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ACCURATE COMPILATION OF THE RELATIVE ENTROPY
BETWEEN STOCHASTIC REGULAR GRAMMARS (*)

by R. C. CARRASCO (*)

Abstract. - Works dealing with grammatical inference ofstochastic grammars often evaluate the
relative entropy between the model and the true grammar by means of large test sets generated with
the true distribution. In this paper, an itérative procedure to compute the relative entropy between
two stochastic deterministic regular grammars is proposed,

Keywords: stochastic languages, relative entropy, grammatical inference.

Résumé. - Les travaux sur i'inference de grammaires stochastiques évaluent l'entropie relative
entre le modèle et la vraie grammaire en utilisant grands ensembles de test générés avec la
distribution correcte. Dans cet article, on propose une procédure itérative pour calculer l'entropie
relative entre deux grammaires.

Mots clés :

1. INTRODUCTION

Stochastic models have been widely used in computer science, especially
in those tasks dealing with noisy data or random sources such as pattern
récognition, natural language modeling, etc. A stochastic model predicts a
probability distribution for the events in the class under considération and
one of the most popular measures of the success in the prédiction is the so-
called relative entropy or Kullback-Leibler distance (see, for instance, [2]).
On the other hand, a number of algorithms ([6], [4], [1]) have been proposed
within the grammatical inference approach that identify stochastic regular
grammars from examples. Regular grammars define a rather small subset of
languages, in particular those whose that can be processed and recognized
by finite-state automata. However, they present the important advantage that
the identification problem is well defined and some algorithms, as the one
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by Carrasco & Oncina [1] have been proved to converge in the limit to
the correct grammar. Usually, instead of the relative entropy between the
known grammar and the proposed model, the relative entropy between a
large test set (a collection of examples generated with the target grammar)
and the hypothesis is evaluated to check the different techniques. However,
an accurate estimation requires huge test sets to be generated, and sometimes
convergence can be very slow. Therefore, an algorithm providing the exact
distance without generating large test sets is of interest.

2. PRELIMINAIRES

Let A — {a, 6,...} be a finite alphabet, A* the set of strings generated
by A and À the empty string. For every string x G i * , the expression xA*
dénotes the set of strings that contain x as a prefix. A stochastic language L
is defined by a probability density function p(x\L) for the strings x G A*.
The probability of any subset X c A* is

(z|L). (1)

A stochastic regular grammar (SRG), G = (A, V, 5, R,PQ), consists of a
finite alphabet A, a finite set of variables V —one of which, 5, is referred
to as the starting symbol—, a finite set of dérivation mies R with either
of the following structures

where a G A, X, Y G V, and a real function PQ : R —> [0,1] giving
the probability of each dérivation. Obviously, the sum of the probabilities
for all dérivations from a given variable X must be equal to one. The
définition (2), although formally different, is equivalent to other définitions
used in the literature, as the one in [3]. A stochastic grammar G is said to
be deterministic if for all X G V and for all a G A there is at most one
Y e V such that pG(X -> aY) ^ 0.

Every stochastic deterministic regular grammar G defines a stochastic
deterministic regular language (SDRL) through the probabilities p(w\G) =
PQ(S => w). The probability PG(S => w) that the grammar G générâtes the
string w G A* is defined in a recursive way:

pG(X => au) = PG(X -» aY)pG(Y => w) U
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where Y is the only variable satisfying po{X —> aY) ^ 0. Provided that
the SDRG contains no useless symbols [5], the probabilities of all strings
sum up to 1:

p(A*\G)= Y,p(w\G) = l (4)

A stochastic deterministic finiîe automaton (SDFA), A — (Q, A, <S,
consists of an alphabet A, a finite set of nodes Q = {ci, ç 2 , . . . qn}, with
qj G Q the initial node, a transition function 5 : Q x .A —> Q and a
probability function PA : Q x A —> [0,1], The probability P A ( ^ Î A), defined
for every node ^ as

represents the probability that the string ends at <#. Every SDFA générâtes a
SDRL through the probabilities p(w\A) = n{qi,w), defined recursively as

7T(ÇJ, au;) = P A ( ^ , a)7r(5(gj, a), w;)

The comparison of équations (3) and (6) directly suggests the way of
building a SDFA that générâtes the same language as a given grammar G.
Indeed, it suffices to take Q = V, qj = 5 and for ail a G A and X,Y eV

6{X, a) = Y iff X -* aY e R

3. ENTROPY OF A SRDL

The entropy of the stochastic language L is defined [2] as

L) (8)

with the convention OlogO = 0. When the logarithm is binary, the resuit
is expressed in bits. The entropy is always a positive number related to the
average length of the strings in a minimal coding of the language and to the
average number of yes/no questions (with an optimal interrogation strategy)
necessary in order to identify the resuit of a random extraction of a word in L.
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Two stochastic languages having the same entropy are not necessarily
identical. However, the magnitude

H{LtM)= 2JPN£I) logeer (9)

has the property that H{L\,L2) — 0 if and only if p(a?|Li) = p(
for all strings x in A*. This magnitude is known as relative entropy or
Kullback-Leibler distance, although it is not a true distance (even if it can
be easily symmeterized, it does not satisfy the triangular inequality). The
relative entropy indicates the penalty (in bits) for using a wrong distribution
instead of the true one when coding a word or when predicting the result
of a random experiment.

In the following, PL(CL\X) will dénote the conditioned probability that
symbol a follows the prefix x in L:

Consistently with eq. (5), we will dénote with PL(MX)
 m e probability that

the "end of string" is observed after the prefix x, Le., that x is not followed
by any other symbol. In other words,

With these conventions, for instance, the probability p(ab\L) for the string
ab in the language L satisfies:

logp(a6[L) = logpL(a|A) + logpL(b\a) + logpL(A[a6) (12)

Thus, when evaluating the entropy as defined in eq. (8), the term logpL(b\a)
will appear for every string containing ab as a prefix. In gênerai, a factor
logpL(a\x), will appear for every string in the subset xaA*, while the factor

niultiply p(x\L). Therefore,

XÇ.A* aeA x€A*

By using eqs. (10) and (11), one can rewrite the above équation in a simpler
form:

H(L) = - Y^ E P(x-A*\L)pL(a\x)logpL(a\x) (14)

xeA* a€A'
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where A! = A U {A}.
If L is generated by a SRG, there is an associated automaton

A = (Q,*Â,ë,qi)PA) generating L, and pi,{a\x) may take only a finite
number of différent values. Indeed, for ail x satisfying 8{qj^x) = q%
and for ail a G ,A' one gets px,(a|x) — £>A(&', Û). The different subsets
Lj = {x G / : 8(qj,x) — qi} define a partition in L and, if one defines

Ci = 5 > ( z . À * | L ) , (15)

the entropy becomes

H(L) = — V^ y^ Ci PA(qiyO>)logpA(qi,a) (16)

This sum can be computed straightforwardly once the coefficients Ci are
known.

Note that always À G Lj (being / the index of the initial state) and recall
that p(A*\L) = 1. This allows us to deal separately with the special case
x — À and write

Ci - SiT + Y, Y, PA{xaA*\L) (17)

where Sij is Kronecker's delta. As L = |J^ Lj and for every a: G Ly,

\Q\

E P^*\L)p(qj,a) (18)

Therefore, the coefficients et can be obtained through an itérative method:

\Q\

with

^0'= Y, PA{qj,a). (20)
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and c\ = 0. It is easy to prove by induction in t that c[ > c\ but
c\ < Ci, and therefore, the itérative calculation converges rapidly to the
correct value.

4. THE RELATIVE ENTROPY BETWEEN SDRL

An analogous procedure can be applied to the relative entropy between two
stochastic regular languages L and L\ generated by M and M' respectively.
In this case,

H(L, L)=^ ^ ^dj pM(qi, a) log v ; (21)
g . e Q q > e Q ' P U a )

with the coefficients

dj = Y, P(xA*\L), (22)

where
Lij = {x e A* : S(qi, x) = qi A 6'(q'P,x) = q'j). (23)

The coefficients cij are evaluated through the relation:

101 ICI

S
where

The above expression for c- ^ is straightforward to prove following the
same steps of former section and noting that À G Ljjt.

5. RESULTS AND CONCLUSION

The Figure 1 shows the relative entropy between two randomly generated
grammars, each with 10 variables and 30 rules, both working with the
alphabet A = {0,1}. The solid line is the result of the algorithm, while the
dots represent the results and déviations of the relative entropy with random
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Figure 1. - Relative entropy (in bits) between two randomly generated grammars
of size 10. Solid line: exact computation. Dots: estimation using samples.

test sets of increasing size. It can be seen that even for relatively simple
grammars as these, the convergence to the true value is rather slow, and huge
samples are needed in order to get a good estimate of the relative entropy
between the languages. Therefore, the procedure described in this paper can
be used for a more accurate testing of grammatical inference methods.
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