
INFORMATIQUE THÉORIQUE ET APPLICATIONS

N. CREIGNOU

J.-J. HEBRARD
On generating all solutions of generalized
satisfiability problems
Informatique théorique et applications, tome 31, no 6 (1997),
p. 499-511
<http://www.numdam.org/item?id=ITA_1997__31_6_499_0>

© AFCET, 1997, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1997__31_6_499_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 31, n° 6, 1997, pp. 499-511)

ON GENERATING ALL SOLUTIONS OF
GENERALIZED SATISFIABILITY PROBLEMS (*)

by N. CREIGNOU (**) (*) and J.-J. HEBRARD (2)

Communicated by Peter van EMDE BOAS

Abstract. - We examine whether ail solutions of Generalized Satisfiability problems can be
generaled efficiently. By refining Schaefer's [11] resuit we show that there exists a class G of
problems such that for every problem in G there exists a polynomial delay generating algorithm
and for every Generalized Satisfiability problem not in G such an algorithm does not exist unless
P = NP. The class G is made up of the problems equivalent to the satisfiability problem for
conjunction of Horn clauses, anti-Horn clauses, 2-clauses or XOR-clauses.
[HJThomasJ. Schaefer, The complexity ofsatisfiability problems, Proc. lOthAnn., ACM Symposium
oftheory of Computing, Association for Computing Machinery, New-York (1978), 216-226.

Résumé. - Nous regardons si toutes les solutions de problèmes de satisfaisabilité généralisée
peuvent être énumérées efficacement. En raffinant le résultat de Schaefer [11] nous prouvons qu'il
existe une classe de problèmes G telle que pour tout problème dans G il existe un algorithme à
délai polynomial qui génère toutes les solutions alors que pour tout problème n'appartenant pas à
G un tel algorithme n'existe pas à moins que P = NP. La classe G est constituée des problèmes
équivalents au problème de la satisfaisabilité pour une conjonction de clauses de Horn, de clauses
anti-Horn, de 2-clauses ou de XOR-clauses.

1. INTRODUCTION

A generalized satisfiability problem (GS problem) is defined by fixing a
finite set E of predicate symbols and for each R £ T, a set £(R) Ç {0,l}k,
where k is the arity of R. The GS problem Sat(S, £) is to décide whether a
given conjunction e of expressions of the form R(v\,..., Vk), where R G X
and i>i,...,Vfc are variables, is satisfiable. More precisely the question is
whether there exists a function 5 from the set of variables of e to {0,1} such

(*) Received february 1996, corrigé le 14 août 1997, accepté le 7 janvier 1998.
(**) Corresponding author. The paper was partially written during a secondment to CNRS, Institut

de Mathématiques de Luminy
(') Département de Mathématiques, Université de Caen, 14032 Caen, France.

Nadia.Creignou@math.unicaen.fr
(2) Département d'Informatique, Université de Caen, 14032 Caen, France.

hebrard@info.unicaen.fr

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-5004/97/06/$ 7.00/© AFCET-Elsevier-Paris

5 0 0 N. CREIGNOU, J.-J. HEBRARD

that for each R(v\}..., Vk) in e, (s(vi),..., s(v&)) G f (JR). In other words,
GS problems are Cons traint Satisfaction Problems on Boolean domain [10].

Schaefer [11] showed that every GS problem is either in P or NP-complete.
This result is surprising and unexpected. Indeed, a classic theorem from
Ladner [9] shows that if P / NP then there are infinitely many complexity
classes which are sandwiched in between. Rarely in complexity theory one
comes across an infinité class of problems where every problem belongs to
a finite set of complexity classes. Let us mention that a similar dichotomy
theorem was obtained by Heil and Nesetril [6] for H-coloring problems
(which can be seen as binary constraint satisfaction problems). With each
GS problem is associated a counting problem in which the question is
to détermine the number of satisfying assignments of a given expression.
Creignou and Hermann [3] showed that if the GS problem is equivalent to the
satisfiability problem of a conjunction of XOR-clauses then the number of
solutions can be computed in polynomial time, otherwise it is ^P-complete.

The aim of this paper is to examine whether the solutions of GS
problems can be generated efficiently, Le. generated with polynomial delay.
A generating algorithm has polynomial delay if it générâtes all solutions in
such a way that the delay between any two consécutive solutions is bounded
by a polynomial in the input size [8]. By refining Schaefer's result we show
that there exists a class G of GS problems such that for every problem in
G there exists a polynomial delay generating algorithm and for every GS
problem not in G such an algorithm does not exist unless P — NP. The
class G is made up of the problems equivalent to the satisfiability problem for
conjunction of Horn clauses, anti-Horn clauses, 2-clauses or XOR-clauses.

2. PRELIMINARIES

A literal l is a variable x or its négation -\x. A clause is a disjunction of
literals l\ V . . . V ln. A CNF formula is a conjunction of clauses. A 2-clause
is a clause having at most two literals. A 2-CNF formula is a conjunction
of 2-clauses. A Horn clause (respectively an anti-Horn clause) is a clause
having at most one unnegated (resp. negated) variable. A Horn (resp. anti-
Horn) CNF formula is a conjunction of Horn (resp. anti-Horn) clauses. An
XOR-clause, l\ 0 . . . ® ln> is a clause in which the usual disjunction V is
replaced by the exclusive-or operator denoted by ©. An XOR-CNF formula
is a conjunction of XOR-clauses.

Let S be a finite set of predicate symbols. Let V be a set of variables.
A simple expression is of the form R(x\, , Xk), where R E 2 is a

Informatique théorique et Applications/Theoretical Informaties and Applications

GENERATING SOLUTIONS FOR GENERALIZED SATISFIABILITY 501

predicate syrnbol of arity k and x i , . . . , # & are variables. An expression e
is a conjunction of simple expressions.

A simple expression with constants is of the form R(xi,... ,Xfc), where
R G S is a predicate symbol of arity fc and rri,...., x& belong to V U {0,1}.
An expression with constants e is a conjunction of simple expressions with
constants.

Let e be an expression with constants. If u is either a variable or a
constant and v is either a variable or a constant, then e[u/v] dénotes the
expression formed from e by replacing each occurrence of v by u. If V is
a set of variables, then efu/V] dénotes the resuit of substituting u for every
occurrence of every variable in V. If v i , . . . , Vk are variables occurring in
e and if u i , . . . , uj~ belong to V U {0,1} then e[u\]v\^..., Ukfvk] dénotes
the expression with constants obtained from e by replacing each occurrence
of Vi by Ui for i — 1 , . . . , k.

With each predicate symbol R of arity k we associate the set £{R) Ç
{0,l}fc, its interprétation.

Let e = ei A . . . A em be an expression and Var[e) — {v\,... yvn}
be the set of variables occurring in e. Let {ai,.... , a n) be in {0, l } n

and e' = e[a\jv\, , an/vn] ~ e[A . . . A e'm. We say that the vector
(ai,. •. ,an) satisfies e if for e v e r y e[— Ri(ai1^..., aik.) w e h a v e

We say that the expression e is satisfiable if there exists s : Var(e) —
{vi, - - •, vn} «->• {0,1} such that (s(vi) , . . . , s(vn)) satisfies e.

With each finite set E = {Ri,... ,RP} of predicate symbols with their
interprétation £(£) = {f(i2i) , . . . ,^(i2p)} we associate a satisfiability
décision problem, denoted by Sa t (E^) , defined as follows:

DÉFINITION 2.1 [Generalized Satisfiability Problem (Sat(S,f))]:
Input: An expression e over E.

Question: Is e satisfiable?

This class contains many well-known Satisfiability problems such as 3Sat,
Monotone-3Sat, Not-All-Equal-3Sat or One-In-3Sat [5, page 259].

EXAMPLE 2.2: The classical problem 2Sat can be expressed as Sat{£,£)
where S = {RQ,RUR2} with S(R0) = {(0,1), (1,0), (1,1)}, S(R{) =
{(0,0), (0,1), (1,1)} and £{R2) = {(0,0), (0,1), (1,0)}. A typical instance,
for example (x V y) A (x V y) A (y V z) A (^ V x), w //i^n ^/v^n by thefollowing
expression Ro(x,y) A Ri(x,y) A R\{y,z) A

vol 31, n° 6, 1997

5 0 2 N. CREIGNOU, J.-J. HEBRARD

Throughout the paper we will use the following notation.
If e is an expression with Var(e) — {v\,..., vn}, then e(v\,..., vn) dénotes
the set { (a i , . . . , an) G {0, l } n / (a i , . . . , an) satisfies e} and is referred to
as the set of vectors satisfying e.
This notation will naturally be extended to any conjunction of clauses <f>.

DÉFINITION 2.3: Let I be a subset of {0, l}k. The set I is said to be:

O-valid if (0 , . . . , 0) e / , 1-valid if (1 , . . . , 1) E ƒ,

Horn (respectively anti-HornJ if there exists some Horn (resp. anti-Horn)

• CNF formula <j> such that I — <p(v\,... ,fjfc),

bijunctive if there exists some 2-CNF formula <fi such that I = </>(vi,..., Vk),

affine if there exists some XOR-CNF formula <j> such that I — 0 (v i , . . . , ffc),
complementive if for all 5 = (ai,...afc) G / we have s = 1 - s —

(1 - a i , . . . , 1 - ak) e L

From now on we suppose that (E,£), with E = {R\,... ,RP} and
f (E) - {^ (iZ i) , . . . , ^^)} , is fixed.

3. GENERATING ALGORITHMS

A generating algorithm is an algorithm that générâtes all configurations
that satisfy a given spécification (e.g., all maximal independent sets of a
given graph, all satisfying truth assignment of a given formula) without
duplicate. One has to be careful in defining the notion of polynomial time
for such algorithms. Indeed, in most interesting problems the number of
configurations to be generated is potentially exponential in the size of the
input (say a graph or a formula). For this reason Johnson, Yannakakis and
Papadimitriou defined polynomial-delay algorithms [8]:

DÉFINITION 3.4: A generating algorithm has polynomial delay if it générâtes
the configurations, one after the other, in such a way that the delay until
the first is output, and thereafter the delay between any two consécutive
configurations (and between the last configuration and the halting), is
bounded by a polynomial in the input size.

Informatique théorique et Applications/Theoretical Informaties and Applications

GENERATING SOLUTIONS FOR GENERALIZED SATISFIABILITY 503

The aim of this section is to provide an efficient canonical algorithm
for listing the set of vectors satisfying a given expression for some special
generalized satisfiability problems.

Throughout this section <j> with Var(<f>) — {vi>... .vn} will dénote either
a 2-CNF formula, or a Horn CNF formula or an anti-Horn CNF formula or
an XOR-CNF formula. Let us recall that one can décide in polynomial time
whether <f> is satisfiable: an algorithm for 2-CNF formulae is given in [1],
Horn and anti-Horn formulae are treated in [4], and for XOR-CNF formulae
it suffices to identify <f> with a System of linear équations over the field
GF{2) and to test its consistency by using Gaussian élimination.

The algorithm A below outputs all the vectors that satisfy <j>. The variable
M dénotes a list made up of O's and I's and is initially empty. The
procedure Cons(a^M), where a = 0 or 1, inserts a onto the head of M.
When the instruction Output(M) is performed, the list M is a new vector
(a i , . . . , an) which satisfies <f>. The algorithm A has polynomial delay since
one can décide whether <j> A vp and (f> A ->vp ait satisfiable in polynomial
time for p = l r . . , n (see the criterion introduced by Valiant [12, [Fact 7]).

Algorithm A

Input: (j) with Var(<fi) — {vi,... ,vn}-
Output: All vectors satisfying <f>.

Begin
K 0 is satisfiable
Then Generate((f>} (), n)

End

Procedure Generate((j),M,p)
Begin

H p = 0
Then Output(M)

Else [if (f)Avp is satisfiable then Generate(</>AvpyCons(l)M),p — l);
if </)A-itJp is satisfiable then Generate(<fiA-<vp,Cons(0,M),p-l)}

End

PROPOSITION 3.5: If S and £ verify one of the four following conditions,
then there exists a polynomial-delay algorithm that générâtes all satisfying
vectors of a given expression.

L For every R in £, £(R) is Horn.

vol. 31, n° 6, 1997

5 0 4 N. CREIGNOU, J.-J. HEBRARD

2. For every R in E, £(R) is anti-Horn.

3. For every R in E, £(R) is affine:

4. For every R in E, £(R) is bijunetive.

Proof: This follows quite easily from the algorithm described above. We
only have to transform the expression given as input into a CNF formula
having the appropriate form. For example, suppose that for every R in E,
£{R) is bijunetive. Let e = ei A . . . A em be an expression over S with
n variables. For each i9 i — 1 , . . . , m, e« — R%{x\y... yX^J and £(Rt) is
bijunetive. Let fa be the 2-CNF formula such that £(R{) — fa{yi,. •., y-kj-
We set 4>i = fa[xi/j/i,...., xk. [yki] and (f) = fa A . . . A (f>m. Let (a i , . . . , an)
be a vector in {0,1}7\ By définition (a i , . . . ,a n) satisfies e iff (a i ,— ,an)
satisfies <j). Hence, in order to generate all the vectors satisfying e it suffices
to construct <j> and to apply the algorithm A. Since (j> can be constructed in
linear time from e we get a polynomial-delay algorithm. •

4. DICHOTOMY THEOREM

Our aim is to show that the problems identified in the previous section are
exactly those for which the set of satisfying vectors of a given expression
can be enumerated with polynomial delay.

First let us recall Schaefer's result that identifies problems for which
finding a first solution is NP-hard.

PROPOSITION 4.6 [11]; If the re are predicate symbols RQ, R\, R2, ^3 , RA

and i?5 in S such thaï £{RQ) is non-0-valid, £{R\) is non-1-valid, £(R-2)
is non-Hom, £(R$) is non-anti-Horn, £{RA) is non-affine and £{R§) is
non-bijunctive, then Sat(S, £) is NP-complete.

Consequently, under the conditions stated in this proposition it is obvious
that there is no polynomial-delay listing algorithm, unless P=NP.

Now it remains to deal with the case where every R in E is such that
£{R) is O-valid (or 1-valid). In this case it is clear that listing a first
satisfying assignment for any given expression is trivial. Hence, a natural
question arises: how difficult is it to find a second solution? The foliowing
Proposition 4.7 answers this question. It entails that there exist satisfiability
problems for which a first solution can be generated trivially, after which
finding a second one becomes hard.

Informatique théorique et Applieations/Theoretieal Informaties and Applications

GENERATING SOLUTIONS FOR GENERALEED SATISFIABILÏTY 505

By Sat*{S,£) we dénote a variant of Sat(E,£) In which the question
is whether there exists a satlsfying vector which is different from all-zero,
0, and all-one, 1.

PROPOSITION 4.7: lf there are predicate symbols R2, R$, RA and R$ in E
such that, £{R2) is non-Horn, £{R$) is non-anti-Horn, £{R±) is non-affine
and £{R§) is non-bijunctive, then .Sat*(E^5) is NP-complete.

Let us dénote by Satc(S,5) a variant of Sat(E,f) in which the input
is an expression with constants. Our proof will be based on the following
resuit due to Schaefer.

PROPOSITION 4.8 [11]: If there are predicate symbols #2/ Ü3, RA and R§ in
S such that, £{R2) is non-Horn, £(R$) is non-anti-Horn, £(R&) is non-affine
and £(R§) is non-bijunctive, then Satc(S,£) is NP-complete.

We will also need the following technical lemma.

LEMMA 4.9: Suppose that there are predicate symbols R, Rf and R" in E
such that £(R) is non-affine, £{Rf) is non-Horn and £{EP) is non-anti-Horn.

L Iffor every R in E, £{R) is O-valid, then there exists an expression go
over E hoving no constant other than 0 such that:

• either go involves exactly two variables u, v and

• or go involves exactly three variables u, v, w and

go(u,v,w) = {(0,0,0), (1,0,1), (0,1,1)}.

2. Iffor every R in E, £(R) is 1-valid, then there exists an expression g\
over S having no constant other than 1 such that:

• either g\ involves exactly two variables u, v and

5l(u,t;) = {(0,0),(0, l) , (l , l)}

• or gi involves exactly three variables u, v, w and

Roughly speaking go and gi represent the implication or "almost"
the implication.

vol. 31, n° 6, 1997

5 0 6 N. CREIGNOU, J.-J. HEBRARD

Proof: Let us first introducé some terminology. If 5 is a vector of {0, l}n

then s(i), 1 < i < n, dénotes its zth component. We define three opérations
on vectors:

(si n s2)(i) = 1 iff 5i(«) - s2(0 = 1,

(5i U s2)(i) = 0 iff si(i) = s2(0 = 0,

(si 0 s2){i) = 0 iff 5i(i) = 52(0-

Suppose that for every R in E, £(i?) is O-valid (the case 1-valid can be
treated in a similar manner). Let R be a predicate symbol in E of arity k
such that £(R) is non-affine. A linear set is, by définition, a set which is both
O-valid and affine. It is clear that closure under sums characterizes linear sets.
Following this characterization there exist two vectors s\ and s2 in £(R)
such that 5i 0 S2 does not belong to £(R). For i,j = 0,1, construct the sets

^ V < &> 5i(p) = i and

and create the simple expression having no constant other than 0

ho — R(ai,... afc), where for 1 < p < k

ap = 0 if p G ^ , 0 , ^ = 3 ? if p€Voii,ap = y ifpeVifl and ap = z if

The set E also contains a predicate symbol i?' of arity kf such that £{R!)
is non-Horn and a predicate symbol i2" of arity A;" such that £(Rr') is non-
anti-Horn . Following a well-known characterization of Horn sets [Horn-51]
there exist two vectors s[and sf

2 in £{R!) such that s[n 5'2 does not belong
to £{R!). For zît7 = 0,1, construct the sets

V/j - (p/ 0 < p < k!, si(p) - i and 4(p) = j}

and create the simple expression

'HQ — H!{o!\<> • • • ûfc), where for 1 < p < k

af
p = 0 if peV^.a^x if peV^.a^y if peVl f ^

Observe that the three variables x, y and z occur in the formula hf
0.

By construction hf
0(x,y,z) contains (1,0,1) and (0,1,1), it also contains

(0,0,0) for R! is 0-valid, but it does not contain the vector (0,0,1). Using
the symbol i?" and a similar characterization of anti-Horn sets (stability
under the opération U), one can construct a simple expression h$" having

Informatique théorique et Applications/Theoretical Informaties and Applications

GENERATING SOLUTIONS FOR GENERALIZED SATISFIABILITY 507

no constant other than 0 such that the three variables x, y and z occur in
ho" and hon(x,y,z) contains the set {(0,0,0), (1,0,1), (0,1,1)} but does
not contain the vector (1,1,1).

Now, let us consider the following expression:

ko = ho A IiQ A Zip".

Whatever the variables effectively occuring in ho, the three variables x, y
and z do occur in ko. Moreover it is easy to see that ko(x,y:z) contains
the set {(0,0,0), (1,0,1), (0,1,1)} but contains neither the vector (1,1,1)
(because of ho") nor (0,0,1) (because of h!0) nor (1,1,0) (because of ho).
We do not know whether it contains (0,1,0) and (1,0,0). There are three
cases to distinguish.

• If ko{x,y,z) contains (0,1,0) then go(u,v) = ko[O/x,u/z,v/y] is
suitable.

• If ko(x,y,z) contains (1,0,0) then go(u.v) — ko[O/y,u/z>v/x] is
suitable.

• If ko(x,y,z) contains neither (0,1,0) nor (1,0,0) then go(u}v^w) =
ko[u/x,v/y,w/z] satisfies the second condition of the lemma.

This finishes the proof of the lemma. •

PROOF OF PROPOSITION 4.7: Under the conditions stated in Proposition 4.7,
Satc(£,£) is NP-complete (see Proposition 4.8). Hence, our proof is a
réduction from Satc(E,£) to Sat*(E,£). Let e01 be an expression with
constants over a set of variables Var(e01) = {x\,... ,x n } given as instance
for Satc(£,£). We have to construct, in polynomial time, an expression e
(without constants) such that e01 is satisfiable iff there is a vector different
from 0 and 1 that satisfies e. Let us first introducé two new variables ƒ and
t, which will play the rôle of the constants 0 and 1, and let us consider
the expression

There are several cases to analyze.

• Case 1: There are predicate symbols R and R! in E of arity k and kf

respectively such that, £(R) is non-0-valid and £(R') is non-1-valid.

vol. 31, n° 6, 1997

5 0 8 N. CREIGNOU, J.-J. HEBRARD

- Case La: There is R" in E of arity fc" such that £(Rn) is non-
complementi-ve.
If £(i?) is 1-valid and £(R') is ö-vaiid then the simple expressions

verify fe(ar) - {1} and ft'(3) = {0}.
Then, it suffices to consider the following expression

e = eft Ah[tfx] Ah![f/y],

Otherwise, £(R), for instance, is non-0-valid and non-1-valid. Let
s be a vector in £(R). For i — 0,1, construct the sets

and create the simple expression

h = i2(ai,.-.., afe) where for 1 < p < k

ap =< xïfp £ FQ, ap = y if p G Vi.

By construction ft(^, y) = {(0,1}} or ft(x, y) = {(0,1), (1,0)}.
Now, since £(R") is non-complementive there exists a vector 5"
in £(R") such that f" = 1 - s" does not belong to 5(i2") . For
z = 0,1, construct the sets

V»i = {p/ 0 <p < V\sn(p) =i]

and create the simple expression

h" = R" (a i , . . . , afc") where for 1 < p < kn

ap = a; if p G F"OÎ % = y if p G F" i .

By construction the expression g(x, y) — h(x; y) A /i" (xy y) vérifies
p(œ,y) - {(0,1)}.
Finally, it suffices to consider the following expression

e = eftAg{f/x,t/y].

- Case l.b: For every R in E, £(R) is complementive.
Let 5 be a vector in £{R). For i =• 0,1, construct the sets

Informatique théorique et Applications/Theoretical Informaties and Applications

GENERATING SOLUTIONS FOR GENERALEED SATISFIABILITY 509

and create the simple expression

h = J?(ai , . . . , ai-) where for 1 < p < k

a p - x i f p e V b , Op = y i f p e V\.

Observe that s / 0 and s ^ 1, hence the two variables x and y
occur in h. By construction h(x,y) = {(0,1), (1,0)}.
Now,. let us consider the following expression

e = eftAh[f/x}t/y].

Observe that e is only satisfied by ƒ = 0?t — 1 or ƒ' = l , t — 0,
but now both assignments are equally adequate due to the fact that
the entire expression is complementive as welL

• Case 2: For every R in E, £(R) is O-valid and there is a predicate
symbol R of arity k such that £(R) is non-complementive.

- Case Za: £{R) is 1-valid.
Then, there exists a vector s in £(R) such that s = 1 — 5 does not
belong to £(iï) . For i — 0,1, construct the sets

Vi = {p/Q<p<k,s(p)=i}

and create the simple expression

h = R(ai,..., ük) where for 1 < p < k

ap — x if p e Vb, a-p = y if p € V\.

By construction h(x,y) = {(0,0), (1,1), (0,1)}.
Now, let us consider the following expression

n n

e = e-̂* A h[f/x,i/y] A / \ h[xi/x,t/y] A / \ hlf/x^i/y],

This expression can be interpreted as

e = eft A(f —• t) A A (x% — > t) A

Thus it is clear that e01 is satisflable iff there is a vector different
from 0 and 1 that satisfies- e.

vol. 31, n° 6, 1997

5 1 0 N. CREIGNOU, J.-J. HEBRARD

- Case 2,b: £(R) is not 1-valid.
In this case let us use the expression <?o defined in Lemma 4.9. Let
us consider g f = go[f/O}. It is easy to see that if ƒ is evaluated
to false then g f represents the implication and we can proceed
as above. But, since £(R) is 0-valid and non-1-valid, R(ƒ, . . . , ƒ)
is satisfied iff ƒ is evaluated to false. Therefore, according to the
number of variables occurring in go it suffices to consider

n

either e - eft A #(ƒ, . . . , ƒ) A / \ gf [Xi/u, t/v],

or e = eft A #(ƒ, . . . , ƒ) A / \ g^i/u^fat/w],
2 = 1

where rcj, i = 1 , . . . , n, are new variables .
(Observe that t — 0 implies rci = x\ — 0 for every i, else ^ = 1 — x%
is suitable.)

• Case 3: For every i2 in S £(R) is 1-valid and there is a predicate
symbol R of arity k such that £(R) is non-complementive.

- Case 3M: £(R) is 0-valid.
Similar to Case 2,a.

- Case 3.b: £(R) is non-0-valid.
Use the expression g\ defined in Lemma 4.9 and proceed in the
same way as in Case 2.b.

• Case 4: For every R in S, £(R) is 0-valid, 1-valid and complementive.
In this case let use once more the expression #o defined in Lemma 4.9.
Let us consider g f = go[f/O]. Let us recall that if ƒ is evaluated to false
then g f represents the implication. Now, due to the complementiveness,
only assignments satisfying ƒ — 0 have to be considered. Therefore it
suffices to consider the following expression:

n

either e = e^ A A gf[xi/u,t/v],
8 = 1

or e = ê A A gf[xi/uyx^/v^t/w]y

where x[, i — 1 , . . . , n, are new variables .

Informatique théorique et Applications/Theoretical Informaties and Applications

GENERATING SOLUTIONS FOR GENERALIZED SATISFIABILITY 5 1 1

This complètes the proof of Proposition 4.7. •
According to Proposition 3.5 and Proposition 4.7 we can now state our

dichotomy theorem.

THEOREM 4.10: /ƒ"£ and £ verify one of the following conditions, then there
exists a polynomial-delay algorithm that générâtes all satisfying vectors o f a
given expression, otherwise such an algorithm does not exist unless P=NP.

1. For every R in S~ £{R) is Hom.

2. For every R in E, £(R) is anti-Horn.

3. For every R in E, £(R) is affine.

4. For every R in E, £(R) is bijunctive.

REFERENCES

1. B. ASPVALL, M. F. PLASS and R. E. TARJAN, A linear-time algorithm for testing the
truth of certain quantified boolean formulas, Information Processing Letters, 1979,
8, (3), pp. 121-123.

2. S. A. COOK, The complexity of theorem-proving procedures. In Third Annual ACM
Symposium on Theory of Computing, 1971, pp. 151-158.

3. N. CREIGNOU and M. HERMANN, Complexity of Generalized Satisfiability Counting
Problems, Information and Computation, 1996, 125, (1), pp. 1-12.

4. W. F. DOWLING and J. H. GALLIËR, Linear-time algorithms for testing the satisfiability
of propositional Horn formulas, Journal of Logic Programming, 1984, 3, pp. 267-284.

5. M. R. GAREY and D. S. JOHNSON, Computers and intractability: A guide to the theory
of NP-completeness, W. H. Freeman and Co, 1979.

6. P. HELL and J. NESETRIL, On the complexity of H-coloring, Journal of Combinatorial
Theory, Series B, 1990, 48, pp. 92-110.

7. A. HORN, On sentences which are true of direct unions of algebras, Journal of
Symbolic Logic, 1951, 16, pp. 14-21.

8. D. S. JOHNSON, M. YANNAKAKJS and C. H. PAPADIMITRIOU, On generating all maximal
independent sets, Information Processing Letters, 1988, 27, pp. 119-123.

9. R. E. LADNER, On the structure of polynomial time reducibility, Journal of the
Association for Computing Machinery, 1975, 22, pp. 155-171.

10. A. K. MACKWORTH, Constraint Satisfaction, in S. C. Shapiro, éd., The encyclopedia
of Artificial Intelligence, Wiley, New York, 1992, pp. 285-293.

11. T. J. SCHAEFER, The complexity of satisfiability problems. In Proceedings lOth STOC,
San Diego (CA, USA), Association for Computing Machinery, 1978, pp. 216-226.

12. L. G. VAUTANT, The complexity of enumeration and reliability problems, SIAM
Journal on Computing, 1979, 8, (3), pp. 410-421.

vol. 31, n° 6, 1997

