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Abstract. - We study the equational properties ofthe shuffle opération onfinitary and uj-languages
in combination with both binary concaténation L - V and cj-powers, L^ = L*L —. © Elsevier, Paris

1. MOTIVATION: LANGUAGES AND CONCURRENCY

For a fixed alphabet S, consider the two sorted structure L(S) = ( S / , Ew)
consisting of ail finitary languages Le., subsets of E*, denoted E/ , and all
cj-languages, Le., subsets of Sw , denoted Ew, equipped with the following
opérations.

for L G S/ and W, a finitary or o;-language;

such that both [/, W are finitary or both are o;-languages, where, U ®W
dénotes the shuffle product ofthe languages U and W, namely the lariguage

{u\v\U2V2 . . . : u\U2 . . . G 17, v\V2 . . . € V, Ui,Vi G E*}.
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176 S. L. BLOOM, Z. ESIK

If L is finitary, we include the function

where Lu is the set of all infinité words obtained by concatenating nonempty
words in L. If 1 is the set consisting of the empty word, lu is the empty
set, and (£ƒ,-, ®,1) is a "bimonoid", in the terminology of [BÉ96]. (For
example ot° 0 W is the set of ail words containing infinitely many a's and
6's.) Aside from the opérations of concaténation and cj-powers, we allow
binary shuffle products of finitary or a;-languages.

We want to know: What are ail ofthe équations which hold in ail language
structures?

The study of the algebraic properties of opérations on languages has a long
history. Most previous work has focused on the "regular opérations" of finite
concaténation, union and itération. Recently there has been renewed interest
in this subject (see [Kr91, Bof90, Bof95, BÉSt, Koz94, És98].) The study of
the shuffle opération on languages was initiated by Pratt [Pra86] and Gischer
[Gis94], and later continued by Tschantz [Tsc94] and others [BÉ96, BÉ95,
BÉ97, ÉBrt95]. In the "interleaving model" of concurrency, sequential and
parallel composition are modeled by concaténation and shuffle on languages.
The extension of the model to cj-powers in natural, because in this context,
this opération models infinité looping behavior.

Another model of concurrency, also suggested by Pratt [Pra86], uses
labeled posets. Sequential and parallel composition are modeled in a very
natural way. We define an a;-power opération on posets, and show hère
that for the opérations of sequential and parallel product (concaténation and
shuffle in languages) and u;-powers, the language model and the poset model
of concurrency satisfy the same équations, a resuit which was established
without the a;-power opération in [Tsc94, BÉ96].

The method used to prove that the équations (l)-(8) below are complete,
both for labeled posets and languages, is also of interest. A model of these
équations is called a "shuffle binoid". We show that a certain class of labeled
posets is free in the equational class of all shuffle binoids, and use this fact
to then show that these posets embed in the shuffle binoid of languages. This
embedding is a nice way of coding posets by languages so that the opérations
are preserved. However, it is not clear how efficient this encoding is.
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SHUFFLE BINOIDS 177

2. SOME EQUATIONAL PROPERTIES

We note some properties of the opérations on the language structures
L(E) = (E/, Sw), for any E. Of course, concaténation and shuffle on finite
languages are associative, and shuffle is associative and commutative on
finitary and u;-languages. Thus,

a-(b'c) = (a-b).c (1)

a . (b • v) = (a • 6) • v (2)

a ® (6 ® c) = (a ® 6) ® c (3)

u <g> (v <g> w) = (n <g> v) <g> iu (4)

a (g) 6 = & (g) a (5)

u<8>v = v<g>u (6)

for a,&,c G S / and u,vyw G S w . For any a,6 G S / , the opération of
a;-power satisfies at least the following équations:

(a • b)" = a • (b • a)w (7)

(a n ) w - a w , n > 1. (8)

These opérations happen to form an eniichment of a Wilke algebra [WÜ91].

DÉFINITION 2.1: A Wilke algebra w a two-sorted algebra
equipped with three opérations, an associative product on 5 / , a mixed
product S f x SOJ —> S^ which satisfies (2)t and a map a \—> aw /ram
5/ ?o 5W satisfying, for ail a, 6 G 5 / r/ze équations (7)-(8) above. A
morphism <p : (Sf,Su) —• (Tf,Tu) of Wilke algebras is a pair offunctions
<Pf : Sf -* Tf and ipu : S^ —> T^ which preserve all opérations, e.g.y

The Wilke algebras were called "binoids" by Wilke in [Wil91].

DÉFINITION 2.2: A shuffle bionoid is a two-sorted structure B — (F, I)
equipped with apolymorphic "shuffle" opération in addition to the opérations
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1 7 8 S. L. BLOOM, Z. ESIK

of a Wilke algebra; the shuffle opération is defined on ail pairs u,v G F or
u,v E I and the structure satisfies all of the équations (l)-(8) above.

A morphism of shuffle binoids tp : (F, / ) —> (F', ƒ') is a pair offunctions
(pj? : F —* Ff and (pj : I —* V which preserve all of the opérations, e.g.,

<pj(a-x) = (pF (à) -<pi(x), aeF,xeI.

Note that the équations (8) may be replacée! by the subset

{xPY =x", p prime, (9)

since, e.g., if p is prime and just the identities (9) hold, (xP9)w = {{xq)vY =
(xqY. Note also that the équation aau — aw is derivable from the facts that
(aa)^ = a{aa)^, as a special case of (7), and {aa)u = aw, as a special
case of (8).

We will show that the équations defining shuffle binoids completely
characterize these opérations on languages. Our method is the following.
We let L dénote the variety of shuffle binoids generated by the language
structures described above. We let V dénote the variety of all shuffle binoids.
Clearly, L Ç V. We will give a concrete description of the free algebras
in V and use this description to show that V — L. The description is used
also to give a polynomial time algorithm to décide the validity of équations
in V. Last, we show that there is no finite axiomatization of V.

3. SP" (A,B)

Let X be a nonempty set. Suppose that P — (P, <p) and Q = (Q, <Q)
are X-labeled posets (meaning that each vertex is labeled by some element
of X), with disjoint underlying sets. Following [VTL81, Pra86], define the
series product of P and Q by

where

x < p.Q y ^> x < py or x < Q y or (x e P and y G Q).

so that every element of P is less than each element of Q\ similarly, define
the parallel or shuffle product of P and Q by

PQ : = ( P U Q , <P®Q)

Informatique théorique et Applications/Theoretical Informaties and Applications



SHUFFLE BINOIDS 179

where

x <p®qy & x <pyovx <Q y,

so that éléments in P and Q are incomparable. The labeling on P • Q and
P <g> Q is inherited from the labeling of P and Q respectively. If P is any
poset, define P w as the countable series product of P with itself :

Pu :=P-P-P -...

(More formally, we define Pu = (P x {1, 2,...}, <), where (p, i) < (p', j)
if i < j or i — j and p < pp'. The label of (p,i) is the label of p.)
Without further comment, we identify isomorphic X-labeled posets, so that,
for example, there is a small set of all finite (or countably infinité) X-labeled
posets.

For disjoint sets A, B let Pos(A, B) = (Pf (A), PW(A, B)) dénote the two-
sorted structure, where Pf(A) is all finite A-labeled posets, and PU{A^B)
is all finite or countably infinité (A U B)-labeled posets in which a vertex is
labeled by an element in B iff it is maximal. The opérations are the shuffle
binoid opérations •,<8>,a\ where • and <g> are appropriately polymorphic.

PROPOSITION 3.1: Pos(A,B) is a shuffle binoid. EU

REMARK 3.2: Another shuffle binoid may be obtained by taking sets
of posets in Pos{A,B). The series and parallel product opérations are
the complex opérations derived from the corresponding opérations on
Pos(A,JB), and for a set X C P/(A), we define Xu as the set of all
posets Pi • P2 • . . . , for Pt e X.

DÉFINITION 3.3: For a pair of disjoint nonempty sets A, B, let SPa;(A, B)
dénote the pair (FA,IA,B), ^n which FA is the least collection of A-labeled
posets containing the singletons a, for each a E A closed under series and
parallel product, and where IA,B is the least collection of labeled posets
containing

• the singleton poset b, for b G B;

• the posets P", for P G FA;

.p.Q,forPeFA,Qe IA,B\

•Q®Q',forQ,Q' G IA#.

PROPOSITION 3.4: For any disjoint sets A,B, SP(ÀJ(A,B) is a shuffle
binoid. D

vol. 32, n° 4-5-6, 1998



1 8 0 S. L. BLOOM, Z. ESIK

In fact, SPW(A,£) is a sub shuffle binoid of Pos(A,B).

REMARK 3.5: Recall that any maximal vertex of a poset in PU{A,B) is
labeled by an element of B. Thus, if B is empty, and Q E /A,B> then Q
has no maximal éléments.

It is not difficult to prove the next Proposition.

PROPOSITION 3.6 [Gis84]: FA isfreely generaled by the set A in the variety
of ail models of the following three équations:

x 0 {y 0 z) = (x 0 y) 0 z
x 0 y — y 0 x.

This fact will be useful in Section 5. We will call a model of the équations
listed in Proposition 3.6 a bi-semigroup.

4. CHARACTERIZATION OF SP"(A£)

Recall that a poset P satisfies the "N-condition" if it has no "JV's", i.e.,
there is no four element subset {a, 6, c, d} of P whose only nontrivial order
relations are: a < c, b < c and b < d.

oc od

oa ob

The posets in FA are the A-labeled series-parallel posets, i.e., those in the
least class of posets containing the singletons closed under series and parallel
product. The series-parallel posets have been characterized as those finite
nonempty posets satisfying the TV-condition, see [VTL81]. But the infinité
posets in SPW(A,B) also satisfy this condition, see below.

We recall some elementary poset notions. A poset P has finite width
if there is some nonnegative integer n such that 'whenever v\,..., Vk are

Informatique théorique et Applications/Theoretical Informaties and Applications
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unrelated vertices in P, then k < n; the least such n is called the width
of P. Thus, a nonempty poset P has width one iff P is a total order. A
filter F in a poset P is a nonempty, upward closed subset of P .

DÉFINITION 4.1: A poset Q satisfies the generalized JV-conditions if

1. Q satisfies the N-condition.

2. For each q G Q, the principal idéal (q] = {x G Q : x < q} is finite.

3. Up to isomorphism, there is a finite number of filters in Q.

We note that if Q is a nonempty poset that satisfies the generalized
iV-conditions, then Q has at least one, but only finitely many, minimal
éléments. Moreover, each element of Q is over some minimal element. Note
also that a finite poset satisfies the generalized iV-conditions iff it satisfies
the iV-condition.

REMARK 4.2: If Q satisfies the generalized JV-conditions, then Q has finite
width. Indeed, if {#1,2:2,...} is an infinité set of incomparable éléments, the
filters Fn — {y G Q : y > Xi, for some i < n} are pairwise nonisomorphic.

REMARK 4.3: For countable posets Q, the condition 2 in the définition* of
the generalized iV-condition is equivalent to the requirement that Q has a
linearization which is an cj-chain.

PROPOSITION 4.4: Let Q be any infinité poset in SPW(A, B). Then Q satisfies
the generalized N-conditions.

Proof: We use induction on the number of opérations needed to
construct Q. It is clear that if P satisfies the generalized iV-conditions,
so does Pw , since the width of Pu is the same as the width of P , and any
"iV" must be inside some copy of P; the filters in Pu are of the form F • P w ,
for some filter F in P. Thus Pu has, up to isomorphism, the same number of
filters P has. Lastly, a principle idéal in P10 is also a principle idéal in P n ,
for some n > 1, and since P is finite, ail principle ideals in P w are finite.

It is clear that if P is finite and Q is infinité, and both satisfy the generalized
TV-conditions, then so does P • Q; if Q, Q1 satisfy ail four conditions, so
d o e s Q ^ Q ' . •

Now we prove the converse

THEOREM 4.5: Suppose that Q is an AU B-labeled poset which satisfies
the generalized N -conditions. Suppose also that a vertex is maximal iff it is
B-labeled. Then Q is in SPW(A,5).

vol. 32, n° 4-5-6, 1998
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Proof: We may as well assume that Q is infinité, since if a finite poset
satisfies the JV-condition, it is series-parallel. The assumption on the labeling
ensures such finite series-parallel posets are in SPw(A,i?).

Now if Q is infinité, and appropriately labeled, we use induction on the
width of the poset to show it is in SPU(A, B), First, note the following fact.

LEMMA 4.6: If Q is a poset which satisfies the generalized N-conditions,
then

• any subposet satisfies the N-condition;

• any filter in Q satisfies the generalized N -conditions, so that inparticular
ifQ = Q\(& Q2> then Qi, satisfies the generalized N-conditions, i = 1,2,
and if Q — P - Q1, then Qf satisfies the generalized N-conditions;

•ifQ = P-Qf, where Qf is nonempty, then P is finite, D

A path u ^ v in a poset is a séquence of vertices u = go, Q\, • • •, Qk = v
such that for each i, 1 < i < k, either gz_i < qi or qi-\ > qi. Say Q is
connectée if for any two vertices u, v of Q there is a path u ^ v. Note
that Q is not connected iff Q = Q\ 0 Q2, for some nonempty posets Qi, Q2-

LEMMA 4.7: Suppose that Q satisfies the N-condition. Ifqo-,Qi^'-yQk is a
shortest path qo ~+ qj-, then k < 3.

Proof: Otherwise, {go, <7i>92, 93} is an "JV". D

LEMMA 4.8: Suppose that Q is a connected poset which satisfies the
generalized N-conditions and has at least two éléments, There is some vertex
q G Q which is strictly larger than all of the minimal éléments,

Proof: Since Q satisfies the generalized iV-conditions, Q has finitely
many minimal éléments, say /xi , . . . , ^ m . By induction on k, we prove the
existence of a vertex above at least the first k of the minimal éléments, for
each k < m. The case k = 1 is trivial, since |Q| > 1. Now assume that
x > /x i , . . . , /x/c, for k < m. If x > //fc+i, we are done. Otherwise, there is a
shortest path jxfc+i -» x. The length of the path is necessarily one or two, by
Lemma 4.7; but the length is not one, by assumption, so that there is some
y e Q with /ifc+i < y and y > x. But then y > ^ , for i = 1,2,..., k + 1,
completing the induction. D

LEMMA 4.9: Suppose that Q is a connected poset which satisfies the
generalized N-conditions and has at least two éléments, Then Q has a

Informatique théorique et Applications/Theoretical Informaties and Applications
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nontrivial series décomposition as Q = P - Qf for some (nonempty) finite
poset P, and P has no nontrivial sériai décomposition 1.

Proof: Let JJL\ ,..., jjbm be all minimal vertices in Q. Let Qf be the set of all
vertices strictly above all of these minimal vertices. By Lemma 4.8, Qf is
nonempty. Let P — Q — Q''. Every element of P is below every element of
Q!. Indeed, if p G P and q e Q', either p < q or p and q are incomparable,
since Qf is upward closed. Suppose, in order to obtain a contradiction, that
p, q are incomparable. There is at least one minimal element ji incomparable
with p (or p E Q'), and at least one minimal element fjf with / / < p. Now
if IJ! = p,p < q by définition of Q'. Otherwise, {(JL^JJ!\p,q} forms an N, a
contradiction. Thus, p < q. It follows that P is finite, since P is the union
of the principal ideals generated by the minimal éléments of Q1 (minus these
éléments). Lastly, if P = P\ • P2, for nonempty Pi, P2» every element of P2
is in Q\ contradicting the définition of P. D

Call a poset Q eventually disconnected if Q = P * {Q\ <g> Q2), for some
nonempty posets P, Qi,Q2-

LEMMA 4.10: Suppose that Q is an infinité, connected poset satisjying the
generalized N-conditions. Then either

• Q is eventually disconnected and

where k > 0, t > 1, Q i , . . . ,Qt are nonempty, connected posets and
each of P\,..., P& i$ yzmte, nonempty and has no nontrivial sériai
décomposition, or
Q ^ n o t eventually disconnected, and there is a finite set P\,...,
Pfc,... Pfc+i, fc > 0, £ > 0, of finite nonempty posets which have no
nontrivial sériai décomposition such that

Proof: By Lemma 4.9, we have Q = Pi • Q', for some posets Pi, Q' such
that Pi is finite and nonempty and has no nontrivial sériai décomposition.
Necessarily, Q' is infinité. Now either Qf is connected or not. If not, since
Qf has finite width by Lemma 4.6, Qf = Q\ 0 . . . ® Qt» for some nonempty

1 A décomposition P = P' • P" is trivial if either P ' or P" is the empty poset.

vol. 32, n° 4-5-6, 1998



1 8 4 S. L. BLOOM, Z. ESIK

connected posets Ql^ i — 1 , . . . , t, each of which satisfy the generalized N-
conditions. If Q1 is connected, then again applying Lemma 4.9, Qf = P2 *Q",
for some finite nonempty P<i and some infinité Qn such that P<i has no
nontrivial sériai décomposition. If the process stops after k steps, there are
nonempty connected posets Q i , . . . , Qt, t > 1, with

as claimed.
If this process continues forever, then Q = P\ • P^ *. . . , where each Pi is

finite, nonempty, and has no nontrivial sériai décomposition. Every element
of Q belongs to some P2, since principal ideals are finite. Now, using the
f act that Q has only finitely many nonisomorphic filters, there is a pair of
integers k,t such that Pfc+i * Pk+2 * • • • = Pfc+t+i * Pfc+t+2 • . . . , so that

•
We now complete the proof of Theorem 4.5. Let Q be an appropriately
labeled infinité poset which satisfies the generalized TV-conditions. We use
induction on the width of Q to show Q G SPW(A, B). If Q is not connected,
then Q = Q\ <g> Q2 for some nonempty posets Qi, Q2- Each of Qi, Q2 has
width less than Q, so that by Lemma 4.6, each is in SPUJ(A,B). Thus
Q e SPU(A, B)AîQ is eventually disconnected, write Q - P • (Qi ® Q2),
for nonempty P,Qi, where P is finite. Each of P,Qi,<22 belongs to
S P U J ( A , J B ) , and thus, so does Q, Otherwise, Q = P • (P')^, for some
finite nonempty P, P ' , by Lemma 4.10, and hence Q G SPW(A, 5 ) . D

REMARK 4.11: It follows from Theorem 4.5 that an infinité poset satisfying
the generalized iV-conditions is countably infinité.

DÉFINITION 4.12: For any set X, we use the following notation.

Pos(X) :=Pos(X,$)

PROPOSITION 4.13: Let A,B be disjoint sets and let X — Al) B, Then
Pos(A,B) is isomorphic to a sub shuffle binoid of Pos(X) containing the
singletons a G A and the posets 6W, for b G B. An injective morphism
Pos(AJB) —> Pos(X) is given by the assignment that maps each poset
P G Pos(A, B) to the poset obtained by replacing each vertex of P
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labeled b E B by the chain bu. Similarly, the unique binoid morphism
SPUJ(A,B) -> SPW(X) determined by the functions

a E A \—> a

is injective. D

5. PROOF OF FREENESS

In this section, we prove the following theorem. (Each letter x in A U B
dénotes the singleton poset labeled x.)

THEOREM 5.1: SP^XA.B) is freely generated by A and B in the variety
V of all shuffle binoids.

Proof: Suppose that C = (F, /) is a shuffle binoid and h\ : A —> F and
h<i : B —> I are any functions. We will show that there is a unique shuffle
binoid morphism (p : SPW (A,B) -^ C which extends h\ and /12 on the
singletons. It follows from Proposition 3.6 that ipp : FA~^F is forced to be
the unique structure preserving morphism extending h\. On the singleton
posets b in IA,B> the définition of tp is forced to be 6/12. On the other posets,
we use induction on the width of the poset, using Lemma 4.10. Below,
unless stated otherwise, we will only consider nonempty posets.

If Q is not connected, then write Q — Qi ® . . . ® Qt?* > 1> where
Qj ^ IA,B, j 6 [t], are nonempty, connected posets. Then define

If Q is connected and has the form

where P i , . . . , Pk+t h^v^ no nontrivial sériai décomposition, and h is least
such that for some n > 0, Pk+i • . . . = • Pfc+n+i • . . . , and if t is the least
n such that Q has this représentation, then define

Q<PI :=

If Q is connected and has the form

Q = Pi • . . . • Pk • 6,

vol. 32, n° 4-5-6, 1998
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where again P i , . . . , Pj~ have no nontrivial sériai décomposition and b E B,
then define

Q<p :=

Otherwise, if

with Qi connected, for each i e [t] and t > 2, then define

which is defined since the width of each Qj is less than that of Q.

The définition of tp was forced, so we need only show that with this
définition, (p is a shuffle binoid morphism, i.e., it preserves all the opérations.
It is enough to prove the following facts.

1. If P G FA,

Suppose that we décompose P as Pi • . . . P*. where none of the Pi can
be decomposed into a nontrivial sériai product. Then

The définition of P^tp requires finding the least t such that

and perhaps for some t which divides k, and some n,

Thus, by définition,

= ((Pi * . . . • Pt)<PF)T, by définition of

= (((Pi • . . . • Pt)<PF)nY> since B is a shuffle binoid

Y), since (pp preserves composition.

Informatique théorique et Applications/Theoretical Informaties and Applications
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2. If P e FA and Q G IA,B, then

(P-Q)<PI = P<PF-Q<PI. (H)

There are several subcases to this one, depending on the form of Q.
First, assume that Q is either disconnected or eventually disconnected.
Then write Q = P! • (Qi ® • • * ® Qt), where F ' may be empty, but is
finite, and each Qi is connected. Then, by définition,

(P • Q)tpj = (P • P*)tpF

(If P ' is empty, so is
Second, assume Q is infinité and not eventually disconnected. Write

Q = 5o • . . . • Sfc„! • (Sk •... • Sfc+t-i)^

where each of the Si is finite and has no nontrivial sériai décomposition.
We may also assume that k is least such that for some n > 0,
Sk ' Sk+i • . . . = Sk+n • • • • » an (l that t is the least such n. Write
P = Po • . . . • Pm where the P2 have no nontrivial sériai décomposition.
Thus, if k > 0, or if k = 0 and Pm ^ SQ, then by définition
(P • <2)<p/ = P(pF • Q<Pi- If fc = 0 and P m = So, we can find integers
i < m and j < t such that

p . g - Po • . . . . p ^ - (Sj • . . . • s t_i • So • . . . • S j - i r

and such that either i = 0 or P«_i ^ Sy. By repeated applications
of (7), it follows again that (P • Q)^px = PipF * Q^j .

3. If Q is finite and not eventually disconnected, then Q = P\ • . . . P& • 6
as above. The details are routine.

4. If P,Q e IA,B, then

{P®Q)<PI = P<PI®Q<P1. (12)

We use the associativity and commutativity of shuffle. Just write P and
Q as a parallel product of posets which cannot be further decomposed.
Then, if P = P a <g> . . . (g) Pk and Q = Qi <g> . . . <g> Q t ,

( P (g)

•
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188 S. L. BLOOM, Z. ESIK

COROLLARY 5.2: For any pair of disjoint sets A, B, thefree Wilke algebra
generated by A and B can be represented as the two sorted algebra
(A+, A*B L)AU), where Au dénotes the set of all ultimately periodic words
in Au, equipped with the polymorphic concaténation opération and the usual
" -opération.

6. V = L

We use Theorem 5.1 to show that the variety of shuffle binoids generated
by the language structures is the variety of all shuffle binoids. Indeed, we
show how to embed the shuffle binoid SPw(A,0) into (E/,!!^), for a
particular alphabet S. This fact is sufficient, by Proposition 4.13 above.
Recall that no poset in IAQ has a maximal element. We use a modifîed
version of a construction introduced in [Tsc94, BÉ96].

Given the set A, let S^ dénote the alphabet A x [2] x N, and use the
foliowing notation:

ai := (a, l , i)

ât := (a, 2,i),

for i G N and a G A.

DÉFINITION 6.1: ho is the unique shuffle binoid morphismfrom SPw(A,0)
to the language structure LÇEA) determined by thefunctions taking a E A to

Recall that a topological sort of an unlabeled poset P is a listing of the
vertices of P in such a way that if v <p vf then v is listed before v'. If
v\, V2,... is a topological sort of the vertices of a labeled poset, then the list
A(vi)A(u2)..., where À is the labeling function, is a trace of the labeled
poset. For example, if P is the two element poset with unrelated vertices 1,
2, both labeled a, say, then the vertices of P have two topological sorts, 1,
2 and 2, 1 but only one trace, namely the word aa.

If Q is a finite or infinité poset in SPW(A, 0), the /io-image of Q is the set
of ail words which are traces of 'expansions' of Q- An expansion Q! of Q
is obtained by replacing each vertex v by a two-element chain v(l) < v(2);
the ordering on Qf is: v(i) < v*(j) iff v = vf and i < j or v < i/ in Q. If
v is labeled by A G A in Q, then in Q', for some i > 1, v(l) is labeled
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ai and v(2) is labeled a*. (see [BÉ96]). A (finite or infinité) word u is a
distinguishing trace of an expansion Q' of Q if u is a trace of Qf and

u —

where:

• Each word o,pi,Si is nonempty.
• Each letter a^a* occurs at most once; if ai occurs then ai occurs earlier.
• The word o contains the labels of all minimal vertices of Q/.
• Each word pi contains only overlined letters öj , and each word Si

contains only nonoverlined letters CLJ.
• If a letter ai occurs in pj, then the letters which occur in SJ are precisely

all of the labels of the immédiate successors of the vertex labeled ai
in Q'.

• If a letter ai occurs in SJ , then the letters which occur in pj are precisely
all of the letters which label the immédiate predecessors of the vertex
labeled a% in Qf.

Thus, from a distinguishing trace of Q', one can détermine both the poset
Ql and the poset Q.

PROPOSITION 6.2: Any expansion Qf of a finite or infinité poset Q in
SPw(A,0) such that the vertices of Q' are labeled by distinct letters has
a distinguishing trace.

Proof: This statement was proved for finite posets in [BÉ96]. For infinité
posets, the claim may be proved by induction on the number of opérations
needed to produce the poset. For example, if u = op\s\ . . . and v — oVi s i • • •
are distinguishing traces of expansions Pf of P and Qf of Qy respectively,
where P is finite and Q is infinité, and if n, v have no common letters,
(which may be assumed), then uv is a distinguishing trace of P ' • Q'
and any expansion of P • Q has this form. Further, if both P and Q are
infinité, oo/pisiPi5/

1p252P252 - * - is a distinguishing trace of P10 Qf and any
expansion of P 0 Q has this form. We omit the simple argument for PW .D

We extend the trace order relation introduced in [BÉ96] to infinité words
on the alphabet E^.

First, if (p : N -+ N is any function, we extend (p to a fonction on the
finite an infinité words in the alphabet T>A by

u(p :=

where u —
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DÉFINITION 6.3: For two finite or infinité words u,v on EA, we say u < v
according to the trace order if it follows that u < v by applying the
subscript, permutation or interchange laws a finite number of times. These
laws are defined as follows. We say

1. u < v according to the subscript law if u = v(p,for some ip : JV —» N.
2. u < v according to the permutation law if

U = SQP1S1P2S2 ...

v = ' i i
and for each i > 0, Sî,s^ are i(open words", Le., words on the letters
ûfc, k > 1, a G Ay, andpi^p\ are "closed words", words on the letters
âfc, k > 1, a G A, and s\ is a permutation o f the letters in si and p\ is
a permutation of the letters in pi. (The permutations depend on i.)

3. u < v according to the interchange law ifthere are letters ai,b3,for
ai 7̂  bj, suc h that

v = uidibjU2 and u = uibja,iU2. (13)

Note that the trace order is a preorder on the finite and infinité words
on XU-

The rule (13) is clearly "irréversible", unlike the subscript law for injective
functions <p and the permutation law.

A word u G Q/io is maximal (in the trace order) if whenever u < v
and v G Qho, then v < u.

REMARK 6.4: For any Q G SPW(JA, £ ) , Qho is always downward closed.
If Q is finite, every word in Qho is below some maximal word. But this
is not the case for some infinité posets. For example, if Q = aw (8) aw, a
maximal word is

but, for example, the word

is not below any maximal word in

PROPOSITION 6.5: For each infinitéposet Q G SPW(A, 0), there is a maximal
word u in Q/io, and, moreover, a word U G Qho is maximal iff u is a
distinguishing trace of an expansion of Q.
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Proof: Note that a word u is maximal in Qho iff each letter in S^ occurs
at most once and there is no word v e Qho such that u < v according to
the interchange law. It is clear that any distinguishing trace of an expansion
of Q is maximal in Qho, and we have shown that each expansion of a
poset in SPw(A,0) in which the vertices are labeled by distinct letters has
a distinguishing trace.

Now assume that

u — op\s\ . . .

is maximal in Qho- Since u E Qho, u is a trace of some expansion Q1 of Q.
We show that u is a distinguishing trace of Qf.

First, no letter a« occurs more than once, or else there is a word v G Qho
such that u < v via the subscript law and v ^ u. Thus, we may identify
a letter, say Xi, that occurs in u with the vertex of Q1 labeled Xi. We will
show that if a% occurs in the closed word p^, say, and if bj occurs in the
open word s*., then ai is an immédiate predecessor of bj in Qf. First, if cü
is not below bj, then the word v obtained from u by interchanging ai and
bj is in Qho and u is not maximal in Qho- If ~â% is below bj but is not an
immédiate predecessor of bj, there is some letter et with ai < et <ct < bj
in Q'. But then u is not a trace of Q'.

Now, for the converse. Suppose that ai is an immédiate predecessor of
bj in Q1 and fy occurs in s^. We show â« occurs in p^. Indeed, since n is
a trace of Q', ai occurs in pt, for some t < k. Suppose, in order to obtain
a contradiction, that t < k. Let dT be a letter in st, and c5 be a letter in
Pfc. Then, by the above, cs is an immédiate predecessor of bt and ai is an
immédiate predecessor of dr. But, by the TV-condition, it follows that cs is
also an immédiate predecessor of dr. But then u is not a trace of Q'. •

COROLLARY 6.6: If Qho = Q%, wftere Q, Q; € SP^(A, 0), then Q = Q'.
SPW(A, 0) w isomorphic to a sub shuffle binoid of

COROLLARY 6.7: V" = L, Le.t the variety of all shuffle binoids is exactly the
variety ofshuffle binoids generated by the language structures L(E). D

According to Proposition 4.13 that there is an embedding

i : S P ^ A , B) -+ $YW{A U B, 0),

and we have just proved that
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is an injective shuffle binoid morphism. The composite

is the unique morphism

a G A i—• {aiâi : i > 1}

b € B » {bijijijtt ... : i3 >1}.

A more economical embedding is a G A f—• {a{â% : i > 1} and
J G B H {6f : i > 1}. We dénote this composite by ho.

6.1. Decidability

In this section, we discuss the decidability and complexity of the validity
of identities in V.

We note the following f act. For any alphabet S, let iî/(E) dénote the
collection of ail regular finitary languages in E ƒ and let i ^ (E) dénote the
collection of ail regular u;-languages in Sw .

LEMMA 6.8: (Rf (E), ̂ ( E ) ) is a .ywZ? shuffle binoid of (S / , Ew).

Proo/* Indeed, when L, L' G S / are regular, so are L • Q', L <g> Qr and Lw.
When C/, V G Sw are both regular, so are U (g) V, L • 17. D

For any pair of disjoint sets A, B, the posets in SPUJ(A,B) have finite
width. Thus, one may obtain traces which characterize a poset without the
need for infinitely many subscripts, but only as many as the width of the
poset.

For each n > 1, define the morphism hn as the unique shuffle binoid
morphism from SP^'(A,B) to the language structure L(EAUB) such that

bhn = {bf : 1 < i < n } , b G B.

PROPOSITION 6.9: Suppose that Q,Qf are posets mSP w (A,B) of width at
most n. IfQhn = Q X , tfœn Q = Qf- •

COROLLARY 6.10: T/îere is an algorithm to détermine, given two sorted
shuffle binoid terms 5,t whether s, £ whether s = £ ZioZds m a// shuffle
binoids.
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Proof: From the terms 5,t,we can détermine the maximum width, say n, of
the two posets they dénote. We then apply the morphism hn to these posets,
obtaining two regular languages, or cj-languages, by Lemma 6.8. Since
the équivalence problem for regular languages and regular u;-languages is
decidable (see [WT90]), the theorem follows. D

We can say more about the complexity of a décision procedure. Using a
tree représentation of the free bi-semigroups, and a resuit in [Kuc90], it was
shown in [BÉ96] that the equational theory of bi-semigroups is decidable
in 0{n log n) time. We now outline a O(n2 log n) algorithm to décide for
any two sorted shuffle binoid terms s,t, whether s — t holds in all shuffle
binoids, where n dénotes the length of the équation 5 = t. In the first
step of the algorithm, we transform each side of the équation to a directed
alternating tree whose non-leaf vertices have labels in the set {•,&,£*;}
and whose leaves are labeled by sorted variables. Moreover, any vertex
labeled by • or ® has at least two successors and no two consécutive vertices
are labeled by the same symbol. Moreover, the successors of any a vertex
labeled • are linearly ordered. This transformation requires linear time. The
trees satisfy some further restrictions, e.g., no descendant of a vertex labeled
D is labeled u. These restrictions are due to the f act that the trees come from
sorted binoid terms. In the second step, we reduce the trees by repeatedly
replacing subtrees of the form

(14)

by the tree

or by

"( t l ) ,

when k — 1, and subtrees

•( t i , . . . , tfc,t,u;(-(si,..., 5m,t))) (15)

by
•(£i,.. . ,tfc,o;(-(t,si,. . . ,sm))),

or by

ü > ( - ( t , S i , . . . , S m ) )
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when k = 0. The resulting reduced trees do not have any subtree of the
form (14) or (15). Since isomorphism of trees can be checked in O(n log n)
time (see [Kuc90]) and since at most O(n) réductions suffice, the second step
requires O(n2 logn) time. Finally, in the third step of the algorithm, we check
whether the reduced trees obtained after the second step are isomorphic.

PROPOSITION 6.11: The equational theory of shuffle binoids is decidable in
polynomial time. D

REMARK 6.12: In the same way, the equational theory of binoids is also
decidable in polynomial time.

REMARK 6.13: Identifying any two terms that differ only up to the
bi-semigroup identities, the rewriting System consisting of the directed rules

t{sty -> (tsr,

where t and 5 are terms an n > 1, is complete, i.e., confluent and noetherian.
The reduced trees mentioned above correspond to the normal forms of this
rewriting System.

7. NO FINITE AXIOMATIZATION

We show, by modifying an argument in [ÉB95] that there is no finite
axiomatization of the variety V. Indeed, by the compactness theorem, if
there is any finite axiomatization, then there is a finite subset of the identities
(l)-(8) which axiomatizes the variety of all shuffle binoids (i*1,/), where
now the variables a, 6, c range over F and u, v, w range over ƒ.

THEOREM 7.1: For any finite subset E of the identities (l)-(8) there is a
model of E which fails to satisfy all of the identities (8). Indeed, for any
prime p there is a model Mp — (FP,IP) of the identities (l)-(7) and the
power identities

for all n < p, such that the identity {xp)u = xu fails in Mp. Thus, L does
not have a finite axiomatization.
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Proof: Fix a prime p. Let Mp — (FP,IP) be the following structure. Fp

consists of all positive integers, and let Ip consist of the set of positive
integers n satisfying the implication

q\n^q>p, (16)

for all primes q, Thus Ip contains 1 and all numbers n whose prime
factorization contains no prime less than p, Lastly, we put an additional
element T in Ip. If n is a positive integer, let p(n) be the quotient of n by
the product of all primes < p which occur in the prime factorization of n,
so that p(n) is the largest quotient of n which belongs to Ip. The opérations
on Mp are defined as follows, for a, b G Fp , n, v £ Ip, u, v / T :

a

a £

a

u (§

a •

-b

§b

• u

) t;

T

— a

— a

•= T

•= T

T = T(8)u = T ® T = T.

It is clear that the identifies (l)-(7) hold. However, for any positive integers

(an)w = p(na) = p(a + . . . + a)

and aw = p(a), but p(na) = p(a) iff every prime divisor of n is less
than p. D

8. ORDERED SHUFFLE BINOIDS

Note that if L\ Ç L2 are finite languages, then Lf Ç L^. Thus, all of
the shuffle binoid opérations on languages preserve the subset order. We
consider now the class of all ordered shuffle binoids, which are two-sorted
algebras B = (F, I, < F ) <7) such that both (F, < F ) and (ƒ, <j) are posets,
and (F, / ) is a shuffle binoid, and all opérations preserve the order. For
example, for ai, 02 G F, x,x'\y,yf G F or x,x\y,yf G /

ai • x < x'

<F a2

x
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where we omit the subscript on <, since it dépends on the type of x, xf, etc.
We put an order on each component of SPW(A, 5)using the morphism ho :
for P i ,P 2 e SP(A), Pi <F P% if Pih0 C P2h0; similarly, if QuQ2 are
infinité posets in S P ^ ^ S ) , Qi <j Q2 if Qiko Ç Q2h0>

For ease of notation, an ordexed shuffle binoid will be denoted (F, / , <).
In [BÉ96] it is shown that for any P,Pf G FA) if Ph0 Ç Pfh0) then

P9 Q P!9, for any structure preserving morphism g : FA —> Ls , f°r anY
alphabet S. An extension of this argument shows that

LEMMA 8.1: For any P.P1 in SPW(A,5), if Ph0 Ç Pfh0, then for any
shuffle binoid morphism g : SPu;(A, B) -+ (S / , Ew), Pff Ç P'^. D

DÉFINITION 8.2: We te L< dénote the variety of ordered shuffle binoids
generaled by ail language structures (S / , £w , Ç).

From Lemma 8.1, we obtain the following theorem.

THEOREM 8.3: The ordered shuffle binoid (FA,IA,BI ^) isfreely generated
in L< by A and B.

We omit the argument to establish the following Lemma.

LEMMA 8.4: If P, Q in SPUÎ(A, B) have width at most n and Phn Ç Qhn,
then Pho Ç Qho. D

COROLLARY 8.5: There is a décision procedure to détermine whether t <tf

is valid in the variety L<.

Indeed, using hn, the problem is reduced to the inclusion problem for
regular languages.

9. OPEN QUESTIONS

1. One might wish to axiomatize those two-sorted language structures in
which one may shuffle finite languages with infinité ones (in addition
to the shuffle binoid opérations). This opération is clearly meaningful
for labeled posets, and is both associative and commutative. For posets,
these are the only axioms one needs to add, but we are not sure that
the same may be said of languages, although we suspect that this is the
case. Indeed, we can show that a class of labeled posets is free in the
corresponding variety, but we cannot show that the embedding used
above remains injective for this larger class of posets.
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2. What is an axiomatization of the language structures of shuffle binoids
enriched by the u;-shuffle opération L t-> L<g>L(g)...? The corresponding
opération is meaningful on posets, but widths become infinité. This fact
makes the characterization of the free structures difficult.

3. What are the free structures in the variety generated by the structures
obtained by enriching the language shuffle binoids with a polymorphic
binary union opération?
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