei < e2 , if
u + ur < f (u, v!, e i ) then there exist w, vJ £ B such that

• u < w < v and uf < wf < vf,

• u.uf — w .vJ,

• w + w' = f (w, w\ e2) = ƒ (v, ^7, e 2) .

Let us remark that u + u7 < ƒ (u, u7, e i ) < ƒ (u, u7, e2) < ƒ (?;, ^7, e 2) .

If u + u7 = 1, we have 1 = ƒ (u, w7, e2) = f(vy v'\ e2) = u + u7

and we take w ~ u, w! — uf. If ƒ(?;, t / , e 2 ) = 0 then we have
0 — u + u7 = ƒ (ti, uf, e2) = ƒ (v, v1\ e2) = u + u7 and, again, we take
w = u, wf = uf.

It remains to consider the case u + v! = 0 (hence, u ~ uf —
u.uf — 0) and ƒ (v, ?/, e2) = 1. We cannot have v + v' — 0, because
/ (O, 0, e) = 0 for any e. If v .vf = 0 we can take w — v, w! — vf

since ƒ (v, v', e2) = v + v7 = 1. If v. t?7 = 1, {Le., v = f7 = 1), then
ƒ (v, v\ e2) = ƒ (1, 1, e2) - 5 1 (e2) + #2 (e2) - 1. Thus 9i (e2) - 1 for
some i G {1, 2} and we take w = 1, wr = 0 or w = 0, w! — 1 according
to the value of i. D

LEMMA 3: Let us assume that f (y, z, x, x7) : B J x B / x ( B / ) m + 1 —> B 7

property 5. T/ZOT ÖX . f (y, z, x, x7) : B 7 x B7 x (B 7 ) m -> B 7 has property S.

Proof: Let g (y, z, x7) = 0 x . f (y, z, x, x7). Let u, u7, v , v7 G B7 such
that u < v and u ' < v7, let e i , e2 e (B 7 ) m such that ei < e2 , and let
us assume that u + u7 < g ( u , u7, e i ) . We have to show that there exist
w, w7 G B7 such that

• u < w < v and u7 < w7 < v7,

• u . u7 — w . w7,

. w + w' = g (w, w7, e2) = g (v, v7, e 2) .

Let a = g (u, u7, e i ) and b = g (v, v7, e 2) . Obviously,

a ^ f (u, u ' , a, e i ) < b = f (v, v7, b , e 2 ) .

We have two different proofs according to 9 = \i or 0 — v.

Case 0 — /i. Let us consider the séquence b ^ of éléments of B7 , indexed

by ordinal numbers, and defined by bo = a, ba_|_i — f (v, v7, b a , e 2 ) ,

vol. 31, n° 4, 1997



3 7 6 A. ARNOLD

This séquence is increasing, since f is monotonie and

b 0 = a = f (u, u', a, ei) < f (v, v', b 0 , e2) = bi .

Moreover, it is easy to see that b = bT — b7+i for some ordinal 7.

Now, we construct, inductively, two increasing séquences w a and w^,
for 0 < a < 7 + 1, that satisfy

• Va < 7 + 1, u < w a < v, u' < w^ < v',
• Va < 7 + 1, u . u ' = w a .w^,
• V a : l < a < 7 + 1, w a + w ,̂ = b a < f (w a , w^, bQ, e2),
• Va < 7, b a + 1 = f ( w a + i , w^+ 1 , ba, e2).
The définition is as foîlows: WQ = u, WQ = u'. Since

wo + WQ = u + u' < a < bi = f (v, v', bo, e2),

and since f has property 5, there exists wi and W| such that

wi .wi = WO.WQ,

WI + wi = bi = f (wi, wi, b 0 , e2) < f (wi, w'1} b i , e2).

Similarly, if w a + w^ = bQ < f (w a , w^, b a , e2), we can find wQ + i
and w^,+1 such that

^ ^ = u . u',

w ^ + l î ba, e2)

< f (w a + i , w^ + l î ba+i, e2).

For limit ordinals, we set w^ = Yla<8 w « an<^ w ^ = ^ a < ^ wa- Since
w a < wp and w^ < w^, we get u . u ' = w ö . w ^ < w^.w^. Assume
that this inequality is strict, that is, for some component i, (u. u')2 = 0 and
(w^.w^) z = 1. The last equality implies (w^)^ = (w^)à = 1, thus there
exists a i and a2 such that (wai)?; = (w^)* = 1. For a = V( a i? a<i)
we get (wa)i — (wf

a)i = 1, thus (u.u')^ — 1, a contradiction. We
also have, for a < 0, ha < f (w a , w ^ b a , e2) < f (w^, w^, b^, e2).
Hence, bp < f (w^, w^, b^, e2). It remains to prove that b^ = w^ + wL
Again, ba — w a + w^ < wp + w^, hence bp < wp + w^. Assume
that this inequality is strict, .Le., for some component i, (bp)i — 0 and
(w/?)i + (wp)i = 1- S i n c e (b/?)* = 0, for ail a < /3, (bQ)l = 0, hence,

Informatique théorique et Applications/Theoretical Informaties and Applications



THE BOOLEAN /^-CALCULUS AND SOME OF ITS APPLICATIONS 377

since b a = wQ + w^, (wa)j + (w^)j = 0 = (wa)i = O 4 ) ; . If follows
that (w^)â = (w^)i = 0, a contradiction.

Now, we have

b = b 7 + i = f (w 7 + i , w 7 + 1 ) b 7 , e2) = f (w7 + 1 , w7
/+1, b, e2).

We take w = w7+i, w' = w
7 +i - Since b = f (w, w7, b , e2), we have

b > /xx.f (w, w', x, e2) = g(w, w', e2).

It remains to prove the reverse inequality.
Let c be any element of B1 such that c = f (w, w', c, e2). We prove by

induction that ba < c. Firstly,

bo = a = / /x . f (u, u7, x, ei) < /xx.f (w, w', x, e2) < c.

If ba < c then b a + i = f ( w a + i , w^+ 1 , baj e2) < f (w, w ;, c, e2) = c
and b/5 = J2a<p b « ^ c-

Case 9 — u Since f has property 5, there exist wo and WQ such that
u < wo < v and

U < WQ < v ' , W0 . W Q = U . U ' , W0 + WQ = b = f ( W 0 , W Q , b , G2 ) •

Now, consider the decreasing séquence b a , indexed by ordinal numbers,
defined by b0 = l^b^+i = f (v, v', ha, e2), b^ = Ua<p b^-

Then b — b 7 — b 7 + i for some ordinal 7.
Since f has property 5, for each successor ordinal a + 1 < 7 + 1 there

exist wa_|_i and w^+ 1 such that WQ < w a + i < v and
WÓ < W

w a + i + w ^ + 1 = bQ+i = f (wa+i, w^+l ï ha, e2).

Let w = na+i<7+i wa+i and w' = rL+i<7+i wa+i- w ^ claim that
1. u < w < v and u' < w' < v7

2. w . w' = wo . WQ — u /u',
3. w + w' = b,
4. b = z/x.f (w, w7, x, e2).
Since u < wo < w û + i < v and u7 < WQ < w^+ 1 < v', the point 1

above is satisfied.
Since wo < w < wQ + i and WQ < w' < wa+i> w e n a v e

U . U7 = WQ . WQ < W . W7 < W a + 1 . W ^ + 1 = U . U7

and the point 2 above is satisfied.
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For the point 3, we have b — wo + WQ < w + w' < wT + i + wl /+1 = b.

For the point 4, we have

b = f (w0, WQ, b, e2) < f (w, w', b, e2) < f (w 7 + i , w^ + : H b , e2) = b

hence b < z/x.f (w, w', x. e2). Let

c = i /x. f (w, w', x, e2) = f (w, w', c, e2)

and let us show, inductively, that c < ba for any a < 7 H- 1. Obviously,
c < bo = 1. If c < b a then

c = f (w, w', c, e2) < f ( w a + i , w^+ 1 ) b a , e2) = b a + i ,

and c < ha, for ail a < ƒ?, implies c < ria</3 b a = b^.

The proof of the theorem is a direct conséquence of the two previous
lemmas. Let h (y, z) = 9\ xi . #2 x2...ön xft . g where g has the form
explained at the beginning of this section. Then h has property S. Thus,
0 = 0 + 0 < h (0, 0) < h (1, 1), there exist w and w' such that 0 = w . w;

and w + w' = h (w, wr) = h ( l , 1). But 0 = w . w ' implies w' < w,
hence h ( l , 1) = h(w, w') < h(w, w') < h ( l , 1).

3*2. The gênerai case

Hère, we assume that the i-th component of f is j% = Y^jeJ f h 3 w n e r e

J% is any set of indices. Without loss of generality, we may assume that the
sets Ji are disjoint and we set J — {JieI Ji-

Let us consider Boolean variables yj for j G J and write ft in the form
IS a lïiapping from EJ x (B 7) n to B1 and

g ( y ) = 0 i x i .02X 2 . . .0 n x r a . f (y, x i , x2..., xra)

is a mapping from BJ to E1.

Then the theorem is equivalent to the following statement:

Let g (y) = 0\ x i . 62 x 2 . . .ö n xn . f. Then there exists u = (uj)jej G BJ

such that g ( l ) = g ( u ) and for any i e l there is exactly one j in J%

such that Uj• — 1.

Remark that in the last condition above, we can replace "exactly one"
by "at most one".

The proof is quite similar to the proof for the dyadic case As above, we
define the property S for f (y, x) : B J x ( B J ) m -> B J . The two fonctions
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u -h u' and u . u' that appear in this définition have to be replaced by the
two monotonie functions S and P from EJ to BJ deflned as follows. For
u = (uj)jeJ e BJ

the i-th component of 5 (u) is equal to YljeJi uv
• the z-th component of P (u) is equal to 0 if and only if there is at most

one j in Ji such that UJ = 1.

Now, f (y, x) has property S if Vu, v € B^ such that u < v, Vei,
e2 € (B7)m such that ei < e2, if S(oi) < f (u, ei) then there exist w e EJ

such that

• U < W < V,

•F (u ) = P(w),

•S'(w) = f(w,e2) - f(v,e2),

To prove the basis of the induction, it is enough to prove that

has property 5. Let u < v, ei < e2 and 5(u) < ƒ (u, ei). Then
S(u) < ƒ (u, e i ) < ƒ (v, e2) < 5(v) . If S(u) = 1 or ƒ (v, e2) = 0,
we can take w = u. If S (u) — 0 and ƒ (v, 62) = 1, then Vj E J, UJ = 0
and, since ƒ (v, e2) — J2jeJ vj •• fj (e%) = 1» ^ e r e e x i s t s io s u c r i triat
üj-0 = 1 and fj0 (e2) = 1. Then, we take w defined by wj — 1 if and
only if j = JQ.

To prove the induction step, we proceed exactly like in the dyadic case. The
only différence is that since sum and product are replaced by S and P, we
need, for the case 9 — /x, the following property: if (wa)a < jg is an increasing
séquence of éléments of B^ such that u < wa and P(u) = P ( w a ) then
P (u) - P (Ea</3 w a ) and 5 ( £ a < / ï w a ) = E Q < ^ 5 (w a ) . This property
is proved exactly like the similar one with sum and product.

4. APPLICATIONS

4.1. Games on graphs

A McNaughton's game [5, 8] is played by two players (Val and Andy) on
a directed graph G = {Vy, VA, E) where Vy and VA are two disjoint sets
of vertices and the set of directed edges is a subset E of Vy x VAUVAXV\/.

Moreover it is assumed that any vertex in G is the source of an edge.
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A position is just a vertex. It is a position for Val if this vertex is in
Vy and a position for Andy if it is in VA- In a position v for some player,
a move is performed by that player by choosing a position v1 such that
(v, i/) G E, that is a position for the other player. Any séquence of moves
can be extended into an infinité one that is called a play,

To décide which player wins a play, we define a set C of infinité séquences
of V = VA U Vy. A play p is won by Val if and only p is in C. We dénote
by Wy the set of positions where Val has a winning strategy.

Now, we assume that the membership in C of a play p does not depend
on any of its finite préfixes, Le., if p e F w , pf E F*, p!! E V*, then pf p E C
iff p"p E C.

It follows that a vertex v is in Wy if and only if
v E VA (V is a position for Andy) and ail successors of v are in Wy

(whichever move Andy plays, he reaches a position winning for Val),
v E Vy (v is a position for Val) and there is a successor of v that is in

Wy (Val can reach a winning position).
Let us introducé a Boolean value wv for each vertex v such that wv = 1

iff v E Wy. Then the above condition can be translated into:

wV' if f E Vy,

VV E
«V if

or in vectorial form, w = f (w).
Obviously, this équation may have a lot of solutions. An interesting case,

where we can charaeterize the solution defining Wy is when the set C is
defined by a parity condition or chained Rabin condition. Let n be a positive
natural number and r : V —> {1,..., n}. With a play p = ^o^i-- £ Ve0,
we associate the séquence r(vo), r(vi) , . . . and we say that p is in C if
and only if the least number that appears infinitely often in this séquence
is even. In this case, we associate with each number i in 1,..., n a family
Wj of Boolean variables wiiV indexed by vertices in V. We also consider
f (wi, W2,..., wn) : (Ev)n —> B^ whose the component of index v is

WT{V'),V' if V eVy,

Informatique théorique et Applications/Theoretical Informaties and Applications
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Remark that only some of the variables witV occur in f.
Then one can show that Wy, seen as an element of Bv, is exactly the

following fixed point of f:

/iwi ,z/w2...0wn -f (wi, w2,..., Wn).

By the result above,

/iWi . ï / W 2 . J w n . f ( w i ) W2 ï . . . , W„)

= /iWi . I / W 2 . . i w „ . g ( w i , W2,..., Wra)

where the component of index v of g is

^vt for some t/ such that (t/, t/) G i?, if ^ G Vy,

I J ™r(v'),u' if U E VA.

That g defines a memoryless winning strategy for Val: When Val is in
a position v G Vy, she moves to the vertex ?/ such that the component of
index v of g is wr^v^v/.

4.2. Modal /^-calculus

Let A be a finite. alphabet and P a set of proportional symbols. A closed
vectorial modal //-term over A is an expression

T — 9lXl...0nXn.f (Xi,.. . , Xw),

where each x« is a vector of variables of length k and f (xi,..., x n ) is a
vector of length k whose each component is a propositional symbol p G P
or has one of the following form: z U z\ z n 0', (a) 2;, [a] z, for any a E A,
where z and 2/ are variables belonging to some x^.

Let S = {S, T, P$) be a labeled transition System where S is a set
of states, T Ç S x A x S is a set of transitions, and P$ is a collection
{ps\p € P} of subsets of 5. S is said to be bounded-branching if there
exists a natural number d such that for any state 5 G S and any letter a E A,
there are at most d states s! such that (5, a, s') G T.

The interprétation [r]s of r in 5 is defined as

ô1xi. . .Ônxn . [f]5(xi, . . . ) x„j
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where [f]$ is the monotonie maping from (V (S)k)n into V (S)k obtained
by replacing each component p by p$, {a} z by the mapping that associâtes
with Q Ç S the set {s G S\3sf G Q : (s, a, 5') G T} and [a]z by the
mapping that associâtes with Q Ç S the set {s G S|Vs' G 5, (s, a, 5') G
T ^ s' G Q}.

Thus, [T]S belongs to V (S)k and S is said to be a morfrf of r if the first
component of [T]$ is not empty.

In [6], Streett and Emerson have proved that if a /i-term has a model then
it has a bounded-branching model. We are going to prove this resuit as a
conséquence of the above theorem.

Because V (S) is obviously isomorphic to Bs, there is a close connection
between modal /x-calculus and Boolean /x-calculus that has been used to
study and improve model-checking algorithms for the modal /x-calculus
[3, 7, 1]. Let us explicit this connection.

Let r and S be as above. For each vector xz of k variables we consider the
vector Yi indexed by {1,..., k} x 5, Le., y? is the set {y-̂ )S.) \z G x2, 5 G 5}.
We associate with the vector f of length fe, the vector g indexed by
{!.,..., k} x S defined as follows, where fi dénotes the i-th component
of f: for any index i and any state 5, the component g^sy of index (i, s)
of g is

-f 41 +u î l if S G
if ƒ, = p then i r ^ = I
if fi = z U z1 then g^s) = y{Z}S) +

if f% = z Ü2' then #^ 5 ) = y(^s)y(z

if ^ = (a)z then ^ i 5 ) = E<s,a,

if ƒ, = [a]z then 5 ( i ) 5 ) =. n<s,a,.s'}ex Ï/^,A')>

and it is easy to see that 5 belongs to the i-th component of [T\$ if and only if
the component of index (i, s) of 9\ yi...0n yn . g (yi,..., y n) is equal to 1.

By the above theorem,

0iyi-Onyn-g.(yi>~; Yn) = ö iy i . . .ö n y n .h (y i , . . . , yn) ,

where h is obtained by replacing every sum J^V a s,\eT V{z,s') ty some

Now, let us define the transition System 5 ' = (S', T', P$>) by S' = 5,
Ps* = ^5 an(i î1' is the set of all (5, a, s') such that ]C(,s,a;,s')er 2/<-sr, JS'> has
been replaced by yiz^s>y Obviously S1' is bounded-branching: the number of
sf such that (s-, a,, s7} G Tf is at most equal to the number of components of

Informatique théorique et Applications/Theoretical Informaties and Applications



THE BOOLEAN p-CAJbCULUS AND SOME OF ITS APPLICATIONS 383

f in the form (a) z. Now, let us consider the Booiean function g' associated
with f and <S', in the same way as g is associated with f and S. It is clear
that h < g'. Hence,

&i y* • • • On y il. g (yi,.. . . , yn) = 0i yi • • • 0nYn . h (y i , . . . , yn)

<-0i yi • • * ön yn • g' (yi, •• • •, yn),
and [T]S Ç b"']«s* It follows that if S is a model of r, the bounded-branching
transition system <S' is also a model of r,

4.3. The regularity theorem

The regularity theorem states that any tree language recognized by a tree
automaton contains a regular tree.

If a tree automaton over an alphabet A is given with a parity condition,
the set of trees it recognizes can be defined as the first component of some
/^-term r — d\ xi...ön xn .f, where each component j% of f has the form

this /^-term being interpreted in the powerset V{TA), the powerset of all
trees over A

Let us consider one letter a in A and let us substitute a for any letter
in r. We get the /x-term rf = ? ix i . , . i n x w .f', where each component f[
off has the form YljeJi a(zhi^ zttj)-

It is clear that the i-th component of r is not empty iff the i-th component
of T', interpreted in V (T{aj), is not empty. But T^ has only one element,
so that V (T^a-j) can be identified with the Booiean algebra EL The union
becomes the Booiean sum, and since a (Z> Z1) is empty iff Z is empty or Z1

is empty, the opération a {z, z') can be identified with the Booiean product.
It follows that the Booiean yu-term r" = 9\ xi...ön x n . g, where each

component gt of g has the form J2jeJi zhj zij> ^ a s t l i e s a m e v a m e a s t n e

characteiïstic function (for emptyness) of r.
Applying the sélection property, we get that r11 has the same value as

9i xi...Jwx„ .g', where each component g\ of g7 has the form zijt z\^.
It follows that T has the same characteristic function as 6\ xi....ön x n . h?

where each component h% of h has the form a^j. (^ ; j - , ^ ).
If the first component of r is not empty, the first component of this

last /i-terms defines a unique tree, that is regular and belongs to the first
component of r.
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