
INFORMATIQUE THÉORIQUE ET APPLICATIONS

S. BASAGNI

D. BRUSCHI

F. RAVASIO
On the difficulty of finding walks of length k
Informatique théorique et applications, tome 31, no 5 (1997),
p. 429-435
<http://www.numdam.org/item?id=ITA_1997__31_5_429_0>

© AFCET, 1997, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1997__31_5_429_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretieal Informaties and Applications
(vol. 31, n° 5, 1997, pp. 429-435)

ON THE DIFFICULTY OF RND1NG WALKS OF LENGTH k (*)

by S. BASAGNI, D. BRUSCHI and F. RAVASIO (*)

Abstract. - We characterize the computational complexity of the following combinatorialproblem:
Gïven a directed graph G — (V, E) endowed with a length function w : E ^ N , a pair ofnodes s
and t in V and an integer k > 0, does G contain a walk it from s toi of length exactly k? We show
that the problem is NP-complete when G is a directed graph, an undirected graph, or a directed
acyclic graph. The problem becomes NL-complete when w is a unary function.

Keywords: Combinatorial problems, computational complexity.

Résumé. - Nous caractérisons la complexité du problème combinatoire suivant : étant donné
un graphe G = (V} E) muni d'une fonction de longueur w : E —> N, d'un couple de nœuds s
et t dans V et d'un entier k > 0, le graphe G contient-il un chemin w de s vers t de longueur
exactement k ? Nous montrons que le problème est NP-complet lorsque G est un graphe orienté,
un graphe non orienté ou un graphe orienté acyclique. Le problème est NL-complet lorsque la
fonction w est unitaire.

1. INTRODUCTION

Path-finding problems consist of determining a walk in a graph satisfying
certain conditions. They have been widely investigated in algorithmic graph
theory for a long time, especially in the shortest path version and in the
longest path version.

In the SHORTEST PATH problem (respectively, LONGEST PATH problem) given a
directed graph G = (V, E) endowed with a length function w : E -^ N, a
pair of nodes s and t in V and an integer k > 0, one has to décide if G
contains a path (2) from s to t of length < k (> k). Shortest paths can
be efficiently found by sequential or by NC algorithms [5, 7]. Instead, the
LONGEST PATH problem is NP-complete [6}. Feasible solutions to the LONGEST

(*) Received November 1, 1996.
(!) Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano, Via Comelico

39/41, 20135 Milano, Italy.
{basagni,dbruschi, ravasio }@ dsi.unimi.it
(2) A path is a walk without cycles, also called simple paths or elementary paths in the literature.

Informatique théorique et Applications/Theoretieal Informaties and Applications
0988-5004/97/05/© AFCET-Elsevier-Paris

4 3 0 S. BASAGNI, D. BRUSCHL F. RAVASIO

PATH problem, however, can be found in graphs that have no positive cycles
as for example in directed acyclic graphs (DAGs) [9],

Probably the most natural path-finding problem is the exact path version,
asking for walks of length equal to an integer k > 0. The crucial element
that distinguishes between the exact path version and both the longest and
the shortest path versions is the présence of cycles in the solution. Thus,
when looking for an exact path in a graph we must explicitiy indicate if we
are interested in either paths or walks.

The fc-PATH problem, namely the problem of detecting a path of length k
in a weighted directed graph, is NP-hard since it is a special case of the
HAMILTONIAN PATH problem. To our knowledge, the best algorithm for finding
a path of length k in an unweighed directed graph G = (V, E) works in
either 2° (fc> | E | log | V \ orO{k\\E\) time [1].

In this paper we investigate the problem of deciding whether a weighted
directed graph contains a walk of length k. Specifically, we characterize the
computational complexity of the following combinatorial problem:

&-WALK

Input: A digraph G = (V, E) endowed with a length function w : E —> N,
a pair of nodes s,t in V, an integer k > 0.

Question: Does there exist in G a walk w from 5 to t of length kl
The peculiarity of the &-WALK problem is that a solution might contain

up to k occurrences of the same vertex, (i.e., a node might appear in a
walk a number of times exponential in the input size.) This problem raises
the question of whether a candidate solution to /C-WALK can be checked in
polynomial time and thus whether the problem is in NP. We also notice
that the NP-hardness of A;-WALK can not be inferred by the NP-hardness of
the fc-PATH problem.

Using a suitable walk-encoding scheme we prove that the £-WALK problem
is NP-complete. We also show that it remains NP-complete when G is
either an undirected graph or a DAG. The /C-WALK problem can be solved in
polynomial time when restricted to unweighted graphs (and k — \ V p W)
or unweighted DAGs [8].

Our results show that, while in the gênerai case the &-WALK problem and
the LONGEST PATH problem are computationally equivalent, the former is harder
than the latter when they are restricted to DAGs (unless P=NP). Furthermore,
while the LONGEST PATH problem is NP-complete even for unweighed graphs,
we point out that when k and the arc lengths of G are written in unary, the
A:-WALK problem is NL-complete.

Informatique théorique et Applications/Theoretical Informaties and Applications

ON THE DIFFICULTY OF FINDING WALKS OF LENGTH k 431

2. PRELIMINAIRES

The reader is expected to be familiar with basic concepts from graph
theory and complexity theory (see, for example, [6, 11]). In the following,
we briefly describe the conventions adopted throughout the paper.

A directed graph, or digraph, G — (V, E), consists of a finite vertex
or node set V — {1, 2, . . . , n} and an arc set E — {ei, e2, .. •, em} of
ordered pairs of nodes (u, v), u / v, with u being the tail and v being the
head. The in-degree 6~ (v) (respectively, out-degree 5+ (v)) of a node v is
the number of arcs having v as its head (tail).

An undirected graph is a digraph whose arc set is composed of unordered
pairs. A multigraph is a digraph containing repeated arcs {multiple arcs)
or arcs with both endpoints the same (loops). The underlying graph of a
directed multigraph G = (V, E) is the graph H = (V, E!), where V! - V
and Ef — {(u, v), (v, u) \ (u, v) E E V (v, u) G Ü7}. A weighted digraph
G — (F, E) is a digraph associated with a length function w : i? —» N,
where N is the set of the natural numbers {0, 1, 2 , . . . } . For each arc
e — (ii, v) G E, both we and u^ t , dénote the length of e.

Given a digraph G = (V, E1) and a pair of nodes vi, t^+i in V, a
waZfc from the node v\ to the node vg+\ is usually defined as a séquence
7T = (t>i, ei, V2, 62, . . . , e^-i, ^ , e ,̂ ^ + i) of nodes and arcs, such that
d — (v.j, Vi+i) G JB, 1 < i < L Whenever it will be possible, we shall
dénote a walk as the séquence of either its arcs or its nodes. We do
not impose any restriction on how many times a vertex is contained in
a solution of the -̂WALK problem. However, notice that such a number is
at most exponential in the input size. Thus, in order to get a reasonable
encoding scheme (in the meaning of [6]) for a solution of the /C-WALK

problem, we adopt the following encoding. Given a digraph G — (V, E),
let TT = (vi, ei, V2, e2, . . . -, e^_i, V£, e .̂ v#+i) be a walk contained in G.
Then, we represent ?r as the multiset M — {{e, 1 + /ie) | e E i?, j ^ e G N},
where 1 + jwe is the number of times arc e is in the walk TT. It can be
easily verified that M has size polynomial in the length of the instance of
the fc-WALK problem.

Given a digraph G = (V, £7), a pûtf/j is a walk containing each vertex in
V at most once, a *ra*7 is a walk containing each arc in E at most once.
A Eulerian path is a trail that traverses every arc of G. A cycle is a path
in which v\, v#+i coïncide. A digraph without cycles is called a directed
acyclic graph (DAG). The length of a walk is the sum of the lengths of its

vol. 31, n° 5, 1997

4 3 2 S. BASAGNI, D. BRUSCHI, F. RAVASIO

arcs. G = (V, E) is connected if, for each pair of vertices s and t in V, G
contains a walk from 5 to t or from t to s.

The complexity classes we refer to are NP, the class of décision problems
solved by a nondeterministic polynomial time algorithm, and NL, the class of
décision problems solved by a nondeterministic logarithmic space algorithm,

3. PROBLEM COMPLEXITY

In this section we study the computational complexity of the A;-WALK
problem. We prove that the A;-WALK problem is NP-complete in the gênerai
case (on weighted digraphs) and also when it is restricted to weighted graphs
and weighted DAGs. We first show that this problem belongs to NP. Next,
we show that SUBSET SUM, a well known NP-complete problem [6], can be
reduced via a polynomial time many-one réduction to the AÎ-WALK problem.
Thus the /C-WALK problem is NP-complete. Finally, we point out that the
NP-completeness resuit can be extended to undirected graphs and DAGs.
We also prove that the A;-WALK problem is NL-complete when k and the
length function of G are polynomially bounded.

By representing walks as multisets we are able to prove the membership
of the &-WALK problem in NP. In the following lemma we exhibit a certificate
for such multisets, namely a deterministic polynomial time algorithm that
given a weighted digraph G = (V, E), a pair of vertices s and t in V, an
integer k > 0 and a multiset M — {(e, 1 + /xe) | e G E, \ie G N}, answers
"yes" if and only if M encodes a walk in G from s to t of length k. It
follows that the A;-WALK problem is in NP.

LEMMA 1: The k-WALK problem is in NP.

Proof: Given an instance I — (G, m, s, t, k) of the A:-WALK problem, we
guess a feasible solution M = {(e, l + / x e) | e E £ , /xe G N} and verify in
time polynomial in the size of X that M represents a walk from the node s
to the node t of length AÏ using the following method.

Consider the directed multigraph G M — (VM> £"M)> where EM contains
1 + jie copies of e, for each arc e — (u, v) in M, and u, v are in VM- Let
Gf

M be the underlying graph of GM-

M represents a walk in G from s to t if and only if the following conditions
are satisfied: (i) vertices s and t are in VM, (Ü) G'M is connected and (iii)
G M contains a Eulerian path from s to t. Such conditions can be checked
by a deterministic algorithm in time polynomial in the size of G. Gf

M can

Informatique théorique et Applications/Theoretical Informaties and Applications

ON THE DIFFICULTY OF FINDING WALKS OF LENGTH k 4 3 3

be built directly from M and Step (ii) can be implemented by a breadth-
first search in G!

M. By a classical theorem (see, e.g., [11]), we perforai
Step (iii) comparing the degrees of the nodes of GM- More specifically,
G M contains a Eulerian path from s to t if and only if Gf

M is connected
and for each v e VM\{s, £}, Ö+ (v) = 8~ (v), 6~ (s) = 6+ (s) + 1, and
<$+ (t) — S~ (t) -h 1. Such values can be easily determined from M.

Finally, the length of the walk encoded by M is & if and only if

In the following theorem we show a deterministic polynomial time
algorithm for reducing the well-known NP-complete SUBSET SUM problem
to the fc-wALK problem.

THEOREM 1: The k~wALK problem is NP-complete.

Proof: Given an instance X of SUBSET SUM represented by a set A =
{ai, a2, . . . , an} of items, sizes (x\y X2> . . . , xn) G N n and a target
B G N, B < è r = i x** w e construct a weighted digraph Gj = (V, E)
consisting of a séquence of n copies of the same gadget Gi, one for each Xi.

Each gadget Gi = (V ,̂ Ei) is a weighted digraph so defined (see Figure 1):
V% — {Si, tly Ui, Vi}, E = {(5gy ti), (Si, Ui), (U{, Vi), (Vi, Uj), (W

wSiM - 2&+2 + xu w3iiUi = 26 + 1 , «/„,,. = 26, tt;^^. = 0, wUuU

where 6 = [log (X^Li xôl + 1 is ^ e minimum number of bits required for
representing B and thus 2b > B\ In order to get the graph Gj , we connect
the node ti of G{ to the node si+i of Gi+i, for 1 < % < n — 1. It can be
easily verified that given J , Gj can be built by a deterministic algorithm that
works in time polynomial in the length of T. It remains to prove that there
exists a feasible solution for X if and only if Gj contains a suitable walk.
More formally, we prove that there exists a solution for X if and only if Gj
contains a walk from s = s\ to t = tn of iength fc = (4 n + 2) • 26 + B.

Figure 1. - The gadget G,-.

vol. 31, n° 5, 1997

4 3 4 S. BASAGNI, D. BRUSCHI, F. RAVASIO

(<=) A walk 7T in G from si to tn of length k = (4 n + 2) • 2b + S must
visit each gadget G*, for 1 < i < n, either through the arc (s;, U) with
a cost of 26 + 2 + a:,- or through the path ($,-, M8-, tt-) with a cost of 26+2.
Furthermore, ?r can walk the cycle ji = (ui, V{} u%) a number c« times,
<% > 0, with no extra cost if ci — 0 or with an additional cost multiple
of 2b otherwise. Thus, TT can be decomposed in a path TT' from si to tn

and in a certain number c = J ^ c« °f cycles F = U« 7«. Since no cycle in
F contributes to the target value B encoded in fc, the path TT' must be of
length 4n2 6 + B. After noticing that at least one path ($8-, u2, ti) has to be
walked by TT because S < J2i xi> w e conclude that n must contain exactly
two cycles 77, 7^, for some l < j , h < n, in order to attain length k. In
particular, n is a trail if j ^ /i.

From the structure of TT just illustrated, it follows that only the arcs of
kind (sj, ti) contained in 7r' contribute to B. Hence, we can form a solution
of SUBSET SUM picking the A's items that correspond to the arcs of TT of
type (s*, tj).

(=>-) Given a solution A' of SUBSET SUM, we can find a walk ?r in G
from node si to node tn of length (4n + 2) • 26 + B as follows. For each
i — 1, 2, . . . , n, if ai belongs to Af then go from s; to U along with the arc
(si, tj) else if a2 is the first item that does not belong to A! then go from
Si to t{ along with the walk (sj, n^ VJ, u2-, ^ , UÎ, U), else along with the
path (SJ, Ui, ti). When the last element an has been considered, we have
formed a walk from 5 to t of length (4 n + 2) - 2b + B as required. •

It is not difficult to extend the proofs of Lemma 1 and Theorem 1 to &-WALK

instances containing weighted graphs and weighted DAGs. In particular, in
the latter case we have to delete the cycles 7z's and set k — 4n2& + B.
Hence, in contrast with the longest path problem, the /C-WALK problem remains
NP-complete even when restricted to DAGs.

PROPOSITION 1: The k-wALK problem remains NP-complete even when G is
a graph. •

PROPOSITION 2: The k-wALK problem remains NP-complete even when G is
a DAG. M

It is known that the unary version of some intractable (unless P = NP) exact
problems defined on graphs can be solved by polynomial time algorithms
(and even NC algorithms) [2, 3, 4, 10], namely they are pseudo-polynomial
problems [6]. In the present case we can be more précise since we can prove

Informatique théorique et Applications/Theoretical Informaties and Applications

ON THE DIFFICULTY OF FINDING WALKS OF LENGTH k 4 3 5

that the unary &-WALK problem is logspace equivalent to the NL-complete
directed GRAPH REACHABILITY problem.

PROPOSITION 3: The unary version of the U-WALK problem is NL-complete.

Proof: Given an instance 1 = (G, w, s, t, k) of the unary /C-WALK

problem, where k and w are polynomially bounded in the size of G, we
guess a séquence TT of nodes and arcs in G. We can check by a deterministic
algorithm that works in space bounded by a logarithmic function in the size
of X if 7T is a walk in G from s to £ of length k. Hence the unary version
of the &-WALK problem belongs to NL.

Moreover, the instance (G, s>t) of the directed GRAPH REACHABILITY problem

asking whether the node 5 is connected to the node t in the digraph G is
reduced to the instance (G, w, 5, t, 0) of the &-WALK problem, where w is the
constant length function w : E —> {0}. It easy to show that such a réduction
can be computed by a deterministic logspace algorithm and to prove that G
contains a walk of length 0 from s to t if and only if s is connected to t. •

REFERENCES

1. N. ALON, R. YUSTER and U. ZWICK, Color-coding, Journal of the ACM, 1995, 42,
4, pp. 844-856.

2. F. BARAHONA and W. R. PULLEYBLANK, Exact arborescences, matchings and cycles.
Discrete Applied Mathematics, 1987, 7(5, pp. 91-99.

3. D. BRUSCHI and F. RAVASIO, Random parallel algorithms for findings cycles, branchings
and perfect matchings. Algorithmica, 1995, 13, 4, pp. 346-356.

4. P. M. CAMERINI, G. GALBIATI and F. MAFFIOLI, Random pseudo-polynomial algorithms
for exacts matroid problems. Journal of Algorithms, 1992, 13, 2, pp. 258-273.

5. T. H. CORMEN, C. E. LEISERSON and R. L. RIVEST, Introduction to Algorithms, MIT
Press and McGraw-Hill, 1990.

6. M. R. GAREY and D. S. JOHNSON, Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA, 1979.

7. Y. HAN, V. PAN and J. REIF, Efficient parallel algorithms for Computing all pair
shortest paths in directed graphs. In Proc. 4th ACM Symp. on Parallel Algorithms
and Architectures, 1992, pp. 353-362.

8. A. KAUFMANN, Graphs, dynamic programming and finite games. Academie Press,
New York, 1967. Translation of v. 2 of Methodes et modèles de la recherche.

9. E. L. LAWLER, Combinatorial Optimization: Networks and Matroids. Holt Rinehart
and Winston, New York, 1976.

10. C. H. PAPADIMITRIOU and M. YANNAKAKIS, The complexity of restricted spanning tree
problems. Journal of the ACM, 1982, 29, 2, pp. 285-309.

11. W. TUTTE. Graph Theory, Addison-Wesley, Reading, MA, 1984.

vol. 31, n° 5, 1997

