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AMBIGUOUS RATIONAL TRACE LANGUAGES

by A. BERTONI (*) and P. MASSAZZA (*)

Communicated by C, CHOFFRUT

Abstract. - In this work we prove that the Inclusion Probîem is decidable for a particular class
of trace languages that is the class RFIN (£ , C) offinitely ambiguous rational trace languages over
an alphabet £ = A U B with the commutation relation C = (A x S U S x A)\I. © Elsevier, Paris

Résumé. - Dans cet article nous prouvons que le problème d'inclusion est decidable pour
une classe particulière de langages de traces, à savoir la classe # F Ï N ( £ , C ) des langages de
traces rationnels finiment ambigus sur l'alphabet S = A \JB avec la relation de commutation
C ( i E E A)\I. © Elsevier, Paris

1. INTRODUCTION

Trace languages have been introduced by Mazurkiewicz [18] and have
been widely studied in the context of the behaviour of concurrent processes.
Trace languages are subsets of free partially commutative monoids for which
interesting décision problems have been analyzed. In particular, given a class
C of trace languages the Inclusion (Equivalence) Problem for C consists of
deciding whether for Li, L2 G C it holds Li Ç ^2(^1 — L%).

It is immédiate to see that the Equivalence Problem is reducible to the
Inclusion Problem for every class C since Li = L2 iff Li Ç L2 and L2 Ç Li.
So, if Inclusion is decidable then Equivalence is decidable too. Moreover, if
a class C is closed under union then both the problems are either decidable
or undecidable since Li Ç L2 iff Li U L2 = £2-

In this paper we deal with particular subclasses of the class Rat(E,C)
of rational trace languages, a class that has been widely studied and for

(*) Received February 1997, revised October 1997, accepted March 1998.
(l) Université degli Studi di Milano, Dipartimento di Scienze deirinformazione, Via Comelico

39, 20135 Milano, Italia.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-5004/98/01-02-03/© Elsevier-Paris



8 0 A. BERTONI, P. MASSAZZA

which many results are known. In particular, using a technique due to Ibarra
([15]), in [1], [13] it is shown that the Equivalence Problem is undecidable

for Rat(S, C) with the commutation relation a Ac . On the other side, when
C is transitive the Inclusion Problem turns out to be decidable ([4]). We
also recall that the Equivalence Problem is decidable for the subclass of
unambiguous rational trace languages with arbitrary commutation relation
([21]), and that for the same class the Inclusion Problem is undecidable for
the commutation relation gD£ ([7]).

The main resuit we present hère is the decidability of the Inclusion
Problem for the class i?FiN(£>C) of finitely ambiguous rational trace
languages over an alphabet £ = A U B with the commutation relation
C = ( i x S u S x i ) \ / . As a conséquence, we have that the Equivalence
Problem for J?FIN(2 , C) is decidable since this class is closed under union.

We follow a technique used in [6], where the Equivalence Problem is
shown to be decidable for a class C of recursive languages that is c-
holonomic and c-closed under intersection (i.e. the éléments of C admit
holonomic generating functions, finite computable spécifications, and their
intersection is in C with a spécification computed in a finite time). Hence,
given two trace languages T\, T2 G i ^F lN^C) we reduce the problem of
deciding whether T\ Ç T2 to the problem of verifying the following relation
bet ween generating functions:

By showing that these generating functions are holonomic it turns out that
the Inclusion Problem for J?FIN(S, C) is reduced to the Equivalence Problem
for holonomic functions that is well known to be decidable (see for instance
[22]).

The paper is organized as follows. Sections 2, 3 provide us with basic
définitions about trace languages, generating functions and formai series. In
section 4 we present examples of rational trace languages with generating
functions that are not holonomic. Section 5 proves that for an alphabet
T, — AUB and a commutation relation C = ( 4 x E u E x A ) \ I languages
in , R F I N ( S , C ) admit holonomic generating functions. Section 6 states the
decidability of the Inclusion Problem for JRFIN(2 ,C) under the previous
assumptions on S and C. Section 7 gives us important results about the
parallel complexity of a set of problems regarding the class i?FiN(2, C): the
Inclusion Problem (in the case of fixed degree of ambiguity), the Generating
Function Problem (i.e. the problem of finding a differential équation for the
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ON THE INCLUSION PROBLEM FOR FINITELY AMBIGUOUS RATIONAL TRACE LANGUAGES 8 1

generating function) and the Initial Conditions Problem (i.e. the problem
of finding a suitable set of initial conditions for the differential équation
satisfied by the generating function of a language). It is shown that ail of
these problems can be efficiently solved in parallel with boolean circuits
of depth O(log2n). We also prove that, unless P = N P , there exists no
sequential algorithm that solves the Inclusion Problem for R^i^ÇE^C) in
polynomial time w.r.t. the ambiguity degree.

2. TRACE LANGUAGES AND GENERATING FUNCTIONS

Let S — {a i , . . . , a n } , be a finite alphabet and S* be the free monoid
generated by 5]. A communication relation on E is an irreflexive and
simmetric relation C Ç S x S. We dénote by F(E, C) the free partially
commutative monoid S*/'pc where pc Ç E* x S* is the congruence
generated by C. The following examples define two f.p.c. monoids that
are of particular interest for the results we present later.

EXAMPLE 1: Let be £4 = {ai,...,0-4} and C4 = J j ü ^ . Then
F(£ 4 ,C 4 ) - {ai,a3}* x {a2 ;a4}*.

EXAMPLE 2: Let be E3 = {ai ,a2,cr3} and P3 = ai A a 3 . Then i^(E3,P3) =
{ai,a3}* x {a2}*.

We call trace an element of a free partially commutative monoid F (£ , C).
A trace t can be interpreted as an équivalence set of words: given a string
w G S* we dénote by [w] the équivalence class of w (i.e. the trace
generated by w) and by \w\ its length. Given a symbol a, we indicate by
w\a the number of occurrences of a in w.

A trace language is a subset of F (S , C); given a language L Ç S* and
a commutation relation C the trace language generated by L is

[L]Pc = { M P > e L}.
A trace language T Ç F(S,C) is rational iff it is generated by a regular
language L Ç E * . We dénote by Rat(E, C) the set of rational trace languages
on

DÉFINITION 1: A trace language T G RatÇE,C) is of ambiguity degree h
ü w generated by a regular language L Ç S* such that
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8 2 A. BERTONI, P. MASSAZZA

We dénote by i?fc(E,C) the class of trace languages in Rat(£,C) with
ambiguity degree k.

DÉFINITION 2: The class JRFIN(S ,C) offinitely ambiguous rational trace
languages on F(Yt}C) is

A language T in i2i(£, C) is said unambiguous. A language T G i2fc(X, C)
that does not belong to i2fc__i (£, C) is said inherently ambiguous of degree /c,
while a language T G Rat(E, C) that is not in i?piN(S, C) is said inherently
infinitely ambiguous.

In [3] it has been shown that if the relation C is not transitive the
following inclusions are proper:

i*i(£, C) Ç U2{£, C) ç • • • ^ F I N ( S , C) Ç Rat(£, C).

An important tool in the analysis of properties related to ambiguity
is the concept of generating function. Given a language L Ç S*, the
(ordinary) generating function of L is the power series 4>L{%) £ MML
4>L(%) = S „ ; > O / L ( ^ ) ^ ' \ where./i, : N i—> N is the counting function of
L defined as / L ( ^ ) — jK^ ^ ^1 1̂ 1 = n}i <^L(X)

 c a n t>e interpreted as a
function that is analytic in a neighbourhood of the origin (see for instance
[14] chapter 2). This notion is immediately extended to trace languages.

DÉFINITION 3: The generating function o f a trace language T Ç
is the function

7l>0

Generating functions can be used in our context for two kinds of problems:
• To décide whether a given language belongs to a given class
• To state inclusion between two languages in a given class
The most famous resuit in the first direction is the old theorem of

Schützenberger ([8]) that states that unambiguous context free languages
admit algebraic generating functions. A direct application of this resuit let us
to prove that a context free language is inherently ambiguous by showing that
its generating function is not algebraic (see for instance [10]). Analogously,
we can prove that a rational trace language is ambiguous by showing that

Informatique théorique et Applications/Theoretical Informaties and Applications



ON THE INCLUSION PROBLEM FOR FINITELY AMBIGUOUS RATIONAL TRACE LANGU AGES 8 3

its generating function in not rational. In f act, languages in i£i(£, C) admit
rational generating fonctions since it is known that if L Ç E* is a regular
language the generating function 4>L{%) is a rational function.

EXAMPLE 3: The language T = [{<JI<T2, ^3}* U {0-30-2, ai}*]pP is obviously
in J ? ( S P 3 ) ; sincein J?2(S3,P3); since

' 1 - x - x2

is algebraic but not rational, T is not unambiguous.

In section 5 we prove that for certain commutation relations C trace
languages in / ? F I N ( S , C ) admit holonomic generating functions. Thus,
the previous approach can be used for proving that certain rational trace
languages are inherently infinitely ambiguous; it also let us to design a
décision algorithm for the Inclusion Problem for certain classes of trace
languages (see section 6).

3. FORMAL SERIES

In this section, for the sake of completeness, we recall some basic notions
on formai series in noncommutative and commutative variables.

Given a commutative ring K, a formai series ip in noncommutative
variables £ is a function ip : £* \-> K; the support of ip is the language
{w E %*\ip(w) / 0}. A series ip is called proper if ip(e) = 0, where e is
the empty word. We dénote by K((£)) the ring of formai series with the
following opérations:

• Sum: (<̂> + tpjyw) = fpy'Wj ~̂~ ip^iy)

• Product: (<̂> * ip)(w) = Yiuv—W<p(u)ip{v)

Besides the previous opérations we also consider the Hadamard product
and the star opération:

• Hadamard product: (<p®ip)(w) = <f>(w)ip(w)
• Star (defined for proper series): <f>* = J2n>o ^

Important subsets of K{{£)) are the ring K{£) of polynomials (i.e. formai
series with finite support) and the ring of rational series.

DÉFINITION 4: The ring of rational formai series is the smallest subring of
K{{£)) containing K{£) and closed under *.

vol. 32, n° 1-2-3, 1998



8 4 A. BERTONI, P. MASSAZZA

Let Knxn be the monoid o f n x n matrices on K with the usual product.
A formai series <j> E K({£)) is called recognizable if there exist an integer
n > 1, a morphism of monoids \i : £* i—> Knxn and two matrices rj E K l x n ,
7T E K n x l , such that for ail w E E* it holds <f>{w) = r]fj,(w)ir. A resuit by
Schützenberger [20] is the following:

PROPOSITION 1 : A series is recognizable iff it is rational
We recall that the class of rational formai series is closed under Hadamard
product. In fact, denoting by <g> the usual Kronecker product between
matrices, it holds:

PROPOSITION 2: Let </>i} <p2 be two recognizable formai series représentée
by 771, /i-i, Tri and 772, /12, ^2 respectively; then <f>\ 0 02 is représentée by

Vl ® %, Ml ® M2, ^1 ® ̂ 2-

We also consider formai series in commutative variables on the field Q
of rational numbers. Let S c be the f ree commutative monoid generated
by E; the éléments of S c are monomials a- = a"1 • • • af7

n where

A formai series in commutative variables is a function i/> : Ec \~^ Q. The
set of formai series in commutative variables S with coefficients in Q is
denoted by Q[[E]]. On Q[[S]] we consider the following opérations:

• Sum: O + ^ ) ( ^ ) = <K ~̂) + ^ - )
• Cauchy product: (0 é
• Partial derivative:

• Primitive diagonal: ifl<p<q<n then

• Substitution: 0(^1 ( n , . . . . r m ) , . . . , ipn(n,. -., rm))
Observe that the primitive diagonal Ipq maps formai series in n variables
onto formai series in n — 1 variables; this opération is closely related to the
Hadamard product (<j> 0 VOfV-) — </>(£-)V>(£a) s i n c e

Informatique théorique et Applications/Theoretical Informaties and Applications
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We dénote by Q[S] the set of commutative polynomials. An interesting
subclass of Q[[S]] is the class of rational formai series. A series <f> is called
rational if it is the power series expansion of a function P/Q, P, Q G Q[S],
Q(0) = 1; we dénote by Q[[E]]r the class of rational formai series.

It is known that Q[[E]]r is not closed w.r.t. the Hadamard product and
primitive diagonal [11]: we are interested in extensions of Q[[E]]r that are
closed w.r.t. these opérations. An answer is given by the class of holonomic
series

DÉFINITION 5: A formai series <j> G Q[[E]] is said to be holonomic iff there
exist some polynomials

such that

3=0

We extensively use the closure properties of the class Q[[S]]fe that are
summarized in the following proposition.

PROPOSITION 3: The class QffE]]^ is closed under the opérations of sum,
Cauchy product, Hadamard product, primitive diagonal, substitution with
algebraic series,

Proof: See for instance [17].
For the sake of completeness, we recall that the class Q[[S]]^ properly

contains the class Q[[S]]a of algebraic formai series (see [19] for a définition
of algebraic séries). Thus, we have the following inclusions

Q[[S]]P C Q[[E]]a C

We also make use of the following simple resuit about holonomic series:

THEOREM 1: Let </>(x) = $2TÎ>O
 an%n be a holonomic series that is not a

polynomiaL Then there are two integer s d, n s.t.for each integer n >n there
exists an integer j < d s.L an+j ^ 0.

Proof: By définition, <j>{x) satisfies a differential équation

0<j<b
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8 6 A. BERTONI, P. MASSAZZA

Then, for n > a the following différence équation holds

dj(n - i + j) • • • (n - i + l)an_j+j = 0.
0<î<a
0<j<6

This implies that there exist d < (a + 6) and polynomials qo(n),...,
s.t. &* ^ 0 and

qd{n)an =

Thus, for a suitable large n, we have that ç^(n) / 0 for every n>n. Now,
if ay = ay+i = • • • = ay+d-i = 0 for some j > n then an = 0 for every
n > j and the series <£ turns out to be a polynomial. •

4. LANGÜAGES WITH NONHOLONOMIC GENERATING FUNCTION

In this section we exhibit rational trace languages in ^2(^4,(74) and
Rat(E3,P3) with generating fonctions that are not holonomic. First of all
we recall the following problem:

Problem RPC (Reduced Post Correspondent Problem)

Instance: a couple {(x,y), S) where x, y G S* and S C S* x S* is a finite
set, S = {(xi ,7/i) , . . . , (xm ;7/m)}.

Question: Does a séquence i i , . . . , i n , 1 < iĵ  < m, exist s.t.

The first resuit we give is the following:

THEOREM 2: There exist languages in R^fJ^^^C^) with nonholonomic
generating function.

Proof: Let £1 = {jj, a, 6, s} be an alphabet. We consider the RPC Problem
for the instance

((806, e), {(lab, H), («5, «a), (ab, ab), (ss, 6a), (s, 611), (e, s)}).

It is easy to show that there is an infinité set of solutions corresponding to
the words (3k where (3i = fla&ilss, &• = tfa6- • • tt(a6)^52-?\ j > 1.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Now, given a new alphabet £2 = {# i , . . . , X7} we consider two
unambiguous trace languages Ti, T2 G i?i(£,C) (with £ = Ei U £2
and C = £1 x £2 U £ 2 x £1) defined as

x§ba

The intersection Ti n T2 is the language { [ r i ] ^ , . . . , [rn}Pc,...} with
rn = anpn, for a suitable a n G £ 2 with |an[ < |an+i|. It is easy to
observe that |rn_|_i| — |rn | = ft(n) and this implies that the generating
function of T\ n T2, (f>T1nT2(

x) — Yln>i x^TnK is not holonomic (see th. 1).
At last, we consider the language T\ U T2 that is of ambiguity degree 2.

Its generating function is

MuTsO) = <f>Tx(x) + <t>T2{%) ~ (PT^TAX)-

Since Ti, T2 are unambiguous their generating functions <J>TAX)-> ^ T 2 ( ^ ) are

rational; hence 4>T1UT2(
X) *S n o t holonomic.

From the language Ti U T2, by coding symbols of £1 with a prefix
code over {0-1,(73} and symbols of £2 with a prefix code over {crç,c^},
we obtain a trace language in ^ ( E é , ^ ) having nonholonomic generating
function. •

The technique used in the proof of the above theorem is also at the basis
of the following resuit.

THEOREM 3: There exist languages in Rat{Tt$yP$) with nonholonomic
generating function.

Proof: Let us formulate the instance of the RPC Problem defined in the
previous theorem by means of two homomorphisms

/ : {i,...,6.r *->{ju,Mr,

g : {l,...,6}*^{la,b,s}*,

defined as
= s f (6) = e

= ab g(4) = ba g(5) = 6« g(6) = s

vol. 32, n° 1-2-3, 1998



88 A. BERTONI, P. MASSAZZA

Then, we consider two languages W(f), W(g) Ç {1,...,6,ft, a,fe, s}* x
{c}*:

Wtf) = {(utabf(u), cn)\u € {1,. . . , 6}+, n= \f(u)\ + 3},

W(g) = {{ug(u), cn)\u G { 1 , . . . , 6}+, n = |<?(n)|}.

It is immédiate to observe that Ai = W(f) D W(g) is isomorphic to the set
of solutions of the RPC Problem: by reasoning as in the proof of th. 2 we
can show that the generating function (j)^ (x) of Ai is not holonomic.

Observe now that the compléments of W(f) and W(g) are rational (see
for instance [9], p. 495), hence A^ = W(f) U W(g) is rational. Since
Ai U A2 — { 1 , . . . , 6, jt, a, 6, s}* x {c}* and Ai n A2 = 0 we have

We know that <J>AX{X) is not holonomic, so we conclude that <f>A2(
x) is

not holonomic.
Once again, we can use a prefix code over {ai,a$} to encode the symbols

1 , . . . ,6,(t,a, 6, 5. Thus we obtain a rational language A^ E
whose generating function is not holonomic.

5. HOLONOMIC FUNCTIONS AND

In this section we prove that languages in ^ F I N C ^ C ) admit holonomic
generating functions if E = A UB and C = (A x E U E x A)\I.

THEOREM 4: Let us consider an alphabet E = A\AB, a commutation relation
C = ( . A x E u E x A)\I and a trace language T in ,RFIN(E, C). Then the
generating function 4>T{%) is holonomic.

Proof: W.l.o.g. we consider A — {a,b} and B = {c,d}. Let T be
a trace language generated by a regular language L Ç {a,6,c, d}* with
ambiguity degree h and let (E = {a,6,c, d}, Q = {<?i,... ,Çn}, S :
Q x S i — > Q , g i , F Ç Q ) b e a finite state automaton accepting L. The linear
représentation of the automaton is given by (77, MajM^, Mc, M&, ir) where

0 otherwise % 10 otherwise

otherwise

Informatique théorique et Applications/Theoretical Informaties and Applications



ON THE INCLUSION PROBLEM FOR FINITELY AMBIGUOUS RATIONAL TRACE LANGUAGES 8 9

We consider the sejàés Çx £ Q[[^]]r((
j^))» defined as

l7k

where X^k.w is the number of words of L in the trace [walbk]Pc of T. Such
series is rational and its linear représentation is given by rj E Q[[A]]r

Xï\
p : S* h-»- Q P ] £ x n and 9 e Q[[A]]"xl defined as

r}(a, b) = Î](I - aMa -

a, b) = Ma{I - aMa - bMby
l a eB

7r(a, b) = TV

Let us consider now the alphabet Ah = {a i , . . . , a^, b\,..., bh} consisting
of h isomorphic copies of the variables a, b. Then, for every integer i,
1 < i ^ h, the series ^ = YliveB* wY^i k ̂ i,k,'w^\bk is a rational series in
Q[[Afc]]r({JB)> represented by ${aiM)iiï<r{aiM)M(o>iM)-

By proposition 2, for every integer m, 1 < m < h, the Hadamard product

O 6 = w

is a rational series in Q[[A/l]]r((JB)) represented by

Vm = 57(01,61) ® • • • ® îftOm, 6m) ,

Mam = Ma ( û l Î 61) 0 • • • 0 / î a ( a m , 6 m

îrm =

By mapping c, d into a new variable t, the series Oi<i<m ^ t u m s o u t t o

be a series in commutative variables, ^ m G Q[[ai, - . . , am, 6 1 , . . . , 6m, £]]r,

It is easily shown that ^ m is the rational series ipm — Wm(I — fficm —
^ M d m ) " 1 ^ .

By applying to ^ m the operators Ia = Iai€L2 ••- Iam_ia^: h =
15^2 • • • ibTO_16m and renaming a i , 61 with a,6 we obtain the series

vol. 32, n° 1-2-3, 1998



90 A. BERTONI, P. MASSAZZA

Since ipm is rational, by proposition 3 t/)m is holonomic. Now, we construct
the polynomial

o<j<h

This is a polynomial A(x) — Yli<m<h Cim%m of degree h; moreover, it
holds that A(0) = 0 and A(m) = Tfor ail m, 1 < m < h.

By considering the linear combination ^ 1 < m < / l cm^m we observe that

l<m<h l<m<h
aV E

\<m<h

= E "̂'
w£B*

walbkeT

It is easily shown that the generating function of T can be obtained
by applying the substitution a, 6 i—> t to the holonomic function ^i<?7?<^
Cm^m- By proposition 3 we conclude that the generating function of T is
holonomic. •

An application of the previous theorem leads us to the following:

COROLLARY 1: i? F I N (£ 3 î P 3 ) C

Proof: The rational trace language A^ exhibited in th. 3 has a generating
function that is not holonomic, hence it is inherently infinitely ambiguous.H

6. THE INCLUSION PROBLEM FOR RFm(T>,C)

In this section we study the Inclusion Problem for languages in
J R F I N ( S , C ) , formally described as follows:

Problem In(FIN,E,C) (Inclusion for languages in i?FiN(S,C))

Instance: an integer k and two deterministic finite state automata Mi, M^
accepting languages Li,L2 Ç S* s.t.

v^ G E* jt(HPc n Li) < fc, B(HPc n L2) < fc

Informatique théorique et Applications/Theoretical Informaties and Applications



ON THE INCLUSION PROBLEM FOR FINITELY AMBIGUOUS RATIONAL TRACE LANGUAGES 9 1

Question: Is [L\}Pc ç [L2)Pc?

We know that for unambiguous languages in i?i(£4, C4), the Inclusion
Problem is undecidable [7]; moreover, the same négative resuit holds for
languages in i2a£ (£3^3) [1}, [13]. Hère we prove that for languages in

Î P3) the Inclusion Problem turns out to be decidable.

THEOREM 5: Let £ = A UB be an alphabet and C = {A x £ U £ x A)\I
a commutation relation. Then In{FIN, £, C) is decidable.

Proof: Let (fc,Mi,M2) be an instance of In(FIN,£,C) and let TÏ9

T2 be the trace languages generated by the languages accepted by Mi, M2
respectively. The language T\ UT2 has ambiguity degree at most 2fc; therefore,
by th. 4, the generating fonctions 4>T2{

X)-> <J>T1\JT2{
X) a r e holonomic. Since

Ti Ç T2 iff

0T2(^) = <t)T1\jT2{
x)

the problem is reduced to verify whether the holonomic fonction A(x) =
<f>T2(

x) — ̂ T1UT2(^) ~ 5Zn>o a ^^ n is identically null.
Since the succession {an} associated to A(x) satisfies a linear différence

équation with polynomial coefficients Ylt=o Qk>(n)an-k — 0 (see th. 1), in
order to show that A(x) — 0 it is sufficient to show that for any j , 0 < j < g,
it holds a3 = 0, that is ft{t E T21 \t\ = j } = |t{t G T\ ü T2[ |t[ = j } . •

7. COMPLEXITY REMARKS

A fondamental step in the solution of the Inclusion Problem (see th. 5) is
that of finding a differential équation satisfied by the generating fonction of
a language in i2fc(£,C), that is sol ving

Problem GFun(k,£, C) (generating fonction for languages in i?^(£, C))

Instance: a deterministic finite state automaton M accepting a language
L C £* s.t.

Answer: A linear differential équation with polynomial coefficients satisfied
by the generating fonction 4>L(X).

We note that the solution of the previous problem gives us a partial
description of the generating fonction <PL(%) since a fonction satisfying
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92 A. BERTONI, P. MASSAZZA

a differential équation is univocally déterminée! only if a suitable set of
initial conditions is known. Hence, it is useful to consider the following

Problem CoeffGFun(k,S, C) (initial coefficients of generating fonctions for
languages in Rk(Y>,C))

Instance: an integer r (in unary notation) and a deterministic finite state
automaton M accepting a language L Ç £* s.t.

\/we E* §([w]PcnL) <fe,

Answer: A vector [Ai , . . . , Ar] s.t. A& = tKMpcl^ € L A\w\ = k}.

Hère we study the complexity of GFun(k,S,C) and CoeffGFun(k,£,C)
for fixed k and we show that they can be efficiently solved in parallel.
In order to analyze the parallel complexity we refer to the boolean circuit
model. Basic définitions associated with this model can be found for instance
in [16]; hère we only recall that NCfc is the class of problems solvable by
log-space uniform families of boolean circuits with depth O(logk n) and
with a polynomial number of gâtes. With respect to this model, we have
the following

THEOREM 6: Let E = A U 5 be an alphabet and C — (A x E U S x A)\I
a commutation relation. Then, for fixed k, GFun(k,U.,C) is in NC2.

Proof: W.l.o.g. we consider A = {a, 6} and B — {c, d}. Let T be the trace
language generated by a regular language L Ç {a, b^c^d}* with ambiguity
degree k and let {77, Ma^Mb, Mc, M^, TT), be the linear représentation of the
automaton accepting L.

The proof of th. 4 implicitely defines an algorithm to compute a differential
équation satisfied by the generating function of T; it can be summarized
as follows.

Input: the linear représentation (77,Ma,Mb,Mc,Md,7r)

Step 1 Compute

rj{a, b) = V(I - aMa - bMh)~
l

/v(a, b) = M<r(I- aMa - bMt)'1 a G {c, d}

7r(a,6) = 7T
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Step 2 for 1 < m < k do
Step 2.1 Compute

Vm = ??(ai, 6l) ® ' • * ® V(^m:bm)

V>am = A*(7(ai)&i) ® ' * * ® fi(j{am,bm) a e {c, d}

5rm = 7r(ai,6i) <£>--• 0?r(am ,6m)

Step 2.2 Compute

Step 2.3 Construct the System of linear differential équations for
the rational (hence holonomic) function ipm

Step 2.4 Construct the System of linear differential équations for
the holonomic function ipm = Iah^m

Step 3 Compute the coefficients cm(l < m < k) of the polynomial A(x)
and construct the System of linear differential équations for the
holonomic function Za<m<fcc™^™

Step 4 Compute and output the linear differential équation with polynomial
coefficients for the generating function of T obtained by applying
the substitution a, b t—> t to the holonomic function Xli<m<fc Cim^m

We take as size of the input the number of states n of the automaton accepting
L. For each step of the algorithm we consider the most expensive opération.

In Step 1 we invert a matrix of order n with polynomial coefficients in two
variables of degree 1. This is in NC2 ([16]). In Step 2.1 we compute O(l)
Kronecker products of matrices with coefficients that are rational functions
defined by polynomials in 0(1) variables and degree O{n). This is in NC1.
In Step 2.2 we invert a matrix of order n°^ with polynomial coefficients
in 0(1) variables of degree noi^\ This is in NC2 too. Step 2.3 requires to
compute 0(1) differential équations associated with the rational function ipm

(one équation for each variable). Since i/;m — P/Q for suitable polynomials
P, Q, for each variable a the associated differential équation turns out to be
datpm - V>m(%£ - ^ ) = 0. This is in NC1.

Step 2.4 is reduced to a constant number of Hadamard products of
holonomic functions by rational functions described by polynomials in O(l)
variables and degree 0(1) (see formula at the bottom of page 6). This is
in NC2 ([5]). Step 3 consists of a linear combination of a constant number
of holonomic functions. In [22] it is shown that the sum of two holonomic
functions described by Systems of équations of order a,/3 is described

vol. 32, n° 1-2-3, 1998



94 A. BERTONI, P. MASSAZZA

by a System of équations of order a + /?. Such a System is obtained by an
élimination technique reducible to the computation of a determinant, problem
that is known to be in NC2. An analogous élimination technique can be used
for showing that the substitution in step 4 is in NC2.

Since we have 0(1) steps we conclude that Gfun(k,E,C) is in NC2. •

An important resuit we need is stated in the following

THEOREM 7: LetY> = A UJ3 be an alphabet and C = ( 4 x E u S x A)\I
a commutation relation. Then, forfixed k, CoeffGFunik^C) is in NC2.

Proof: W.l.o.g. we consider A = {a, b} and B = {c, d}. Given a formai
series <f>, let {4>}r dénote the polynomial obtained by truncating <f> at degree
r, defined as

degree (x) > r
otherwise

We first show that it is easy to compute {y^Wj-r for polynomials
P,Q with Q(0) = 0. Let TV be the maximum degree of P,Q since

l + Q2") {t foUows that

Since the product of two polynomials is in NC1, {j£n}r is computed by
a circuit of depth O (log log r • log Nr) and size Nr°W (this resuit can be
improved but for our aims it is sufficient).

Now, let us consider an instance of CoeffGFun(k,S, C), that is an integer
r and the linear représentation (77, Ma,M&,MCîM^,7r) of an automaton
accepting a regular language L that générâtes a trace language with ambiguity
degree k. We take as size of the input the number n+r, where n is the number
of states of the automaton, The answer, that is the vector [Ai , . . . , Ar] where
Ai = ${[w]Pc\w G L A \w\ = i} can be computed as follows.

First of ail, we compute the rational series tpm{ai,..., am, 61,. *., bm, t)
(1 < m < k) by following step 1, step 2.1 and step 2.2 of the al-
gorithm described in the previous proof. Then we compute the
polynomials {i/jm}r (1 < m < k) and we take the coefficients Yijsm of
tla{ - • • atnb* • • • &m in {ipm}r-

Informatique théorique et AppHcations/Theoretical Informaties and Applications



ON THE INCLUSION PROBLEM FOR FINITELY AMBIGUOUS RATÏONAL TRACE LANGUAGES 9 5

Now, we proceed by Computing the coefficients cm (1 < m < k) of

A n *<* (
l<m<k o<j<k

and we obtain the answer by observing that

0

The analysis performed in the previous proof and the resuit about the
computation of the truncation of a rational series allow us to state that the
computation of {îpm}r is in NC2. Since the iterated sum of integers is in
NC1 we conclude that CoeffGFun(k, S,C) is in NC2. •

We turn now to the Inclusion problem for languages in i?^(S,C) for
arbitrary (but fixed) k. This problem can be formally described as follows:

Problem In(k, E, C) (Inclusion for languages in i2&(E, C))

Instance: two deterministic finite state automata M\, M2 accepting languages
Li,L2 Ç S* s.t.

\/w G E* tl(Npc n Lx) < k, i([w]Pc n L2) < k

Question: Is [Li]Pc C [L2]Pc?
The parallel complexity of In(k, S,C) is stated in the following

THEOREM 8: Let E = A UB be an alphabet and C = (A x EUE x A)\I
a commutation relation. Then, for fixed k, In(k, S, C) is in NC2.

Proof: W.l.o.g. we consider A = {a, b} and B — {c,d}. Let T\,T2
be the trace languages generated by two regular languages Li, £2 ^
{a,&,c,d}* with ambiguity degree h and let (r]i,Mia,Mib,Mic,Mld,7ri),
(î?2,M2fl, M26,M2c, M24,7T2) be the linear représentations of the automata
accepting Li,Z/2- Moreover, let T3 = T\ U T2 be the trace language
generated by L3 — L\ U L<i with ambiguity degree 2k and let
(?73, M$a, M36, M3c, M3^, 7T3) be the linear représentation of the automaton
accepting £3. We take as size of the input the number n = max(ni,n2)
where ni (1 < i < 2) is the number of states of the automaton accepting L{.
Then, the order of the matrices M^a is O{n2).

Following the proof of th. 5, we solve problem GFun(2fc, S,C) for
languages L2 and L3, obtaining the differential équations (of order
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for (f>T2(x) and <f>x3(#)• Then, we construct the differential
équation for (J>T2(Z) — <i>Tz{%) (of order N — n°^)\ at last, we solve
CoeffGFun(2fc,E,C) for the instances {N,{m,M2a,M2h,M2c-tM2d^2)),
(N, (773,M3a,M3fc,M3C,M3rf,7r3}) respectively. By the results presented
earlier all of these steps are in NC2. •

The previous resuit states that In(k, S, C) is efficiently solved in parallel
for fixed k. We turn now to the analysis of In(FIN, S.C) and we show
that the existence of a sequential algorithm that works in polynomial time
w.r.L the ambiguity degree implies the equality P = NP. To this aim we
need to recall the following

Problem BPC (Bounded Post Correspondence)

Instance: a finite set S = {(xi, y\ ) , . . . , (xn ,yn)}, where xuyi G E*,
(1 < % < n).

Question: Does a séquence i i , . . . , ip (1 < i3 < n,p < n) exist s.t.

ffù '"Xip = y i x " - y i p 1

It is well known that BPC is NP-complete [12]. In the following theorem
we show a polynomial réduction from BPC to In(FIN, £3, C3).

THEOREM 9: IfIn(FIN, S3 î C3) is in P then P = NP.

Proof: Let us consider an instance of BPC specified by means of two
homomorphism

ƒ : { l , . . . , n } * H-> { a r i , . . . , ^ } * ,

5 : { l , . . . , n } * ^ { y i , . . . 9 y n } * ,

defined as /( i) — x%, g(i) = y ,̂ with a;*, y* E S*. Let Nn dénote the alphabet
J\fn = { 1 , . . . , n} and let be E = S U Mn\ given a symbol c ^ S we indicate
by ^4i the product of monoids A\ — E* x {c}*. We consider two (finite)
languages W(f),W(g) Ç A2:

j < n,z - \g(u)\}.

It is immédiate to observe that W(f) H W(g) is isomorphic to the
set of solutions for the BPC instance; hence^there exists a solution iff
Ai £ W{f) U W(g). Let S be the alphabet S = E U {c} and C be the
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commutation relation C = {c} x EUS x {c}, then Ai is trivially in R\ (£, C).
Now, we have to show that there exists a deterministic finite state automaton
with O(nd) states accepting a language L that générâtes W( ƒ ) U W(<?) with
ambiguity degree O(n).

We start by considering the language W(f) and we show that it is
in Rn(Y,,C). First of ail we observe that there exists a deterministic f.s.
automaton with O(l) states that accepts a language L\ that générâtes the

language {(Wtj)\w € E*,u> £ ^ E * , i > 0}

with ambiguity degree 1. Then, the language

{(a/3, c2)|a E AC, 0 e S*, (|a| < n A i / \f(a)\) V |a| > n}
is generated with ambiguity degree 1 by a language L2 accepted by a
deterministic f.s. automaton with O(n) states. At last, the language

{(a/3,cl)\a £ A/1,/3 G Z\l < n,i = \f(a)\ = \0\,0 ± /(a)}

is generated with ambiguity degree n by a language L3 C B\MnB\B\BzB\^
where Bx = { l c^ 1 ) ! , . . . ,ncW»)l}, S 2 = {/(l), - - -, / ( n )} , 5 3 -
{ / ( l )^ 1 ) ! , . • -, /(n)ci /(n) '}. L3 is the language accepted by a
deterministic f.s. automaton with O(n) states that accepts a word tu
iff w = w\iw2V\av2 with w\ G J3[, ^2 G i?f, (r + 5 < n ) , |vi| —
|IUI|CÎ f(i) / a, |/(i)l = MÎ|Î>2| — \w2\c So there exists a deterministic
f.s. automaton with O(n2) states that accepts the language L\ U L2 U L3 that
générâtes W( ƒ ) with ambiguity degree n. Similarly, we obtain a deterministic
f.s. automaton with O(n2) states that accepts a language H that générâtes
W(g) with ambiguity degree n. Hence the language VK(/)UW(#) is
generated with ambiguity degree at most 2n by a language accepted by a
deterministic f.s. automaton with O(n4) states.

By coding symbols in Ë with a prefix code on {<TI,(T$}, if there exists an
algorithm that solves In(FIN, £3, C3) in polynomial time w.r.t. the ambiguity
degree, we also have a polynomial time algorithm for BPC. •
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