
INFORMATIQUE THÉORIQUE ET APPLICATIONS

R. R. PUCELLA
An analysis of Lambek’s production machines
Informatique théorique et applications, tome 31, no 5 (1997),
p. 483-497
<http://www.numdam.org/item?id=ITA_1997__31_5_483_0>

© AFCET, 1997, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1997__31_5_483_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 31, n° 5, 1997, pp. 483-497)

AN ANALYSIS OF LAMBEK'S PRODUCTION MACHINES (*)

by R. R, PUCELLA C1)

Abstract. - Lambek's production machines may be used to generale and recognize sentences in a
subset of the language described by a production grammar. We détermine in this paper the subset
of the language of a grammar generated and recognized by such machines.

Résumé. - Les machine à productions de Lambek peuvent être utilisées pour produire et
reconnaître des phrases faisant partie d'un certain sous-ensemble du language décris par une
grammaire de productions. Nous déterminons dans cet article le sous-ensemble du language d'une
grammaire qui est produit et reconnu par de telles machines.

1. INTRODUCTION

The focus of this paper is the mechanical génération and récognition of
sentences from a production grammar [4, 8], which are known in mathematics
as semi-Thue Systems and in linguistics as rewriting Systems or generative
grammars. The latter, linguistics, is an important area of application for
production grammars. They were used to study French and Latin conjugation
[5, 6] and kinship terminology in English [7] and other languages [11, 1,
2, 3], Production grammars were also provided for subsets of English and
French [8, 13] and used in a naive approach to syntactic translation [13].

To generate and recognize sentences in languages defined by a production
grammar, Lambek combined two pushdown automata into a single machine
[9] and gave examples of the exécution of the machine on simple sentences
taken from a grammar describing a subset of English.

Our previous work [13] indicates that Lambek's production machines
generate and recognize a subset of the language of a grammar — in other

(*) Received november 1996, revised october 1997.
C1) Bell Laboratories, Room 2A-421, Lucent Technologies, 600 Mountain Avenue, Murray

HM, NJ 07974-0636, USA, Phone: +1 (908) 582-5391, Fax: +1 (908) 582-5857. Email:
riccardo @ research.bell-labs.com

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-5004/97/05/© AFCET-Elsevier-Paris

4 8 4 R. R. PUCELLA

words, they do not generate or recognize sentences not in the language. This
paper analyzes the machines in order to détermine exactly which subsets
of the language are generated and recognized. The sublanguage generated
is generally a proper subset of the language, which we call the leftmost
language. Correspondingly, the sublanguage recognized, also generally a
proper subset of the language, may be seen as a dual to the leftmost language.

2. PRODUCTION GRAMMARS

We review in this section the fondamental material needed in the paper.
We assume the reader is acquainted with the theory of formai languages, so
that only a short overview of the notation is necessary.

A production grammar is a tuple G = (V, Vi,Vt,V) where V (the
vocabulary or alphabet) is a finite set, Vi and Vt (the initial and terminal
vocabularies) are subsets of V, and V (the productions) is a finite or at least
recursive set of pairs (F, A) with F and A strings of éléments of V. We
usually represent an element (F, A) of V as F —> A. An element of Vt is
called a terminal symbol, while an element of V — Vt is called a nonterminal
symbol. A string of éléments of V will typically be denoted by a greek letter,
and individual éléments of V by capital roman letter.

From any production grammar G = (V,V«, Vt:V) one obtains the dual
grammar of G by taking G~r = (V, H, V^P" 1) where V~l is the set of
all pairs (A,F) such that (F,A) e V.

A production F —> A is applicable to a string a of element of V if a is
of the form criFc^. The application of F —> A to a is the string aiA<j2.
A production F —• A is leftmost applicable to a string a if a is of the
form criFö*2 and for any production Fr —• A', if a is of the form 71 F'72,
then [F| < \V\ and |<n|.< |7i|.

We define the leftmost réduction relation on strings of éléments of V as
follows: let ai —• 0*2 if a production of G is leftmost applicable to ai
and (72 is the application of the production to ai . A sentence is a string of
terminal symbols in V*. The leftmost language of a grammar G is the set
of ail sentences that can be derived via —^ starting from symbols in Vi.
If we define a réduction relation using the notion of applicability instead of
leftmost applicability, the set of sentences that can be derived is called the
language of the grammar. For emphasis, we sometimes refer to the language
as the full language of the grammar. It is clear that the leftmost language of
a grammar is a subset of the full language. The following grammar shows

Informatique théorique et Applications/Theoretical Informaties and Applications

AN ANALYSIS OF LAMBEK'S PRODUCTION MACHINES 485

that the inclusion may be proper:

S -
AB -

B C -

C -

A -

-> A B C
—» x

-»y

—» z

—> w

The full language of this grammar is {xz, wy}, and the leftmost language
is {wy}.

We assume in this paper that ail grammars under considération are well-
formed, in the sense that ail réduction séquences uitimately lead to sentences
— string of terminal symbols. This among other things implies that there is
at least one production for each initial symbol in V*. We shall also assume,
as it is usually done, that there is no empty production and that no terminal
appears on the left side of a production.

Let us now present three transformations one needs to perform on a
grammar G to make it suitable for treatment by the machine we introducé in
the next section. A requirement of the transformations is that they preserve
the leftmost language of the untransformed grammar.

The first transformation takes a grammar G with initial vocabulary Vi
and produces a new grammar G1 with a unique initial symbol, say S (this
symbol must be a new symbol not originally in V). The transformation
simply consists of adding a new production for every initial symbol of G-
For example, if Vi = {A,B,C}, we add the productions

S —> A

S —>B

S—>C

and let the new initial vocabulary be Vj = {S}. It is clear that the leftmost
language of G is preserved by this transformation. The second transformation
is the process of normalization. A production F —• A is called normal if
both F and A have length 1 or 2. A normal grammar is a grammar in which
every production is normal. Normalization produces a normal grammar from
a grammar, while preserving the leftmost language of the grammar. The
transformation consists in iterating the following production replacements
(the symbol N is always taken to be a new symbol not in V at every

vol. 31, n° 5, 1997

4 8 6 R. R. PUCELLA

production replacement):

T —> ABA ^ F —> NA

N —> AB

ABr —> A =>NF —> A

AB —> N
For the last production replacement, the same symbol N must be used for

all productions with the same left side, e.g. ABF. To see why the leftmost
language of the original grammar is preserved, consider the two cases that
arise: if F —> ABA is leftmost applicable, so is F —> NA, and once
applied, by leftmost réduction and since no other production may involve the
newly introduced symbol N, the next production to apply must be N —• AB;
similarly, if ABF —> A is leftmost applicable, so is AB —> N, and once
applied, the leftmost applicable productions include NF —> A (again, since
the newly introduced symbol N cannot appear in other productions not of
the form NF —> ...).

The next transformation we consider isolâtes the génération of terminal
symbols into their own production. Assuming the grammar under
considération is normal, iterate the following productions replacement
(the symbols N,Ni,N2 are taken to be new symbols not in V for every
replacement, and the symbols t,ti,t2 are taken to be terminal symbols):

F —> At =>F —> AN

N —> t

F —> tA ==>F —> NA

N —> t

F —> tit2 =>T —> NiN2

Ni —>ti

N2 —^t2

It is clear that this transformation preserves the leftmost language of the
original grammar.

Please note that the first transformation applied to a grammar G has the
same effect as the last transformation when one considers the dual grammar
G~1, namely to isolate the production of the (then terminal) symbol S.

The last transformation has the following interesting (and useful)
conséquence:

LEMMA 2.1: Given G ci grammar to which the last transformation above
has been applied. Ifa terminal symbol is produced after leftmost applications

Informatique théorique et Applications/Theoretical Informaties and Applications

AN ANALYSIS OF LAMBEK'S PRODUCTION MACHINES 487

of productions, then every symbol to the left of that terminal symbol will also
be a terminal symbol.

Proof: By the last transformation applied to the given grammar, since a
terminal is produced, then the leftmost applicable production must have been
of the form N —• t with t the produced terminal symbol. Assume that there
are nonterminals to the left of that terminal. Since no new nonterminal has
been introduced, no terminal may be used on the left of a production, and
the grammar is assumed to be well-formed, there must exist a production
applicable to nonterminals on the left of the terminal. But this contradicts
the fact that the production N —> t was leftmost. D

3. PRODUCTION MACHINES

Lambek describes in [9] a machine that allows us to generate and
recognize sentences from a production grammar. A production machine
[9, 10] corresponds roughly to a combinaison of two pushdown automata.
It consists of three potentially infinité tapes subdivided into squares. The
middle tape is the input/ouput tape, the top and bottom tapes are storage
tapes. Only one square in each taped is scanned at any given point in time.
The two storage tapes can move in either direction, whereas the input/output
tape moves only from right to left. The tapes are positioned so that all three
scanned squares are aligned (see Figure 1).

Figure 1. - Production machine

vol. 31, n° 5, 1997

488 R. R. PUCELLA

Seven moves are defined for production machines, parametrized by a given
grammar Q. The moves involve the scanned squares of the tapes:

c
0

(A)

C
(A)

left
0
B

C

B

(A)

right
stay
stay

0

B

A

stay

stay

left

0
B

(A)

(D)

C

right

if(A)B —>C(D)isin7>

0
D
0

left

left

stay

(A)

stay

left

stay

The (•) notation indicates that the scanned square may or may not be
empty, and 0 represents an empty square. A mention of "left", "right",
"stay" means that the corresponding tape should be moved left, right or stay
in the current position. We use the expression "move i—> via production P "
to explicitely state which production is involved in the move.

The machine may be used either to generate sentences from the grammar
or to recognize sentences in the grammar. Those two activities involve
different subsets of the genera! moves presented above, and different starting

Informatique théorique et Application s/Theoretical Informaties and Applications

AN ANALYSIS OF LAMBEK'S PRODUCTION MACHINES 489

and ending states for the machine. We will therefore speak of production
machines as though there were two types of machines: the generative machine
Mg(G) corresponding to a grammar G and the récognitive machine À4r(G)
corresponding to a grammar Q.

The generative machine of G has the following initial and terminal states:

Initial: Terminal: <sentence>

The machine is defined with respect to the grammar G, and the moves that
should be attempted in order are the following: 5, 6, 1, 2, 3, 4. We say that
a sentence a is producible by Mg{G) if the machine starts in the initial
state and ends up in a state

The récognitive machine of G has the following initial and terminal states:

Initial: <sentence> Terminal:

The machine is defined with respect to the dual grammar G 1 and the moves
that should be attempted in order are the following: 5, 7, 1, 2, 3, 4. We
say that a sentence a is recognizable by MT{G) if it ends in the terminal
state after starting in a state

We refer the reader to [9] for sample exécutions of the machine to generate
and recognize sentences in a simple grammar for the English language.

One look at the moves of a production machine shows that the
machine is fundamentally nondeterministic. Indeed, move i—> is used in
a nondeterministic way if more than one production with a left side of (A)B
is present in the grammar. For a generative production machine, this allows
the machine to generate different sentences. For a récognitive machine,
this introduces a complexity: possibly only one nondeterministic choice of
production to apply next leads to the terminating state of the machine,

vol. 31, n° 5, 1997

4 9 0 R. R. PUCELLA

as some examples in [9] show. Hence, a récognitive production machine
must consider concurrently all the possible applications of move 5 and
terminate when one leads to the terminating state. A sentence a is therefore
recognizable if one of the concurrent considération of an application of move
i—> of the récognitive production machine reaches the terminal state.

4. GENERATION

We analyze in this section the generative production machine Mg{G) of a
given grammar Q. We show that the language generated by Mg{G) is exactly
the leftmost language of Q\ a sentence a is producible by Mg(G) if and only
if a is in the leftmost language of G- Without loss of generality, we may
assume that the grammar G under considération is a normal grammar with a
unique initial symbol S and with a unique production corresponding to the
génération of every terminal symbol. As we saw earlier, any grammar may
be transformed into such a grammar defining the same leftmost language.

The idea underlying the proof is straightforward. Given a grammar G
and a generative production machine Mg(G), we show that the graph
corresponding to the leftmost réduction relation is isomorphic to a graph
corresponding to the moves of the machines. Therefore, a string in the
leftmost language of G obtained by leftmost réductions may be generated
by the machine following the moves specified by the isomorphism, and
vice-versa.

The main operational tooi we use is a transition graph. Given a set D, a
subset I of D and a non-transitive relation < over D, define a family of
subset of D by the équations

Sn+i — {b : a < b for some a E Sn}

The transition graph of < generated by / is the graph with nodes in U^LO5W

and an edge between a, b G U^L05n if and only if a < b. Define a layer of
the transition graph T over < generated by / to be the set of all element of
the graph at a certain distance of an element of the initial subset, layi{T) —
{a : 3ao,.. -, a^_i G T such that CLQ G I and ao < • • * < a^_i < a\, If T
is defined by the above équations for 5o and Sn+i, it is not hard to see
that layi(T) = St.

For a given grammar G with initial symbol S, the leftmost réduction
relation over strings in V* lead to the transition graph of —> generated by
{S}, which we will dénote by C. It is this transition graph that we will

Informatique théorique et Applications/Theoretical Informaties and Applications

AN ANALYSIS OF LAMBEK'S PRODUCTION MACHINES 491

show is isomorphic to a transition graph derived from the moves of the
generative machine.

Taking the i—> relation over the states of the machine also leads to a
transition graph, but it is easily seen to be much larger than the transition
graph £, since for every production application (which corresponds to a
move i-̂ ->), there are other administrative moves that the machine needs to
perform. However, the key consideraton is the following: all the moves the
machine makes are deterministic, except for move i—>, since there might be
many applicable productions at that point. If the grammar is well-formed,
the following lemma is easily seen to hold:

LEMMA 4.1 (Determinacy): Given a state s ofMg(G) which allows a move

i—> to a state s'. There exists unique states and moves
5 / Tïl\ Î7Î-2 m<k

such that m\,..., m^ ^ 5 and state s& allows either no moves or a move i—>.
We define a réduction relation »-̂ -> between states of Mg(G) that allow

5either a move H—* or no move at all: in the statement of the above lemma,
if s i—> s! via production P, we say that s i—> s^ via production P. This is
well-defined (by the above lemma) and can be seen as a collapse of the i—>
transitions. The following result is a reformulation of lemma 4.1 :

COROLLARY 4.2: Given s a state of Â4g(Ç). Ifst-^->si via production P
and s \—• 52 via production P, then si = 52*

Let T be the transition graph of t-̂ -> generated by the machine state

We now show that £ is isomorphic to T. Let us first define a mapping
between strings of éléments of V and states of Mg{Q). This function will
be the isomorphism we are looking for.

DÉFINITION 4.3: Given a grammar G = (V, VÏ, Vt,V), and a a string
of éléments of V. Suppose a is of the farm t\ .. Jpn\ .. .nqP\P2in\ • - *mT>
where * i , . . . ,tv are prefixing terminal symbols, n j , . . . ,nq,Pi,P2,mi,.. • ,wr

are nonterminal symbols and the leftmost applicable production ofV to o, if
any, is of the farm P1P2 —• ». (P\ might be empty). Define the function F by

vol. 31, n° 5, 1997

F(a) = tl'

ni •
"h
•nq

0

Pi

4 9 2 R. R. PUCELLA

or (if no production is applicable to <J)

0
F(a) =

The symbols Pi (if any) and P<i are said to be in application position.

LEMMA 4.4: F is injective.

Proof: Given er, a' € C Assume F (a) = F(af). Then a =ti .. .tpcri and
er' =ti .. Xpa

f
l9 with a i , ^ strings of nonterminals. If no symbols are in

application position, then by the définition of F both a, er' are strings of
terminals, and by the above a = a'. If Pi and P2 are in application position
(Pi might be empty), then ai = 0%PiP2«73 and aj = <f2

piP2^3 an(^ agai*1 by
the définition of F , 0-2 = «jg and az — a'3. Thus a — a! and F is injective.

LEMMA 4.5: Given a, crA E £, Âen a —> af implies F(a) *—» F(af).

Proof: Given er, a' G £. Assume a is of the form rAj • • -An. Four cases
arise, depending on the form of the production applicable to a (there must
be one).

1. Ai —» t with t a terminal symbol, and af is of the form

rtA2 * • • An

2. A1A2 —> t with t a terminal symbol, and af is of the form

rtA3 • • • An

3. Afc —> F for some k, and a' is of the form

TAI • • • Afc_irAfc+i • • • An

4. AfcAfc+i —> F for some fc, and a! is of the form

TAI •••Afc_irA/c+2 ---An

It is straightforward to show that in all those cases, F(a) K -̂> F{G}). D

LEMMA 4.6: G/ven a. er' G £, then F(a) ^> F{a!) implies a —> aA.

Proof: Assume F (a) *—> F(af) via production F —» A. By définition
of F , T —> A is leftmost applicable to a. Let o —> an via production

Informatique théorique et Applications/Theoretical Informaties and Applications

AN ANALYSIS OF LAMBEK'S PRODUCTION MACHINES 493

r —> A. By lemma 4.5, F (a) H -̂> F(a") via production F —> A. By
corollary 4.2, F{<r') = F(aïf), and by lemma 4.4, a' = a" and thus
a —> a'. D

LEMMA 4.7: = T.

Pwof: We show by induction on i that \/i F(layi(£)) = layiÇT), which
clearly implies the statement of the lemma.

The base case of the induction is trivial, since F(S) —

For the induction step, we first show F{layi+\(£)) C layi+\{T). Given
a G layi+i(£). Thus, there exists a af G layi(C) such that o' —• a. By
the induction hypothesis, F(af) c layi{T). By lemma 4.5, F(af) H-̂ U F(<r),
and by définition of transition graph T, F(a) G layi+\{T).

We next show layi+\(T) C F{layi+\(C)). Let s G Iayi+i(T). Thus
there exists a s' G layi(T) with s ' i - ^ s via production T —> A. By the
induction hypothesis, there exists a a' € layi(C) such that F(af) = 5'. Let
a be the application of F —» A to er'. By lemma 4.5, F(a*) H-̂ ~> F(a), and
thus s ' i-^F(cr). By corollary 4,2, F(<r) = s and thus s G F{layt+i{C)).
This complètes the induction and the proof. D

LEMMA 4.8: F is an isomorphism of graphs from L to T.

Pwof: By lemmas 4.4 and 4.7, F is a bijective function from £ to T. By

lemmas 4.5 and 4.6, F is a transition graph isomorphism. O

PROPOSITION 4.9: Given a grammar G, a sentence a is producible by Mg(G)
if and only if a is in the leftmost language of G.

Pwof: (=>) Given o —\.\ - - -in a string in the leftmost language of G. Thus
there exists a chain in £ from S, the initial symbol of G, to a representing
the leftmost réductions dérivation of a. By the isomorphism of lemma 4.8,
there exists a chain in T

Since
s
0

0

1 0
S

0

vol. 31, n° 5, 1997

494 R. R. PUCELLA

and extending (uniquely, by lemma 4.1) the
séquence of machine moves

transitions, we get a

s
0
0

1
i—y

6
. . . , y

0

0
0

and thus a is producible by Mg(G).

(<=) Given a =ti • • -tn a string producible by M.g(G). There exists
machine moves

Starting from
0

and collapsing the i—> transitions into \-^-+ transitions,

we get a chain in T. By the isomorphism of lemma 4.8, we get a chain in £

S—> >a

and thus a is in the leftmost language of Q. D

5. RECOGNITION

Fundamentally, the récognitive machine Mr{G) is similar to the generative
one: it defines essentially the same moves (except that the move producing
terminals is replaced by a move that accept the next symbol from the
input/output tape), and it uses the dual of the grammar under considération.

One may again dérive an isomorphism in the manner described in the
previous section, Connecting the moves of the récognitive machine to the
leftmost réduction relation defined on the dual of the grammar. One needs
to extend the définition of transition graphs to use strings of terminals as the
initial set. The extension is fairly trivial, and is left as an exercise.

The language generated by Mg(G) is the leftmost language of G, the one
obtained by allowing only leftmost réductions. Correspondingly, the language
recognized by Mr{G) is a dual to the leftmost language, characterized as
those sentences that can be recognized via leftmost réductions in the dual
grammar.

Informatique théorique et Applications/Theoretical Informaties and Applications

AN ANALYSIS OF LAMBEK'S PRODUCTION MACHINES 495

It is clear that the recognized language is a subset of the full language of
the grammar. The following grammar shows that the recognized language
is in gênerai a proper subset of the full language, and need not be equal
to the generated language:

S —• AG

F—>C

G—>BC

E—> AB

BC—>z

A —>x

The full language generated by this grammar is {xz}. The leftmost language
of this grammar is also {xz}. However, trying to recognize the string xz via
leftmost réductions in the dual grammar leads to a unique dérivation

xz —> Az —> ABC —> EC —> EF

and thus the string is not recognized by the machine.

6. CONCLUSION

We provide in this paper an analysis of the production machines described
by Lambek in [9, 10]. We détermine the subset of the full language of
a grammar that is both generated and recognized by the machines. The
generated language corresponds to the subset of the full language one
obtains by applying leftmost réductions, and is in gênerai a proper subset of
the full language. Conversely, the recognized language corresponds to the
subset of the full language one obtains by applying leftmost réductions in
the dual grammar, and is also in gênerai a proper subset of the full language.
Moreover, the generated and recognized language need not agrée.

The generative version of production machines can in fact be reguarded
as implementing a generalized version of a Markov algorithm [12, 14],
A Markov algorithm on a production grammar Q consists of repeatedly
applying a leftmost applicable production to a string, and if more than one
production is leftmost applicable, the first production (given an ordering of
the productions) is applied. As such, the algorithm is fully deterministic.
In contrast, while a generative production machine also applies leftmost
applicable productions, the choice of which production to apply if more than
one is applicable is non-deterministic.

vol. 31, n° 5, 1997

4 9 6 R. R. PUCELLA

Let us mention a possible extension of the description of the production
machines that would allow for the génération and récognition of the full
language. Récognition is the easiest to extend: when the machine vérifies all
the possible choices of production in parallel when a move H ^ is applicable,
one adds the parallel choice of not applying any production, and passing
on to the next possible move of the machine. One can extend génération in
the same way, by adding a nondeterministic choice of not applying a move
f—• when it is possible to do so. This extension has a caveat: génération
may fail to produce a sentence.

An important class of grammars does not satisfy the criteria set forth for
génération and récognition via production grammars: translation grammars,
which take strings of initial symbols as initial states. For example, the
initial symbols could be words of English, and terminal symbols words in
French, and the grammar would translate English into French. The production
machines presented in this paper can be modified easily to handle such
grammars.

ACKNOWLEDGMENTS

Thanks to Jim Lambek for many helpful discussions and support during
this research.

REFERENCES

1. M. BHARGAVA and J. LAMBEK, A production grammar for Hindi kinship terminology,
Theoretical Linguistics, 1983, 10, pp. 227-245.

2. M. BHARGAVA and J. LAMBEK, A production grammar for Sanskrit kinship terminology,
Theoretical Linguistics, 1992, 18, pp. 45-60.

3. M. BHARGAVA and J. LAMBEK, Lounsbury's analysis of Trobriand kinship terminology,
Theoretical Linguistics, 1995, 21, pp. 241-253.

4. J. E. HOPCROFT and J. D. ULLMAN, Formai languages and their relation to automata,
Addison Wesley, Reading Mass., 1969.

5. J. LAMBEK, A mathematician looks at French conjugation, Theoretical Linguistics,
1975, 2, pp. 203-214.

6. J. LAMBEK, A mathematician looks at Latin conjugation, Theoretical Linguistics,
1979, 6, pp. 221-234.

7. J. LAMBEK, A production grammar for English kinship terminology, Theoretical
Linguistics, 1986, 13, pp. 19-36.

8. J. LAMBEK, Grammar as mathernatics, Canadian Mathematical Bulletin, 1989, 32,
(3), pp. 257-273.

9. J. LAMBEK, Production grammars revisited, Linguistic Analysis, 1993, 23, pp. 1-21.

Informatique théorique et Applications/Theoretical Informaties and Applications

AN ANALYSIS OF LAMBEK'S PRODUCTION MACHINES 497

10. J. LAMBEK, Programs, grammars and arguments: a personal view of some connections
between computation, language and logic. In Proceedings of the Annual IEEE
Symposium on Logic in Computer Science, 1993.

11. J. LAMBEK and M. LAMBEK, The kinship terminology of Malagasy speakers in Mayotte,
Anthropological Linguistics, 1981, 23, pp. 154-182.

12. A. A. MARKOV, Theory of algorithms, Translations of the American Mathematical
Society Series 2, 1960, 15.

13. R. R. PUCELLA, Production grammars, machines and syntactic translation. Technical
Report SOCS-96.6, McGill University, November 1996.

14. A. SALOMAA, Formai languages and power series. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B, chapter 3, pages 103—132.
The MIT Press / Elsevier, 1990.

vol. 31, n° 5, 1997

