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THE PSEUDOVARIETY J IS HYPERDECIDABLE (*)

by J. ALMEIDA (*) and M. ZEITOUN (2)

Abstract. — This article defines the notion of hyperdecidability for a class offinlte semigroups,
which is closely connected to the notion of decidability. It then proves that the pseudovariety J of
J-trivial semigroups is hyperdecidable.

1. INTRODUCTION

The framework of this paper is the study of décision problems on
semigroups. The main resuit states that the pseudovariety J of all finite
,7-tiivial semigroups is hyperdecidable. The notion of hyperdecidability is a
strengthening of the notion of decidability (a précise définition will be given
in Section 3). It was recently introduced by the first author [4] to establish
the decidability of the membership problem in several instances.

Let us recall that the membership problem for a given class of semigroups
C consists in deciding whether a finite semigroup belongs to C. This is one
of the main questions concerning some particular classes, the pseudovarieties
of finite semigroups. A class of semigroups is said to be decidable if its
membership problem is decidable.

Since pseudovarieties arise when studying combinatorial problems on
languages, they are frequently given by means of simpler pseudovarieties
and operators. ït is not a trivial problem to détermine whether such a
pseudovariety is decidable or not. It is known that in gênerai, most operators
on pseudovarieties do not preserve decidability. For instance, Albert,
Baldinger and Rhodes [1] proved that there exist decidable pseudovarieties
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4 5 8 J. ALMEIDA, M. ZEÏTOUN

V and W such that their join V V W is not decidable. Most of the time,
existing results only have ad hoc proofs which require a deep knowledge
of the involved pseudovarieties.

The first author noticed that it could be more convenient to use a stronger
property than decidability for sol ving such questions. The first hope is to
have a property yielding more easily decidability results, that is, which is
preserved by operators on pseudovarieties. The second one is to get a notion
that is gênerai enough to apply to most "usual" pseudovarieties.

Henckell [8] already defined such a property by introducing pointlike sets.
A pseudovariety V is said to be strongly decidable if for every semigroup
5, the set of V-pointlike subsets of 5 is computable. Hyperdecidability
is a property of pseudovarieties that implies strong decidability. (However,
whether these notions are equivalent is not clear at present, although it seems
very unlikely. See [5] for additional details.)

Proving that a pseudovariety is decidable may be straightforward while it
may be arduous to prove that the same pseudovariety is strongly decidable
or hyperdecidable. There are two famous and difficult results concerning
strong decidability: Ash [7] proved that the pseudovariety of finite groups
is hyperdecidable; Henckell [8] showed that the pseudovariety of finite
group-free semigroups is strongly decidable.

The formai définition of hyperdecidability was drawn in [4] without having
in mind Ash's paper, in which this property is not emphasized and isolated
in full generality. Thus, this notion was investigated by an author and
independently rediscovered by another one. Such a considération suggests
that this concept is not artificial, but that it rather émerges as an idea inherent
in the study of the membership problem. Even if formulated recently, it seems
already to be a key notion, and its understanding is quite an important stake.
For instance, the applications stated in Section 5 are now easily provided by
gênerai results of [5], while they previously only had difficult and painstaking
proofs. It is likely that in the future, the concept of hyperdecidability will
provide tools to answer the membership problem.

The techniques and results used in this paper to show that J is
hyperdecidable require a basic knowledge of implicit opérations on J. The
reader is referred to [3] for details we do not give here. The proofs consist
in an elementary interprétation of these opérations on automata, and hence
they seem to be very natural.

The paper is organized as follows. In Section 2, we set up the notation, and
we recall the most gênerai results used in the paper. Section 3 introduces the
notion of hyperdecidability. The main resuit, stating that J is hyperdecidable,
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is shown in Section 4. Lastly, we give in Section 5 some applications of
the main resuit.

2. PREREQUISÏTES

We assume the reader to be familiar with the théories of finite semigroups,
pseudovarieties and implicit opérations. We now make précise some notation.

2.1. Terminology and notation

We dénote by A* (resp. by A+) the free monoid (resp. the free semigroup)
generated by the finite alphabet A, and by e the empty word. The cardinality
of a finite set X is denoted by \X\. The length of a word u is denoted as
usual by |it|, and the set of letters occurring in u, called its content, by c(u).

Given a semigroup S, S1 is the semigroup S itself if it is a monoid, or
S U {1} where l £ S acts as a neutral element otherwise. If S\ and S2
are subsets of S, we dénote by S^S^ the set {s E S \ 3 si E Si such
that 5i5 G S2}.

A pseudovariety is a class of finite semigroups closed under formation
of finite direct product, subsemigroup and homomorphic image. The paper
deals mainly with J, the pseudovariety of J^-trivial semigroups. We recall
in Section 2.3 the most important properties of J.

2.2. Implicit opérations

We just recall some définitions and statements (without their justifications)
concerning implicit opérations. See [2, 3] for details.

Let V be a pseudovariety and let A — {a\,..., an} be an alphabet. An
n-ary implicit opération on V is a collection (Trs)sev where each TT$ is a
function from Sn into S such that, for 5, T in V, the following diagram
commutes

Sn jrs^ g

rpn rp

We represent the set of n-ary implicit opérations on V by Fn(V).
We associate to the word u = a7l • • • aik of A+ the collection of fonctions

(^s)sev defined by us(si,..., sn) = 5^ * * • Sik. One can easily check that
this defines in fact an implicit opération. Such an opération, induced by a
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word, is said to be explicit. We simply dénote it by u, and we dénote the
set of n-ary explicit opérations on V by Fn(V).

The multiplicative law on Fn(V) defined by (TTS) -(ps) — {^S * Ps) niakes
it a semigroup, and Fn(V) a subsemigroup of Fn(V). We endow Fn(V)
with the initial topology for the évaluation morphisms

eT: F„(V) - ^ T T n

where T runs in V, and where each finite semigroup TTn is endowed
with the discrete topology. This topology makes Fn(V) a compact and
0-dimensional topological semigroup in which Fn(V) is dense.

Let us consider the morphism i : A+ —> F„(V) defined by t(ai) = ai. The
V-closure of a language L of A+ is by définition the topological closure
of i(L) in Fn(V).

The pseudovariety SI of finite idempotent and commutative semigroups
plays an important role when extending the notion of content to implicit
opérations. Indeed, for pseudovarieties V containing SI, such as J, there
exists a unique continuous morphism from F„(V) into 2A that coincides
with the content function c on A+. We still dénote this morphism by c.

Given an implicit opération ?r on V, it is easy to see that the séquence
(7Tk]')keN converges to an idempotent element of Fn(V), denoted by 7rw.
Note that in pseudovarieties containing SI, we have c(7rfc!) = C(TT). By
continuity of c, we therefore have C(TTW) = C(TT).

23. The pseudovariety J

The key notion when studying J is that of subword. Recall that a word
x — x\ • • • xi is a subword of an implicit opération TT G F.n(J) if TT has a
factorization of the form TTQXITTI • • • x/7r/ where TT; E Fn(J) . This définition
coincides with the usual one on words when TT is explicit.

For TT and p in Fn{J) and for each natural number £, we write 7r ~^ p
if 7T and p have the same subwords of length at most £. The relation ~^
is a congruence, and ~^+i Ç ^^. The link between J and this family of
congruences has been extensively studied. The fundamental result is due to
Simon [12], who proved that a language over A is recognizable by a J-trivial
semigroup if and only if it is saturated by one of the congruences ~£.

We will use in Section 4.1.2 some combinatorial properties from Simon's
paper. For now, we just state topological and structural results concerning
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the semigroup of implicit opérations F Î Î(J). Both results are stated in [3,
Theorem 8.2.8], and are elosely related to Simon's result.

THEOREM 2.1 (Almeida [3]): Every idempotent implicit opération on 3 is
of the farm uu, where u is explicit. More generally, every implicit opération
ir on 3 has a factorization TT = TT\ • • • 7r& such that:

cf.l) Each factor TT?; is either explicit or of the farm vïf where Ui is explicit.
cf.2) If TTi and TT^+I are idempotent, the sets C(TT?) and C(TTS+I) are

incomparable.
cf. 3) Two consécutive factors TT?; and TT^+I are not both explicit.
cf.4 If-Ki is explicit and TTJ+I idempotent, then the last letter of 7Ci is not

in c(7T7;+i). IfiTi is idempotent and 7r«+i explicit, then the first letter of TT;+I

is not in c(jti).
Furthermore, if TTI • * • TT̂  is the factorization of ir and if p\ • • • pi is the

factorization of p, then the following conditions are equivalent:
i, vr = p,
ii, k — l, and TTJ = pj for 1 < j < k.
HL TT and p have the same subwords. H

We say that the factorization of TV satisfying the conditions cf.l) to cf.4) of
the theorem is the canonical factorization of TT. A description of réduction
rules to obtain the canonical form of an implicit opération built from letters
using multiplication and u;-powers is given in [3, Section 8.2] (page 226);

rr.l) Eliminate parentheses concerning the application of the opération of
multiplication;

rr.2) Substitute any occurrence of tu by uu, where u is the product of the
variables that occur in t, say in increasing order of the indices;

rr.3) Absorb in factors of the form u^ any adjacent factors in which only
variables of u occur.

A direct conséquence of Theorem 2.1 is that if u and v are two words
having the same content, then the implicit opérations uu and v^ of F n (J )
are equal. In the sequel, if B — c(u), we will sometimes dénote by Bw

this opération.
One can deduce from Theorem 2.1 a useful corollary.

COROLLARY 2.2: Let TT be an implicit opération of Fn(3). A séquence
(fti)i€N converges to ir in F n(J) if and only iffor every natural £, there exists
N E N such that i > N implies TT ~^ TTJ. • •
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2.4. Automata

We assume that the reader is familiar with the basic notions of the theory
of finite automata. We refer the reader to [9, 10] for an introduction to
this theory.

We dénote by A a deterministic finite automaton, by Q its set of states,
and by <&m- its initial state. A final state will be in gênerai denoted by qfin-
Recall that a path in A is a séquence of consécutive transitions. The set
of states reached from q after reading a word u is denoted by q * u. When
dealing with deterministic automata, this set is a singleton.

We will dénote transitions between two states by a solid arrow: p ——• q.
A dashed arrow represents a path between two states which is not necessarily
a transition: p ———• q. We also use this convention in figures.

In the figures of this paper, the initial state will be pointed out by an
arrow, and final states will be doubly circled.

The arrows of an automaton are usually labeled by letters. We will consider
automata whose transitions are labeled by implicit opérations on J instead.
We adopt for this kind of automata the définitions and conventions we have
just given for usual automata. We also extend the notion of recognizability:
we say that an implicit opération TT G Fn(J) is recognized by an automaton
A if and only if there exists a factorization -K\ • • • TT̂  of -K and a path
Qini > • • • Wk > qfin in A such that qini is the initial state and qfin a
final state. Such a path is said to be successful. The set of implicit opérations
that label successful paths is the language recognized by A,

3. HYPERDECIDABILITY

We associate to a finite graph F the System of ail équations of the form
xy — x1 where x ——* xf is an edge of F. We dénote this System by Ep-
For L Ç A+ , we dénote by L its V-closure.

Recall that a semigroup pseudovariety V is monoidal if it is generated
by ail semigroups S1 with S e V. The pseudovariety J is an example of
a monoidal pseudovariety. In order to avoid some technical complications
arising with semigroup pseudovarieties, we will define hyperdecidability for
monoidal pseudovarieties only. A more gênerai définition would not be
difficult to state, but is not needed in this paper. We say that a monoidal
pseudovariety V is hyperdecidable if the following problem is decidable.

Data: - A finite semigroup S = { s i , . . . , sn}.
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- The finite alphabet A = { a i , . . . , a n } together with the canonical
morphism from A+ onto 5 clefined by (p(a,i) = SJ.

- A finite graph F, whose set of vertices is X — {x\,..., x^} and whose
set of edges is Y - {y\,..., yi}.

- Eléments t\,..., %, u i , . . . , u\ of 5.

Problem: Do there exist irp G ip~^{tv) and pr G c^~1(nr) such that, for
each identity xpyr = xq of Er, we have itppr = ?rCi?

4. THE PSEUDOVARIETY J IS HYPERDECIDABLE

We prove that the pseudovariety J is hyperdecidable: first, we give an
algorithm to compute the J-closure of a given rational language (Section 4.1).
Next, we use this algorithm to détermine whether the System associated to
a finite graph has a solution (Section 4.2).

4.1, The J-closure of a rational language

This section shows how to compute the J-closure L of a rational language
L of A+. For this purpose, we construct from an automaton A recognizing
L a new automaton À recognizing L. As explained in Section 2.4, Â is
labeled by implicit opérations on J rather than by letters.

4.1.1. Construction of Â

DÉFINITION 4.1: Given a deterministic automaton A recognizing L, we
define Â as follows.

c l ) Start from A. The initial state of Â is the initial state of A.
c.2) For each state q and each subset B Ç A such that there exists a loop

q — — —> q with c(u) = B, add a new state qs in Â, a transition q > qg
and a transition q$ > g.

The "old" states of Â, which are not of the form qs, will be called
kernel states.

c.3) The final states of Â are the kernel states that were final in A. M

The terminology "kernel state" is only introduced for convenience in this
paper.

For Step c.2), notice that given a state q and a subset B of A, it is
decidable whether there exists a loop containing q labeled by a word of
content B. One can use for instance a breadth-first traversai to visit states
of A, starting from q and using letters of B.

vol. 31, n° 5, 1997



464 J. ALMEIDA, M. ZEITOUN

We now give an example of this construction.

EXAMPLE 4.2: Let A be the automaton of Figure 1.

Figure 1. - An automaton recognizing a*bb(ab)*b

There is a loop of content {a} around state q\ and loops of content {a, b}
around states qi and q^. After Step c.2), we therefore have three new states:

Ql {a}> Q2{a,b} a n d QS{aM'

This yields the automaton of Figure 2 (we drop the braces around sets
of letters).

Figure 2. — The automaton A

We leave to the reader to check that this automaton recognizes the J-
closure of the language a*6è(afe)*6 recognized by A~ In this example, it
could easily be verified that this closure is [(a* U aw)ö6(a6)*6] U (a6)u;.

4.1.2. The result

The property we have just observed in Example 4.2 is gênerai.

PROPOSITION 4.3: Let L Ç A+ be a rational language and let A be a
deterministic automaton recognizing L, Then, the automaton À constructed
in Définition 4J recognizes the J-closure L of L.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Proof: Let K be the language recognized by Â We have to show that
K — L, Let us begin with some simple remarks that follow directly from
the construction of À.

FACT 4.4: Let p > g be a transition of Â. Then
a. 7T — Bu if and only if p is a kernel state and q — PB-
b. 7T is a letter if and only if both p and g are kernel state s.
c. % — e if and only if p is not a kernel state. In this case, g is a kernel

state and p = qs. I '

In order to show the inclusion K Ç ï , we study in the next lemmas two
particular kinds of paths in Â: those labeled by explicit opérations and those
labeled by products of idempotents.

LEMMA 4.5: Let g, g7 be states of À, let u = m • * • U& be a nonempty word
and let q ———> g' èe a /?a//z in Â. If q is a kernel state, then so is g' and
the path q ———• g' is present in A.

Proof: It is sufficient to prove that each state of the path is a kernel state.
By Fact 4.4.C, there is no er-transition starting from a kernel state. Moreover,
Fact 4.4J>. implies that each state reached from a kernel state by reading a
letter is also a kernel state, so a straightforward induction on \u\ gives the
desired result. •

The handling of e-transitions now requires a définition. We say that a
factorization n = TÏ\ • • • 7Tfc is compatible with a pair (p,p') of states of an
automaton A if there exists in A a path p ~ po Pl > • • • Pf > p/ = p ; such
that the séquence obtained from ( p i , . . . , p{) by removing each empty pi is
equal to (TTI, . . . , TT^). We call the séquence ( p i , . . . , p{) a TT-séquence with
respect to (p,p')- The factorization (7r i , . . . , 7rfc) of TF will be understood.

LEMMA 4.6: Ler TT be in F n ( J ) anrf /e? u^ • • • • tf£ be a factorization of TT

compatible with a pair of kernel states (qyq
f) of A. Then q — qf and there

exists in A a path of the form

q > q > > q —

where

Proof: Set Bi = c ( ^ ) . Let ( p i , . . . ,p;) be a 7r-sequence with respect to
(g, g7). State g is a kernel state, so p\ / e by Fact 4.4.C. Therefore, p\ — v^
and g • pi .= qsx (Fact 4.4.a). Since g' is a kernel state, qs1 ƒ g' so that
Z > 2. By fact 4.4.c, the next transition is labeled p% — e and leads back
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to state q. Therefore, the first transitions are q — -̂> qsx ——> q- An easy
induction then gives q = qf and the following path in Â:

Now, Step c.2) of the construction of À together with the présence of qui

shows that q is a state of A belonging to a loop labeled by a word WÏ of
content Bi = c(v{). •

Let us now conclude the proof of the inclusion K Ç L. Take 7r in if. By
définition of K, there exists a factorization

of TT which is compatible with a pair (qini, q f in) of A where qtni is the
initial state and q^n a final state of Â. Each usj is a letter and each v^r is
an idempotent. Set us — us^\ • • • usjs and TTS = t^ j • • * vs°j,- By convention,
7T is explicit if k = 0. In the same way io (resp. Zfc) may be equal to
zero, in which case uo (resp. Uk) is empty. On the other hand, is > 1 for
1 < s < k - 1.

Consider the path V associated with a 7r-sequence with respect to the pair
{qini, qfin)' Let ps be the state of V reached just before doing the transition
labeled by us^\ and let qs be the state of V reached just after doing the
transition labeled by usjs. If uo — £ (resp. if Uk = e), po (resp. qk) is not
defined. One can picture V by the following diagram:

qini = Po --—»• go - - - > pi • • • Çfc_i --"-^ pfc ~ - ^ qk — qfin

where the first arrow (resp. the last arrow) is not present if ito (resp. u^) is
empty. In this case, g0 = qvni (resp. pk = qfin).

For 1 < 5 < k — 1, us is not empty. By Fact 4.4.b, both ps and qs are
kernel states. This is also true for po and go (resp. for pk and g )̂ if uo (resp.
Uk) is not empty. If uo — e, then go is the initial state, so it is a kernel state.
In the same way, if itfc = e, then pk is a final state, hence it is a kernel state.
To sum up, each pi and each qi is a kernel state.

Therefore, one can apply Lemma 4.5: there exists a path

Ps • qs {Ps)
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in A (provided that po is present for s — 0 and that qt is present for s = k),
One can also apply Lemma 4.6 between states qs and ps+i* This gives the
equality qs — ps+i and the path in A

qs —-i-» qs _^'_> . . . _ ± ^ qs =

with c(wsj) = C(IJ5)Ï). Joining all paths (Vs) and (7^) together in the natural
way, we get a path in A going from the initial state to a final state. Therefore,
the language L recognized by A contains

•fc-i

1 1 s V 5,1
Ls=o

It is obvious that u^ lies in the J-closure of u*. Therefore, L contains
the implicit opération n.$=o u& ' (w%i ' ' ' w%iMuk' Now, v^i and v^- are
equal in F n (J) . Indeed, c(w$,i) = c(v$j), and therefore we get the same
canonical form for both opérations (using the réduction rules of Section 2.3).

[ r, i l —

Yls-Q us'KsWk belongs to L, as required.J
Conversely, let us prove the inclusion L Ç K. We borrow some notation

from Simon's article [12] and recall three combinatorial properties of the
congruence ~£ (defined in Section 2.3). We write x Re y if x ~f y and
there exist u and v in A* and a in A such that x = uav and y — uv. Let
R£ dénote the reflexive and transitive closure of Rg.

LEMMA 4.7: Let u and v be in A^~ and let £ > 0. Then, u ~^ uv
if and only if there exist u\,..., u>i in A+ such that u — u\ • - • U£ and
c(v) Ç c{u(i) Ç .. • C c(ui). •

LEMMA 4.8: For u and v in A* and a in A, uav ~# uv if and only if there
exist p and pf such that p + pf > £, u ~p ua and v ~2y av. •

LEMMA 4.9: For every x and y in A*, x ~n y if and only if there exists z
in A* such that z R^ x and z i2| y. •

We shall need another définition in the sequel.

DÉFINITION 4.10: Let x i , . . . , Xfc,yi,..., yjb_i be words in A* and let
m > 0. Define a factorization UiViWi of yi as follows:

- If xi+i 7̂  e or if i = k - 1, then Wi = e. Otherwise, W( is the largest
suffix of yi of content contained in C(T/J+I).
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- If x% 7̂  e or if i — 1, then u% — e. Otherwise, u% is the largest prefix
of yi of content contained in c(y?;_i).
We say that the product xiyi - • •Xk-iyk-i%k is m-normal if the following
conditions hold,

n.l) The first letter of X{ does not belong to c(ï/i_i) and the last letter
of xt does not belong to c(yï).

n.2) If x% — e, then c(yi-\) and c(yi) are incomparable.
n.3) The factor ui of yi is a product of m words of content c(yi). •

The proof of the inclusion L Ç K consists in three steps:
- Take a canonical factorization xiB%'• • ••Xk-iB%_1Xf£ of an implicit

opération ir in L, At first, an intuitive understanding of the J-closure
suggests that for m large enough, there exists in L an m-normal product
xiyi * • • Xfs-iyk-iXfc with c(yi) = Bi. This fact is shown in Lemma 4.14.

- Next, if m is large enough and if such an m-normal product is
recognized by A, there should exist a factorization y% — ViSiU, with
c(si) = c(yi)j and such that the path labeled si is a loop. Consequently,
x\{r\s\t\) - - • Xk-i(rk-isli_1tk-.i)xk is also recognized by A. This is stated
in Lemma 4.15.

- Lastly, this will imply that xiB™ - - • Xk-rB^^xu is recognized by Â.

Let us begin with some technical lemmas.

LEMMA 4.11: Let x\y\ ^ - x^-iyk-iXk &e an m-normal factorization of
z E A* and let l E [l,fe — 1]. The following assertions hold:

(i) Let x\+1 be a nonempty prefix ofxi+i. Then c(a;J+1) % c{yi).
(ii) The inclusion c(rr/+i?//+i) Ç c(yt) does not hold.
(Ui) Let a E c(yi) and assume that yi — y^-y'/. Set y\ — y[ayf( and yi — yi

for i =̂  l. Then the product z — x\y\ * * * x^-iyk-i^k is m-normal.
(iv) Let yi — uivjwi be the factorization of yi defined in 4.10. Let y% be

the word obtained from y\ by removing one letter in uj; (resp. in w\) and let
yi = Vifor i yé: L Then the product z = xiyi - - -Xk-iyk-i^k is- m-normaL

Proof: The first assertion follows from the fact that the first letter of xi+i
does not belong to c(yi).

For (ii), we therefore deduce that if c(xi+iyt+i) Ç c(y/), then x/+i must
be empty. Hence c{y{) and c(yi+i) are comparable, in contradiction with n.2).

For (iii), c{yi) — c(yi), so n.l) and n.2) that hold for z also hold for z. Let
yi — UiViWi be the factorization of yi defined in 4.10. Since c{yi) = c(yi),
the factorization of yi for % ^ l is yi — UiViWi.. Suppose that a is inserted
inside uu that is, u\ — v!xv!{, and y\ = (u^au'Dvjwi. If a does not belong
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to c(2/i_i), the factorization of y\ is ufawi with v\ — av!(vi. If a belongs
to c(y/_i), this factorization is yi — ütv\wi with ü\ — u\auf(. In both cases,
we check that n.3) is satisfied. The proof is dual in case a is inserted inside
w\. In the remaining case, one can write vi = vfo" with v\ — v^avf* The
factorization of y\ is u\viwi, and n.3) is still satisfied.

The proof of (iv) is analogous. •

LEMMA 4.12: Let z G A*. Assume that z has a factorization

z = xiyi • • • Xk-iyk-i%k (!)

Let m > \x\ • • -Xk\-\-k—1, and suppose that the factorization (1 ) is m-normaL
Let i > 2m, let z — z! zn and let a E A such that z = z'az" ~t z. Then z
has an un-normal factorization x\y\ • • • Xk-iyk-i^k where c{yi) — c(yi).

Proof: We consider two different cases.
lst case: There exists x\ = x[x" such that a is inserted between x\ and

x*(. We deduce from Lemma 4.8 and (1) that there exist p and pl such
that p + pJ > l,

xiyi - * -x\ ~p xiyi"' x{a (2)

and

Since p + pf > £ > 2m, we have either p > m or p' > m. By symmetry,
one may assume for instance that p > m. We will show that l > 1, Xj — e
and a G c(y/_i). From Lemma 4.7, we get words s i , . . . , sp such that

xiyi "-x\ — 5 i "-sp ( 3 )

and
a G c(sp) Ç-.Ç c(si) (4)

The function from [l,p] to [1, \x\ - - • x&\ + fc — 1] which maps i to

ma,x{\xix2- * -Xj-xx'j] + j - 1 s-t. xiyv • -Xj-iyj-ix'j

is a prefix of s\• • -Si, Xj is a prefix of XJ}

is clearly order preserving in view of (3). Since p > m> \xi • * • x&\ + k — 1,
this function maps two integers of [l,p] to the same image, Consequently,
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there exist naturals g, r such that sq is a factor of yr. Suppose that r < l — l.
Then we would have

c(yr) 2 c{sq) D c(sq+i -*Sp)D c(xr+1yr+i • • • x\) (5)

Hence c(yr) 5 c(xr+iyr+i) and we get a contradiction with Assertion (ii)
of Lemma 4.11. So r — l — 1. Now, x\ must be empty, in view of (5)
and Assertion (i) of Lemma 4.11. Set yj — yj for j — 1 , . . . , k — 1, j ^ r
and yr — yr * a. NOW, a G c{sq) Ç c(yr), so c(yr) = c(yr). Therefore
x\y\ • * -Xk-\yk-\Xk is an m-normal factorization of z by Assertion (iii)
of Lemma 4.11.

2nd case: There exists y\ — y\y" such that a is inserted between y[ and
y". If a belongs to c(yi), the factorization of z is m-normal, in view of
Assertion (iii) of Lemma 4.11. We may now assume that a is not in c(yi).

As in the first case, one may assume that there exists p > m such that

and Lemma 4.7 gives once again words s\,..., sp satisfying (4) and such that

Since p > m > \x\ • • -Xk\ + k — 1> an argument similar to that used in
the first case shows that there exists q such that sq is a factor of y\ or
of yr for a given r < l — 1. If sq were a factor of y\, (4) would give
a G c(sq) C c{y[) C c(yi), a case we excluded. So we may assume that sq

is a factor of some yr. Therefore,

c(yr) 5 c($q) 5 c(sq+i • * • $j>) 2 c(av+iyr+i • • • y{) U {a} (6)

By Assertions (i) and (ii) of Lemma 4.11, we have r = l — 1 and xr+i = e.
Let yi = UiViWi be the factorizations of y« defined in 4.10. By définition,
the first letter of v\ does not belong to c(y/_i). Now, c{y[) Ç c(y/_i)
by (6), hence y\ is a prefix of u/. Let u/ — y\ûu vi-i — vi-iwi^iy^a and
wi—i = e. Define ŷ  = UiViWi for i < l — 1 or i > l, yi—\ = n/_it;/_iit;/_i,
and y/ = üiviwi. Note first that c(yi) Ç c(2/j). Since (1) is m-normal,
we also have c(yi) = c(^), which gives c(yi) = c(yi), so the product
x\yi * * • Xfc-iyk-i^k satisfies conditions n.l) and n.2) of Définition 4.10.

Let us see that n.3) also holds. We have c{vi—\wi^\) C c{v\—\) — c{yi_\)
since (1) is m-normal. Furthermore, we have by (6) a G c(y[) Ç c(yi„\) —
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c(vi-i). Hence c(£/_i) = c(vi-\wi-\y[a) Ç c(vj^i), Since vj_i is a product
of m words of content c(^_i) and is a prefix of £/_i, £/_i is also such a
product. Next, tt)/_i = e is the largest suffix of £/_i with content contained
in c(yi), because the last letter of yi-\ is a which does not belong to c(y{).
For the same reason, the largest prefix of y\ with content contained in c(yj_i)
is u\. The remaining vérifications are straightforward. •

Lemma 4.12 has a dual version: instead of inserting, one can delete a
letter. We state this result without giving the proof, which is very similar
to the previous one.

LEMMA 4.13: Let z in A*. Assume that z has a factorization

z = xir/1 - - - Xk-Wk-iXk

Let m > |xi • * • Xk\ + k — 1. Assume that the factorization (1) is m-normai
Let £ > 2m, let z = z'az" and let a e A such that z = z'z/f ~£ z. Then z
has an m-normal factorization x\y\ • • * x^^iy^^ix^ where c(yi) — c(jji). •

We are now able to state the result announced in the first step of the proof
outline of the inclusion L Ç K (page 10).

LEMMA 4.14: Let x\Bf • • • Xk-iB^_1xjc be the canonical factorization of
an implicit opération ir on Fn(3) where each X{ is a (possibly empty) explicit
opération. Let m > \x\ • • * x& | + k — 1 and t > 2m, and let w be a word such
that w ~£ ir. Then, w has an m-normal factorization xiyi • • • Xk-iyk
such that, for i — 1,...., k — 1, c(yi) — B%.

Proof: Let U be an arbitrary word of content Bi and let t be the word

Notice that ir ~£ t, so TT ~^ w implies t ~£ w. From Lemma 4.9, we know
that, since t ~g w, there exists z E A* such that z Rg t and z R^ w. By
définition of i£|, this means that there exist words zo,--^zi and ZQ, . . . , ̂ (v
such that

t = zo - e ^i ~* ^ ZÏ = z (8)

^ — ^0 ~£ zl ~£ ' ' ' ~£ zi' = ^ (9)

and such that ^ + 1 is obtained from ^ by inserting a letter, and z'l+1

is obtained from z\ by deleting a letter. We first consider (8). Since
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the factorization of ?r is the canonical one, we start from an m-norrnal
factorization (7) of t. Apply i times Lemma 4.12, successively between ZJ
and 2j+i, for j — 0 , 1 , . . . , i — 1: each ZJ has an m-normal factorization
of the form xiy^i • • • Xk~iyj,k-i%k with c(yjj) = c(f/). This holds in
particular for ^ = z. Now, we use (9). Apply i' times Lemma 4.13,
successively between zl- and ^ + i , for j = 0 , 1 , . . . ,z' - 1: each ^
has an m-normal factorization of the form x\y'3j • • -Xk—iVj k-ixk WItr i

f f = Bi- T h i s h o l d s i n part icu lar for

LEMMA 4.15: Let u = rriyi • * •Xk-iyk-i%k be an m-normal product
labeling a path V in an automaton A. Dénote by Q the set of states of
A, and assume that m > \Q\. Then, each yi admits a factorization riS-iU with
c(s{) = c(yi), and such that the subpath ofV labeled $i in A is a loop.

Proof: Définition 4.10 implies that each yi is a product of m factors of
content c(yi). Thus we may set

Let qini be the initial state of A. Fix an index i < k — 1 and set

q% = Qini ' (xiyi --^i)

and
Qij = Qi ' (ziA ' ' * zij)i 3 = 1, • • • ) m

Since m > \Q\r there exist j , k such that j < k and qij — ĝ fc. The path
between g?;j and ĝ fc is labeled Z{ — Zij+i • • • z^, which has content c{yi).
In other terms, there exists a loop in A labeled by a word of content c{y%)
between states qij and g^ , as depicted in Figure 3.

Figure 3. - The path between qi and qi+i

The resuit is obtained by choosing V{ — z^i' — Zij, st = zl and
U = •

In order to prove the inclusion L Ç K> take a canonical factorization
x\Bf • • • Xfe-iB^jXk of 7T E X, and let (U«)2-€M be a séquence of words of
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L converging to ?r. Fix m such that m > \Q\ and m > \x\ • • • xk\+ k — 1,
and let £ > 2m. By Corollary 2.2, there exists a member u of the séquence
(w{)«€N such that 7T ~<? u. Thus, by Lemma 4.14, u has an m-normal
factorization of the form

u = siyi • • •Xfc-iyfc-iXfc, c(^) = Bi (10)

We now apply Lemma 4.15. Let V be the successful path labeled u
in A Each y; has a factorization ris%tu where c(s«) = B^ such that the
subpath of P labeled s% is a loop, say around state qi. Therefore, there

Oui

exists a state ^ &.. in ^ and transitions qi —L-> g? 5. > ĝ  built at
Step c.2) of Définition 4.1. The path in À obtained from V by replacing

each loop qi ——-» q% by the transitions qi — ^ ^ 5. > ̂  is successful.

It is labeled xi(nBfti) • • • xk~\{rk_1B%_ltk^i)xk. Now, c(ri^) Ç Bu
whence riBfU = B^ in view of the réduction rules giving the canonical
form of an implicit opération on J. So x\Bf • - • x^-iB^^Xk is recognized
by Â that is, ?r belongs to K.

4.2. The algorithm

In this section, we prove the main resuit of the paper.

THEOREM 4.16: The pseudovariety J is hyperdecidable.

Proof: We will need in the sequel two closure properties: given two
automata recognizing two languages L\ and L2 of F n (J) , Lemma 4.22 shows
that one can construct an automaton recognizing L\ f)L2, and Corollary 4.24
gives the construction of an automaton recognizing L^1L,2. The proofs of
these results are based on their counterparts for standard automata: they
require an element of Li R L2 to admit a factorization labeling a successful
path in each of the automata recognizing L\ and L2. With our automata,
a natural candidate for this common factorization is obtained from the
canonical form by splitting each explicit opération in a product of letters.

The définition of Â was suitable for proving that it recognizes L. It was
convenient for this proof to have only one transition starting from state <?#,
so that a given factorization of an implicit opération could label at most one
path. But this has also a major drawback: it may happen that TT is recognized
by Â yet the product obtained from its canonical factorization by splitting
each explicit opération in a product of letters is compatible with no pair
{QiniiQfin) °f *Â~ For instance, the automaton À of Figure 2 recognizes
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b • {ab)u • e - b • b = (ab)u, but there is no path labeled by e and (a6)w

going from q\ to q±.
To get a nicer situation, we will slightly modify À without changing the

language it recognizes. Let A be the automaton obtained from Â by adding
the following steps to its construction:

c.4) For each state qs and each kernel state qf of Â, add an arrow
qs —• ql labeled e if there is a path in A from q to qf whose label has
content contained in B.

c.5) For each state qs and each kernel state g' of Â add an arrow
qf —• qs labeled B^ if there is a path in A from qf to q whose label has
content contained in B.

EXAMPLE 4.17: We go back to Example 4.2. Step c.4) adds some new
e-transitions, as shown in Figure 4. Step c.5) adds some other transitions
labeled B w . For instance, there is a transition from q\ to Ç2 labeled b in
Figure 2, and b belongs to {a,6}, so we must add a transition from q\
to #2 {a,b} labeled (ab)u in Â, We finally get the automaton of Figure 5.
One can check in this example that Â recognizes the same language as Â.
Moreover, in A, (ab)u is compatible with (gi,<?4).

Figure 4. - After Step c.4)

These two requirements expected for *4 are stated in lemmas 4.18 and 4.20.

LEMMA 4.18: The automata A and A recognize the same language.

Proof: It is clear that every implicit opération recognized by Â is also
recognized by Â, We claim that the converse also holds. We will prove
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Figure 5. - The automaton À

for instance that each implicit opération recognized by the automaton A!
obtained after Step c.4) is also recognized by A. The proof that each opération
recognized by A is also recognized by A! would be similar.

Let qs • q1 be a transition of A! added by Step c.4). By construction,
qs is linked to the kernel state q in A. If a successful path in A! uses the
new transition qs > q\ then, there is a state p preceding ç# in this path,
because qs cannot be initial. Necessarily, p = q (see Fact 4.4), and there is
only one transition from q to qs, labeled Bu', which occurs also in Â. We
thus have a subpath of our successful path in A!:

q > qB — -̂> q'

What we have to show is that there exists a path in À labeled Bu between
states q and qf, If q — qf, then there is nothing to do. Otherwise, the
transition qs • q1 cornes from c.4), so there is a path q ——> qf in A
with c(u) C B. Therefore, the path

B w e u i
q • qs • q > q

in A is labeled B^u — Bu, as required. •

DÉFINITION 4.19: Say that an automaton A satisfies Vj if the following
holds: for each implicit opération n labeling a path from p to q in A, thè
factorization obtained from the canonical form of n by splitting each explicit
opération in a product of letters is compatible with the pair (p, q). •

LEMMA 4.20: The automaton A satisfies Vj.
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Proof: Let TTI - • -717 be a factorization of TT compatible with (p,q) in Â.
We show by induction on l that the canonical form of ?r is also compatible
with (p,q). If l = 1, then ?ri • • -717 consists either in a single letter or an
idempotent, hence it is canonical and there is nothing to do.

Assume now that the factorization TTI • • • 717 is not canonical. The canonical
form may be obtained from TTI • • • 717 by applying repeatedly Rule rr.3) stated
in Section 2.3. Thus, we have in TTI • • • 717 two adjacent factors TT{ and TTJ+I,

one of them being idempotent and containing each letter of the other one.
We are led to Cases 1) to 4) below. In each of them, we shall use the
following observation, similar to 4.4.

FACT 4.21: Let p ——> g be a transition of A. Then
a. TT = 5 W if and only if p is a kernel state. In this case, q is of the form r#.
b. 7T is a letter if and only if both p and q are kernel states.
c. TT = e if and only if p is not a kernel state. In this case, q is a kernel

state. •
1) rvi — a and TTÏ+I = Bw with a £ B.

In view of Fact 4.21, we have in A a path p ——> q > TB where
p and q are kernel states. If q ^ r, then the transition q • TB comes
from Step c.5), so there is in A a path q ———> r with c(u) Ç B. Hence
p *• r is a path in A, which also exists when q = r (take u — e). Since
c(au) Ç B, there is a transition p > TB in A, added in Step c.5), and we

can use it instead of the original transitions p ——> q ——> r^.
2) TT» = Cw and TT^I = Bu with C Ç B.

Again by 4.21, we have in A the path p > qc > r > SB*
By construction of A, there exist in A two paths p ———* q and
q ———• r with c(u) , c(v) Ç C Therefore, c(uv) Ç B. Considering the path

p — —"—*- r* > 5,B and using Case 1) \uv\ times, we obtain in A a transition

p y QB^ that can be used instead of p > qc • r » s%.

In Cases 1) and 2), the factorization obtained from iz\ • * • 717 by removing 71̂
has Z — 1 factors and is compatible with (p,q).

3) 7Ti — Bu and 7^+1 — a with a £ B.

By Fact 4.21, we have in A a path p • g ^ —^—> r ——> s. If
q ^ r, the transition qB > r comes from Step c.4), so there is a path
q > r with c(u) Ç B. Therefore, we obtain the path q ———• 5 with
c(îxa) Ç 5 , which also exists when q — r (take n = é). By Step c.4), there
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is in Â an e-transition from ^ to s. Therefore, we can replace the path

p > qB > r y s by p > qB > s.
4) 7T2 = B" and TT +̂I = C" with C Ç B .

Fact 4.21 shows that we have in A a path p • QB • r >
5c > t. As in Case 2), there are in A paths q ———> r, r ———> s
and 5 ———> t with c(u) Ç B and C(V),C(IÜ) Ç C Ç B , yielding the path

p > qB —̂—̂  # _ ^ l i ^ ^ Using Case 3) \uvw\ times, we obtain in Â

the transitions p > qB > t.

In Cases 3) and 4) the factorization obtained from TTI • • • 7rj by removing
7T2+i has l — 1 factors and is compatible with (p,q). This complètes the
induction. •

We now build from Â the e-free automaton recognizing the same language
with the classical algorithm: for each letter or idempotent opération ir, we
dénote by <5(<?,TT) the set of states q' of Â such that TT is compatible with
(q,qf). This set can be easily computed. The er-free automaton has the
same set of states as À, the same initial and final states, and its transitions
are defined by q * ir = 5(^,TT). Dénote by A the automaton obtained by
determinizing this e-free automaton (viewing idempotent opérations as new
letters). Then Â is a deterministic £-free automaton that recognizes the same
language as A (See [9] for these proofs.) More precisely, the statements
obtained by replacing À by Â in Lemmas 4.18 and 4.20 hold. We will now
deal with such automata, that are convenient for obtaining closure properties.

LEMMA 4.22: Let A\ and A2 be automata recognizing Li, L% Ç F n(J)
respectively. Assume that A\ and A2 satisfy Vj. Then one can construct an
automaton AL^LZ satisfying Vj that recognizes L\ Pi L%

Proof: It suffices to check that the usual construction giving the automaton
^LlnL2

 t n a t recognizes the intersection of two rational languages works:
if Q\ (resp. Q2) is the set of states of A\ (resp. of A2), then the set of
states of Ai(1nL2 ^s Qi x Q%- ^ ^1 (resP* ^2) dénotes the set of final states
of Ai (resp. of A2), then the set of final states of ALxnL2 is i*i x F2.
Finally, ( p i , ^ ) -^—> (91,92) is a transition of AL^L^ i f PI ~ ^ 9i i s a

transition of A\ and P2 ——> qi is a transition of A2. The proof that AL1DL2

recognizes L\ D L2 is then classical. It is based on the fact that if n belongs
to Li n L2, then there is a factorization that labels a successful path in
both Ai and A2. In the present case, this property directly comes from Vj,
which is satisfied by Ai as well as by Ai* Let us verify that AI1C[L2 also
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satisfies Vj: assume that vr is compatible with a pair ((pi,P2), (<7i,<?2)) of
states of A^nLi- By construction, -K is compatible with (pi,gi) in *4i and
with (p2»92) in v42- By 7 ^ , the factorization obtained from the canonical
form of 7T is compatible with (pi,qi) in A\ and with (^2,42) in v42, hence
it is compatible with ((pi,P2), (91,32)) in -A^ni^. •

The generalization to a finite number of languages is straightforward.

CoROLLARY 4.23: Let Ai,..., Ap be automata that recognize L\,..., Lp Ç
FW(J) respectively, such that each Ai satisfies Vj. Then one can construct
an automaton satisfying Vj that recognizes nf=i Li- "

Now that we can compute intersections, it is possible to compute left
quotients as welL

COROLLARY 4.24: Let Ai andA% be automata recognizing Li, L2 Ç Fra(J).
Assume that Ai and A2 satisfy Vj. Then one can construct an automaton
AL-iL that recognizes Ljj"1!^-

Proof: Once again, we just check that the classical construction works. The
automaton AL-iL recognizing L^LÏ is obtained from A% by replacing
the initial state qini of A2 by a new set of initial states. All that remains to
prove is that we can détermine these states.

For a given state q of A2, dénote by A^q the automaton obtained from A2
by taking {q} for set of final states, and by £2,4 the language recognized by
Az,q* A state q is initial in AL-iL when there exists a path from g?;m; to q
labeled by a word of Li, that is, if Li n L2.q is not empty. Now, the property
Vj does not depend on final states; since A% satisfies Vj, so does Ai^.
Therefore, by Lemma 4.22, we can compute Li V\ L2A. Since emptiness of
a given rational language can be decided, we can détermine the set of initial
states of AL-iL2. •

Let us now conclude the proof of Theorem 4.16. Consider the problem
stated in Section 3: let S = { s i , . . . , s n } be a finite semigroup, let
A = { a i , . . . , a n } be an alphabet, and let tp be the canonical morphism
from A+ onto S defined by (p(a,i) = S{. Finally, fix a finite graph T,
whose set of vertices is X = {a;i,. . . ,x^} and whose set of edges is
Y — {y i , . . . , yi}, and fix éléments u\,..., Ufc, vi,..., v\ of S.

Assume first that F is strongly connected and has at least one edge. We

have for each i,i' a path x% ———• x%* —-—> x-i where y,y{ belong to
. Therefore, there exists p,p' G {pi , . . . , p / } + such that irip — TT̂  and
f — TTfc, hence iripp' = 7r«. The réduction rules giving the construction
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of the canonical form (Section 2.3) show that the canonical factorization of
7T? is of the form ixB^ and that c(ppf) Ç B. Therefore, TIV = Tr̂ p = TTJ.
Furthermore, each yj labels an edge in F, so that nBupj = TT.B^ and
c(pj) Ç 5- Thus, a necessary condition for having a positive answer to the
problem is: there exists a nonempty subset B of A and an implicit opération
7T in Fn(J) such that for each i — 1 , . . . , k9 tp~l(ui) contains TTB^ and for
each j = 1 , . . . , / , <p~1(vj) contains an element of content B. Now, this
condition is obviously sufficient.

As remarked at the end of Section 2.2, the content morphism is continuous
on J since SI is a subpseudovariety of J. Hence, there exists pj in ^>~1(^J)
such that c(pj) C B if and only if ^>~1(VJ) includes a word of content
contained in B. The necessary and sufficient condition for having a positive
answer can therefore be formulated as follows: there exists a nonempty
subset B of A such that

fc
KB = F n ( J ) 5 w H p | ip-l{ui) is not empty (Ci)

2 = 1

and

Lj,B = {wj € <p~l(vj) | c(wj) Ç B} is not empty (1 < j < l) (C2)

We say that KB and LJ^B are the B-test languages for F (the remaining
data are understood). We have to show that we can décide whether there
exists a nonempty B Ç A such that the S-test languages are not empty. The
nonempty sets B Ç A such that (C2) is satisfied can be easily determined.
Indeed, for a rational language L, dénote by C(L) the set of all possible
contents of a word of L, that is, C(L) — {c(w) | w E L}. One can compute
this set for any rational language, using the following rules:

C(W) = {{a}}

C{L U L') = C(L) U C(L')

C(L • L') = {cU c' I c G C(L) and c' G C(Z/)}

Now, (C2) is satisfied if and only if B belongs to flj-i

For each such B, one can then compute KB, and thus check (Ci). Indeed,
1) We have an automaton recognizing Fn(J)5u), given in Figure 6.
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Bw /f=!t\ where a runs in A

a Cw \£? and C in 2A \ {B}
Figure 6. - An a Lifo maton recognizing Fn(3)BUJ

Note that this automaton satisfies Vj.

2) We know by Proposition 4.3 an automaton Ai recognizing <p~~l(ui), and
the construction of A gives an automaton recognizing the same language
and satisfying

Thus, one can construct an automaton recognizing Ks by Corollary 4.23,
and test whether one of the KB's is empty or not. This concludes the proof
when F is strongly connected and not trivial.

Let now F be any finite graph. The previous considérations may be
applied in each strongly connected component T^ of F to obtain necessary
conditions. For the strongly connected component T^p\ dénote by K"£* and

(v)Lj g its J3-test languages. We already know that there is a finite number

of computable subsets B of A such that the corresponding Kg and Ir^g

are nonempty. Moreover, for such a subset, we can compute Kg . Since
they are finite in number, we can therefore fix in each strongly connected
component F ^ one language of the form Kg, and try to find out whether
this choice yields a positive answer for the problem.

Each edge yr from xq G F ^ to xp G T^ just requires the existence
of pr G cp~1(vr) such that, 7rqpr — irp. In other terms, we have to check
whether (Kg )~lKg is not empty. Now, we can compute each of these
left quotients by Corollary 4.24. Hence we can décide whether the problem
has a solution.

The resuit is proved when each strongly connected component of F has at
least one edge. To conclude, we establish a réduction to such a graph which
works for any monoidal pseudovariety. Let S = (5, A, (p,F, ( t i , . . . , tfc),
(u\,... )Ui)) be the data of the problem given in Section 3. We build new
data S = (S,À,(p,t,(ti,...,tk),(u1}...,uhvi,...,vk))J such that each
strongly connected component of F has at least one edge, and such that the
problem has the same answer on both data.

Let 5 = 5^(1}, where 1 is a new neutral element. Let À — Aw{a}
where a £ A, and let tp : À+ —» S be defined by CP\A = V\A and tp(a) — 1.
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The graph F is obtained from F by adding a loop at each vertex, and
v1 = V2 = • • • = Vfc — 1 are the éléments of S associated with these loops.

Define two continuons homomorphisms x : ^k(J) ~~̂  ^ Â ( ^ ) anc*
e : FA(J) - ( F A ( J ) ) 1 by x(6) - aw6aw(6 E A), and f(ft) = b(b e A)9

£(a) — 1. Note that the existence of £ requires that J be monoidal.

Suppose first that the problem has a solution (TTI, . . . , TT^),
(p i , . . . , pi, ai,..., àfc) on S. Then it is easy to verify that
ii(*i)>---,dàk)), (£(pi),--->Ç(pi)) is a solution for S. Conversely,
if the problem has a solution (7ri , . . . ,7Tfc), (p i , . . . , / ? / ) on 5 , one checks
that (x(^i, . . . ,x(*"fc)). ix(pi),---iX{Pl)iau;>--<>aÜJ) is a solution for 5 .
This concludes the proof of Theorem 4.16. •

5. CONSEQUENCES

This section states briefly some applications of Theorem 4.16. We first
recall some basic définitions. We say that a pseudovariety V is order-
computable if Fn(V) is finite and there is an algorithm to compute this
semigroup for each integer n. The join V V W of two pseudovarieties
V and W is the smallest pseudovariety containing both V and W. The
semidirect product V * W is the smallest pseudovariety containing ail
semidirect products S * T with S e V and T G W.

The first proposition follows from the gênerai results stated in [4].

PROPOSITION 5.1: Let V be an order-computable pseudovariety, Then the
join J V V w hyperdecidable. M

For instance, the pseudovariety B of finite bands is order-computable.
Therefore, Proposition 5.1 implies that J V B is decidable, a resuit proved
by hand in [13].

Silva and the first author [6] proved a theorem to state a similar resuit
in vol ving semidirect products.

PROPOSITION 5.2: Let V be an order-computable pseudovariety. Then the
semidirect product J * V is hyperdecidable. •

The last application answers a question proposed by Rhodes [11]
concerning the decidability of J V G, where G dénotes the pseudovariety of
finite groups. Its proof needs further developments and will be established in
a forthcomming paper of Azevedo and the authors. Recall that a semigroup
is completely regular if ail its 7Y-classes are groups.
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THEOREM 5.3: Let V be a pseudovariety of completely regular semigroups.

If V is strongly decidable, then J v V w decidable. In particular J V G is

decidable. •
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