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LEARNING DETERMINISTIC REGULAR GRAMMARS
FROM STOCHASTIC SAMPLES IN POLYNOMIAL TIME*

RAFAËL C. CARRASCO1 AND JOSÉ ONCINA1

Abstract. In this paper, the identification of stochastic regular
languages is addressed. For this purpose, we propose a class of al-
gorithms which allow for the identification of the structure of the min-
imal stochastic automaton generating the language. It is shown that
the time needed grows only linearly with the size of the sample set and
a measure of the complexity of the task is provided. Experimentally,
our implementation proves very fast for application purposes.

Résumé. Dans cet article, on étudie l'identification de langages
réguliers stochastiques. Dans ce but, nous proposons une classe
d'algorithmes permettant l'identification de la structure de l'automate
stochastique minimal qu'engendre le langage. On trouve que le temps
nécessaire croît linéairement avec la taille de l'échantillon et on donne
une mesure de la complexité de l'identification. Expérimentalement,
notre mise en œuvre est très rapide, ce qui la rend très intéressante
pour des applications.

1. INTRODUCTION

Identification of stochastic regular languages (SRL) represents an important
issue within the field of grammatical inference. Indeed, in most applications —as
speech récognition, natural language modeling, and many others— the learning
process involves noisy or random examples. The assumption of stochastic behavior
has important conséquences for the learning process. Indeed, Gold [9] introduced
the criterion of identification in the limit for successful learning of a language.
He also proved that regular languages cannot be identified if only text (z.e., a
sample containing only examples of strings in the language) is given, but they
can be identified if a complete présentation is provided. A complete présentation
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is a sample containing strings classified as belonging (positive examples) or not
(négative examples) to the language. In practice, négative examples are usually
scarce or difficult to obtain. As proved by Angluin [1], stochastic samples {Le.,
samples generated according to a given probability distribution) can compensate
the lack of négative data, although they do not enlarge the class of languages that
can be identified.

Some attempts to find suitable learning procedures using stochastic samples
have been made in the past. For instance, Maryanski and Booth [13] used a chi-
square test in order to filter regular grammars provided by heuristic methods.
Although convergence to the true one was not guaranteed, acceptable grammars
(i.e., statistically close to the sample set) were always found. The approach of
van der Mude and Walker [20] merges variables in a stochastic regular grammar,
where Bayesian criteria are applied. In that paper [20], convergence to the true
grammar was not proved and the algorithm was too slow for application purposes.

In the recent years, neural network models were used in order to identify regular
languages [8,15,18,21] and they have also been applied to the problem of stochas-
tic samples [4]. However, these methods share the serious drawback that long
computational times and vast sample sets are needed. Hidden Markov models are
used by Stolcke and Omohundro [19]. In order to maximize the probability of the
sample, they include a priori probabilities penalizing the size of the automaton.

Oncina and Garcia [14] proposed an algorithm, similar to the one presented by
Lang [12], which allows for the correct identification in the limit of any regular
language if a complete présentation is given. Moreover, the time needed by this
algorithm in order to output a hypothesis grows polynomially with the size of the
sample, and a linear time complexity was found experimentally. In this paper,
we follow a similar approach and develop the algorithm rlips(Regular Language
Inference from Probabilistic Samples) which builds the prefix tree automaton from
the sample and évaluâtes at every node the relative probabilities of the transitions
coming out from the node. Next, it compares pairs of nodes, following a well
defined order (essentially, that of the levels in the prefix tree acceptor or lexico-
graphical order). Equivalence of the nodes is accepted if they generate —within
statistical uncertainty— the same stochastic language. The process ends when
further comparison is not possible.

A preliminary version of the algorithm was already presented in référence [3].
Here we develop a modified version which allows us to prove that, with probability
one, the algorithm identifies the correct structure of the automaton generating the
language.

Meanwhile, an algorithm with a different learning model (the PAC model) and
some connection points with ours has been proposed by Ron et al. [17] The différ-
ences between both approaches will be commented in the next section, as well as
the différences between stochastic and non-stochastic identification. Some défini-
tions will be introduced in Section 3. A more detailed description of our algorithm
can be found in Section 4, which is proved to be correct in Section 5. Finally,
results and discussion will be presented in Section 6.
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2. IDENTIFICATION OF STOCHASTIC LANGUAGES

At this point, it is worthwhile to remark on some différences between the
identification process of stochastic and non-stochastic regular languages. Iden-
tification in the limit means that only finitely many changes of hypothesis take
place before a correct one is found. Non-stochastic regular languages form a re-
cursively enumerable set of classes R = {£1, L2,.. .} and a simple enumerative
procedure identifies in the limit R provided that a complete sample S is provided.
A complete sample présents all strings classified as belonging or not to the lan-
guage. If Lr is the true hypothesis, there is only a finite number of incorrect L&
preceding Lr, and for all of them a counterexample exists in S. Therefore, by
choosing as hypothesis the first Lk consistent with the first n strings in 5, all
incorrect languages will be rejected provided that n is large enough (say n > N).
Obviously, the hypothesis is changed finitely many times (at most N times). Of
course, négative examples play a relevant rôle, since they may be necessary in
order to reject languages whose only différence with Lr lies on Lk — Lr (and they
may exist because an order which respects inclusion is not generally possible).

In contrast, samples of stochastic languages contain only examples which appear
repeatedly, according to a probability distribution p(w\L) giving the probability
of the string w in the language L, There are no négative examples in the sample
and therefore, no explicit information about strings such that p(w\L) = 0.

However, the statistical regularity is able to compensate for the lack of négative
examples [1]. In particular, stochastic regular languages with rational probabilities
are identifiable with probability one, by simply using enumerative algorithms.
Because enumerative methods are experimentally unfeasible, the search of fast
and reliable algorithms for identification becomes a challenging task.

A widespread measure for the success in learning a probability distribution is
the Kullback-Leibler distance or relative entropy [5]. One can use this measure,
for instance, in the reduced problem of learning the bias p of a coin. A traditional
approach is to estimate p with p, the rate between the number of heads and the
number of tosses. It is also possible to define a procedure in order to identify the
bias p, provided that p is rational. However, except for very simple rational values
of p the estimation p gives better resuits (in terms of relative entropy) than the
identification procedure. A typical résult is shown in Figures 1 and 2.

The situation changes when the number of possible outcomes in the experiment
is infinité. The support of L is the subset RL = {w G A* : p(w\L) > 0} of non-zero
probability strings. For most languages, RL is infinité and thus, there are strings
whose probability is as small as desired. Therefore, many strings in RL will not be
represented by a finite sample and their probability will be incorrectly estimated
as zero, leading to a large relative entropy. According to this, we have chosen to
identify the structure of the canonical generator of the language and then, estimate
the transition probabilities (which are a finite set of numbers) from the sample.
Note that it is not enough to identify the support RL , as the minimal acceptor for
RL is often smaller than the canonical generator for L.
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FIGURE 1. Typical plot of the relative entropy (bits) between
p = 0.875 and the expérimental bias as a function of the number
of tosses. Continuous line: estimation. Dotted line: identification
procedure (drops to zero after 20000 experiments).

16-02

16-03

16-04

16-05

19-06

16-07

16-08

16-09
Oe+00 1e+04 26+04 36+04 4e+04 56+04 66+04 76+04 86+04 96+04 16+05

FIGURE 2. Same as Figure 1 with a bias p = 0.62. Identification
takes place too late for practical purposes.
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In this way, we will find that the relative entropy between our model and the
true distribution decreases very fast as the sample size grows, something that can-
not be achieved without a good estimation of the probabilities of all the strings
in i?£,, especially for those not contained in the finite sample. It is important to
remark that we make no assumption about the underlying stochastic automaton.
In contrast, the algorithm of Ron et al. [17] assumes that the states in the automa-
ton are distinguishable at a given degree fi and only outputs acyclic automata (in
particular automata whose transitions go from states in level d to states in level
d-\-1). Although one can always find an acyclic automaton close to the target one,
our approach identifies the structure even when cycles are present.

3. D É F I N I T I O N S

Let A be a finite alphabet, A* the free monoid of strings generated by A and
À the empty string. The length of w G A* will be denoted as \w\. For x,y G A*,
if w = xy we will also write y = x~1w. The expression xA* dénotes the set of
strings which contain x as a prefbc. On the other hand, x < y in lexicographical
order if either \x\ < \y\ or \x\ = |y| and x précèdes y alphabetically.

A stochastic language L is defined by a probability density fonction over A*
giving the probability p(w\L) that the string w G A* appears in the language.
The probability of any subset X C A* is given by

{X\L), (1)

and the identüy of stochastic languages is interpreted as follows:

hx = L2 <=> P M L I ) = p(w\L2) Vw e A\ (2)

or, equivalently,

L± - L2<*p(wA*\L1)=p(wA*\L2) Vw e A\ (3)

In other approaches [17] a minimal différence /x > 0 between the probabilities is
assumed. However, we will make no assumption of this kind about the probability
distribution.

A stochastic regular grammar (SRG), G = (A,V,S,R}p), consists of a finite
alphabet A, a finite set of variables V —one of which, 5, is referred to as the
starting symbol—, a finite set of dérivation rules R with either of the following
structures:

X -> A ( 4 )

where a G A, X, Y G V1 and a real function p: R —> [0,1] giving the probability
of the dérivation. The sum of the probabilities for ail dérivations from a given
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variable X must be equal to one. The form of équation (4), although formally
different, is equivalent to other ones used in the literature, as in Fu [7]. The
stochastic grammar G is deterministic if for all X €. V and for all a £ A there is
at most one Y e V such that p(X -> aY) ^ 0.

Every stochastic deterministic regular grammar G defines a stochastic
deterministic regular language (SDRL), LG, through the probabilities p(w\Lc) =
p(S => w). The probability p(S => w) that the grammar G générâtes the string
w G A* is defined in a recursive way:

p(X^X) = p(X^X) (

p(X => aw) = p(X -+ aY)p(Y => w) y }

where Y is the only variable satisfying p(X —> aY) ^ 0 (if such variable does not
exist, then p(X —> aY) = 0).

A stochastic deterministic finite automaton (SDFA), A = (QA,A,ôA,qf,pA),
consists of an alphabet A, a finite set of nodes QA = {ci, £2, • • • <7n}, with qf G QA

the initial node, a transition fonction ôA: QA x i - > QA and a probability function
pA\ QA x A —> [0,1] giving the probability p{qu &) that symbol a follows after a
prefix.leading to state qi. The probability pA{qi, A) is defined as

Ate,a) (6)

and represents the probability that the string ends at node qi or, equivalently, an
end of string symbol follows the prefix. The constraint pA{q%->X) > 0 holds for
ail correctly defined SDFA. As usual, the transition function is extended to A* as
SA (qi, aw) = ôA (6A (qi ,a),w).

Every SDFA A defines a SDRL, LA, through the probabilities P(W\LA) =
7TA(qA,w), defined recursively as

7TA(qi, aw) =

If ÖA(qi,a) is undefmed, then 7rA(SA(qi, a), w) = 0.
A comparison of équations (5) and (7) shows the équivalence between SDRG

and SDFA. In case the SDRG contains no useless symbols (Hopcroft and Ullman
[11]), the probabilities of the strings sum up to 1:

o(w\LG) = 1. (8)
weA*

The quotient x~xL is the stochastic language defined by the probabilities of the
strings in L starting with ar, conveniently normalized:
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If p(xA*\L) = 0, then by convention x~lL = 0 and p(w\x~lL) = 0. Note that
\~1L = L.

If L is a SDRL, the canonical generator M = (QM\A,ôM^qf1\pM) is defined
as:

QM _ SX~1L •£ 0 * x G v4*}
öM(x-1L,a) - {xa)-lL ( ,

of = A-1!, ( 1 0 )

The automaton M is the minimal SDFA generating L, and its construction is
supported by the following facts which allow us to extend the Myhill-Nerode
theorem [11] for stochastic automata:

1. The automaton M is finite and not larger than any other automaton A =
{QA,A>öA,qf,pA) generating L. By writing qx = öA(q!,x), and making
repeated use of (7) one gets from the définition.(9),

As the number of different values for qx is bounded by | QA \, the size of the
automaton A, so is the number of different languages x~1L, and therefore
\QM\ < \QA\.

2. The transition function öM is well defined, ie.,

x~lL = y-^L =• öM{x'1L)a) = ôM{y-1L,a). (12)

Indeed, for all w e A*

p(aw\x~lL) p(xaw\L) \-i
( i - i - i r \ p(aw\xL) p(xaw\L) \-ir\ /io\
(w\a x L) = , / H T = —r * . \ = piwlixa) L) (13)

and therefore {xa)~1L = a"1^"1!/. With this, équation (12) is straightfor-
ward. In addition, the previous relation allows one to write öM(qi,w) =
w~lL.

3. The automaton M générâtes LM = L. In fact, it is easier to prove
7TM(x~1Lz wA*) = p(wA*\x~lL) for all x, w e A*> which includes the initial
state (x — X) as a special case. The équation trivially holds for all x when
w = A. According to (7)

. (14)

Finally, by induction in w and using (10), one gets

^ ^ =p(awA*\L). (15)
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In order to identify the canonical generator, we need to define the prefix set and
the short-prefix set of L as:

Pr(L) = {x e A* : x~lL ^ 0} (16)

Sp(L) = {x E Pr(L) : x~xL = y'xL ^ x < y}- (17)

Note that x"1L ^ y~xL for all x,y € Sp(£) such that x ^ y^ and therefore, the
strings in Sp(L) are représentatives of the states in the canonical generator M.
Accordingly, we will use them in the construction of M and add transitions of
the type S(x1 a) — xa, except when xa is not a short prefix. In order to deal with
these undefined transitions we will use the kernel and the frontier set of L, defined
respectively as:

K(L) = {A} U {xa e Pr(L) : x e Sp(L) A a G A} (18)

(19)

Note that K(L) has size at most 1 + |M||.4| and contains Sp(L) as a subset.
Our aim is to identify the canonical generator from random examples. A

stochastic sample S of the language L is an infinité séquence of strings gêner-
ated according to the probability distribution p(w\L). We dénote with Sn the
séquence of the n first strings (not necessarily different) in 5, which will be used
as input for the algorithm. The number of occurrences in Sn of the string x will
be denoted with cn(x), and for any subset X C A*t

=«(X). (20)

xex

The séquence Sn defines a stochastic language Ln with the probabilities

p(x\Ln) = ±cn(x). (21)
10

The prefix tree automaton of Sn is a SDFA, Tn = (QT,A,ôT^qJ1p
T), which

générâtes Ln and can be interpreted as a model for the target language L assigning
to every string the expérimental probability. Formally,

QT = Pr(Ln)
r.T. . _ ƒ xa if xa G Pr(Ln)

^ ' ' ~ \ 0 otherwise , ,
y/ — ^

Probabilities of the type pT(x, À) are evaluated according to équation (6).



LEARNING STOCHASTIC REGULAR GRAMMARS 9

4. THE INFERENCE ALGORITHM

We define the boolean function equivL: K(L) x K(L) —> {true,false} as

,y) = true <̂> x~lL = y~lL. (23)

Note that equivL is an équivalence relation for the strings in the kernel K(L). We
will make use of the following lemma:

Lemma 1. Given L, a SDRL, the structure of the canonical generator of L is
isomorphic to:

Q - Sp(L)
Qi = A (24)

ö{x,a) = y

where, for every (x,a) G Sp(L) x A, y is the only string in Sp(L) such that
equivL(za,y).

Proof Let $ : Q —> QM be defined as $(x) = x~lL. The mapping <2> is an
isomorphism if <5M($(z),a) = 3>((5(x, a)), which means (xa)~1L = y~1L. There-
fore, $ is isomorphism if and only if y is a string in Sp(L) satisfying equivL(xa, y)
and, according to définition (17), y is unique. Note that x G Sp(L) ^ xa E K{L),
and equiv^ remains well defined. D

The next lemma shows that the problem of inferring the structure of the
canonical generator can be reduced to that of learning the correct function equivL.

Lemma 2. The structure of the canonical generator of L can be obtained from
equivL and any D C Pr(£) such that K{L) C D wüh the algorithm depicted in
Figure 3, which gives Sp(L) and F(L) as byproducts.

Proof (sketch) Induction in the number of itérations shows that Sp'1' C Sp(L),
j?b] (2 F(L) and W^ C K(L), where the super-index dénotes the resuit after i
itérations. On the other hand, if xa is in K(L), induction in the length of the
string shows that xa eventually enters the algorithm. Following Lemma 1, for
every x G Sp(L), if xa is also in Sp(L), then ö(x} a) = xa. However, if xa $ Sp(L),
there exists y G Sp(L) such that equivL(xa, y) and S(x, a) = y. D

The algorithm 3 performs a branch and bound process following the prefix tree.
Every time a short prefix x is found (a string whieh has no shorter equivalent string)
the possible continuations xa are added as candidates for éléments in Sp. On the
contrary, if x is not a short prefix, no string is added and only the corresponding
transition is stored.

One can replace the subset D with Pr(Ln) C Pr(L), which contains K(L) when
n large enough. On the other hand, equivL is always well defined because the
function is never called out of its domain. As x G K{L) and y G Sp(L), the algo-
rithm makes at most |i£T(L)| x |Sp(L)[ calls to equivL. Thus, the global complexity
of the algorithm is O(|.À||M|2) times the complexity of function equivL.
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algorithm r l i p s
input :D C Pr(L) such that K(L) C D
output : QM = Sp (short prefix set)

F (frontier set)
ÔK (transition function)

begin algorithm
Sp = {À} (short prefix set)
F = 0 (frontier set)
W = A (candidate strings)
do ( while W ^ 0 )

x — min W
W = W -{x}
if 3y G Sp : equivL(x,y) then

F = F U {#} [x is not a short prefix]
ôM(w, a) —y [with wa = x, a G A, w G A*}

else
Sp = Sp U {x} [x is a short prefix]
W = W U {xa G D : a G i } [add new candidates]
ôM(w, a) = x [with wa = x, a G .4, tu G 4̂*]

endif
end do

end algorithm

FIGURE 3. Algorithm r l ips .

5. CONVERGENCE OF THE ALGORITHM

In order to evaluate the équivalence relation x~xL — y~1Li we will use a
variation of (3) which improves1 convergence:

Li = L2&p(aA*\z-1L1) = p(aA*\z-1L2)Va G A, z G A*:. (25)

Taking into account (10), the above relation means that for all z G A* and a G
AU{\}

pM((xz)-1L,a)=pM((yz)-1L,a). (26)

In practice, L is unknown and function equivL(#,?/), defined as x~lL = Î/"1^, is
replaced with the expérimental function compatiblen(x, y), which checks x~1Ln —
y~1Ln instead. This means using pT instead of pM in (26). As Ln is stochastic,
a confidence range has to be defined for the différence between the probabilities
in x~lLn and y~1Ln. There is a number of different statistical tests [2,6,10]

his method allows one to distinguish different probabilities faster, as more information is
always available about a prefix than about the whole string.
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algorithm compatiblen
input :x, y (strings)

Tn (prefix tree automaton)
output : boolean
begin algorithm

do ( \lz € A*: xz G Pr(Ln) V yz e Pr(Ln )
if different (cn(xz),cn(xzA*)}Cn(yz)}cn(yzA*),a) then

return FALSE
endif
do ( Va G A )

if different (cn(xzaA*),cn(xzA*),cn(yzaA*)1cn(yzA*),a) then
return FALSE

endif
end do

end do
return TRUE

end algorithm

FIGURE 4. Algorithm compatible. Function different is
plotted in Figure 5.

algorithm different
input :n, / ,n' , f\a
output : boolean
begin algorithm

if n = 0 or n' = 0 then
return FALSE

endif

return (n) +ea(n')
end algorithm

FIGURE 5. Algorithm different. Function ea is defmed by équation (31).

leading to a class of algorithms rather than a single one. We have chosen the
Hoeffding [10] bound as described in the Appendix and implemented in function
different (Fig. 5). It returns the correct answer with probability greater than
(1 — a)2, being a an arbitrarily small positive number. Because the number of
checks grows when the size t of the prefix tree automaton grows, we will allow the
parameter a to depend on n.

According to (26), compatibility of two states x and y in QT will be rejected
if some z E >4* is found such that the estimated transition probabilities from
xz and yz are different. We will show that compatiblen(#,£/), as plotted in
Figure 4, returns in the limit of large n the same value as equivL(x,y) for all
xy y € K{L). Therefore, following Lemma 2, the correct structure of the canonical
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acceptor can be inferred in the limit, and the transition probabilities pM{x,a)
defmed in équation (10) can be evaluated from Sn by means of the expérimental
ones pT(xi a), defined in équation (22).

Theorem 3. Let the parameter an in function different be such that the sum
Y^Lonan is finite. Then, with probability one, function equivL(x,y) and func-
tion compatiblen(x,y) return the same value for any x,y € K(L) except for
finitely many values of n.

Proof. Following (26), the loop over z in function compatible^ checks, for the
subtrees rooted at x and y, if the transition probabilities pT(xz, o) and pT(yz, a)
are similar (in the sense of function different) and also compares pT-(xz, X) with
pT(yz, X) at every node. There are at most tn — 1 arcs plus tn nodes in asubtree,
and therefore, a maximum of 2tn calls to different in compatible^. Let An

be the event equivL(x,?/) ^ compatiblen(x, y) and p(An) its probability. As
different works with a confidence level above (1 — an)2 , the probability p(An) is
smaller than 4anrn , where rn is the expected size of the prefix tree automaton after
n examples. According to the Borel-Cantelli lemma [6], if ^2np{An) < oo then,
with probability one, only finitely many events An take place. As the expected
size rn of the prefix tree automaton cannot grow faster than linearly with ra, it
is sufficient that Y2n

nan ^ °° f°r comPat:i-blen(x,ï/) and equivL(x,y) to return
the same value, except for finitely many values of n. D

An immédiate conséquence from the previous proof is that the complexity of
compatiblen is bounded by n and, according to the discussion at the end of the
former section, the algorithm r l i p s works in time O(n|^4|[M|2). Therefore, the
algorithm is, in the limit of large sample sets, linear with the size of the sample,
and usually dominated by input/output processes.

Recall that r l i p s only needs compatiblen(a;,2/) to be correct within the finite
set K{L) x Sp(iy). Thus, with probability one, there exists an TV such that all calls
to compatiblen with n > N return the correct value and, then, r l i p s outputs
the correct structure of the canonical generator.

6. A LOWER BOUND ON THE SAMPLE SIZE
FOR CONVERGENCE

An interesting question is the number of examples necessary in order to correctly
infer a SDFA. This number dépends on the detailed structure of the automaton
and the statistical tests being applied. However, a lower bound for any algorithm
of the class described in this paper can be found.

For every pair of strings xi, X2 € Sp(X) such that xi / X2, a minimum number
of examples needed in order to find x^xL ^ x^lL will be denoted with 7(xi, X2).
Following (26), there exist z E A* and a G A U {À}, such that

\pM(x'1,a)-pM(x'2,a)\^0, (27)
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being x[ = x\z and xf
2 = x2z. One cannot expect convergence to take place

before the statistical error of the expérimental range becomes smaller than the
above différence. An algorithm-independent estimât e of the error range is given
by the sum of standard déviations a± + aq, with

where n is the number of examples in Sn.
Therefore, comparison of pM{x1z^a) andpM(x2^,a) cannot be expected to be

correct before n > N{x\,X2-iz,a) with

a) -

We may take now 7(2:1, x2) = min(Zja){N(xi)X2,z,a)}, because one string z and
one symbol a are enough to frnd x\ and x2 not compatible. The most difficult
comparison gives a lower bound for the difficulty of identifying the canonical
generator:

r x = rnax {7(x, y) : y < x} • (30)
x,yeSp(L)

A similar bound F2 applies when x E K(L) and y G Sp(L), but in this case it
is enough to look for all y < z where z is the only string in Sp(£) equivalent to
x. As an example, the Reber grammar of Figure 6, has a lower bound F ~ 330
corresponding to x\ = BT, x2 = BTX and z — X and compatible with the
expérimental results discussed in next section.

7. RESULTS AND DISCUSSION

The performance of the algorithm has been tested with a variety of grammars.
For each grammar, different samples were generated with the canonical generator
of the grammar and given as input for r l ips . For instance, the Reber grammar
(Reber [16]) of Figure 6 has been used in order to compare r l i p s with previous
works on neural networks which used this grammar as check [4].

In Figure 7 we plot the average (after 10 experiments) number of nodes in the
automaton found by r l i p s as a fonction of the size of the sample set generated
by the Reber grammar. As seen in the figure, the number of states converges to
the right value when the sample is large enough. In order to check that also the
structure was correctly inferred, the relative entropy [5] between the hypothesis
and the target grammar has been plotted in Figure 8. For comparison, the relative
entropy of the strings in the sample (or, equivalently, of the prefix tree automaton)
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S(0.6)

T(0.7)

FIGURE 6. SFA corresponding to the Reber grammar.

is also plotted, and shows a much slower convergence. Indeed, if the symmeterized
for m is used, this latter distance becomes infinité.

As indicated by Figure 7, when the number of examples available is small the
algorithm tends to propose hypothesis which over-generalize the target language.
In this range, because the estimations of the transition probabilities are not ac-
curate, most pairs of states are taken to be equivalent and the automaton found
contains fewer states than the correct one. Ho we ver, when enough information is
available, the algorithm always finds the correct structure of the canonical gener-
ator, The number of examples needed to achieve convergence is relatively small
(about eight hundred) and consistent with the bound of previous section. This
number compares rather favorably with the performance of récurrent neural net-
works [4] which cannot guarantee convergence for this grammar even after tens
of thousands of examples. The algorithm behaved robustly with respect to the
choice of parameter a, due to its logarithmic dependence on the parameter.

In Figure 9, the average time needed by the algorithm is plotted as a function of
the number of examples in the sample (dispersions are negligible in this picture).
The linear complexity is observed and the algorithm proves very fast even for huge
sample sets.

Figure 10 shows the number of examples needed in order to identify 250
randomly generated automata. The corrélation with F suggests that the bound
F = max(rx,r2) obtained in previous section can be regarded as an indication
of the difficulty in the identification. These experiments also showed that even
some small automata can be difïicult to identify, in the sense that huge samples
are needed, if they contain quasi-equivalent states (states with almost identical
transition probabilities) or states which are very unlikely reached from the initial
state. Therefore, in order to keep the experiments with larger automata feasible,
we excluded those with F > 106. With this restriction, r l i p s was able to cor-
rect ly identify any randomly generated medium-size automata as the one depicted
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200 400 600
size of sample

800 1000

FIGURE 7. Number of nodes in the hypothesis for the Reber
grammar as a function of the size of the sample.

le-06
100 1000 10000

size of sample
100000 le+06

FIGURE 8. Lower dots: relative entropy (in bits) between the
hypothesis and the target language. Upper dots: same between
sample and target.

in Figure 11, where F ~ 500 000 and identification was reached after 3 million
examples.

8. CONCLUSIONS

An algorithm has been proposed which identifies the minimal stochastic au-
tomaton generating a deterministic regular language. Identification is achieved
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F I G U R E 9. Time (in seconds) needed by our implementation of
r l i p s running on a Hewlett-Packard 715 (40 MIPS) as a function
of the size of the sample.
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FiGURE 10. Sample size n needed for convergence as a function
of F for 250 randomly generated automata. The line n = F is
plotted to guide the eye.



LEARNING STOCHASTIC REGULAR GRAMMARS 17

FIGURE 11. Medium-size automaton identified by r l i p s after 3
million examples.

from stochastic samples of the strings in the language, and no négative examples
are used. Experimentally, the algorithm needs very short times and comparatively
small samples in order to identify the regular set. For large samples, linear time is
needed (about one minute for a sample containing one million examples running
on a Hewlett-Packard 715). The algorithm is suitable for récognition tasks where
noisy examples or random sources are common. In this line, applications to speech
récognition problems are planned.

The authors want to acknowledge useful suggestions from M.L. Forcada and E. Vidal.

APPENDIX

We have chosen the following bound, due to Hoeffding [10], for the observed
frequency f/m of a Bernoulli variable of probability p. Let a > 0 and let

(31)
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then, with probability greater than 1 — a,

- • £ <e a(m). (32)
m

Consistently, for every couple of Bernoulli variables with probabilities p and pf

respectively, with probability greater than (1 — a)2 ,

X _ IL
m mf

Z _ IL
m m'

< ea(m) + ea(m
f) if p — p9

(33)

> ea(m) + ea(m') if |p - j / | > 2ea(m) + 2ea(m
;)

and only one of the two conditionals stands for m and m' large enough, as
eor(îTi) —>• 0 when m grows. This is the check implemented through the logical
function different, shown in Figure 5. The return value will be correct for large
samples with probability greater than (1 — a)2 . In our algorithm, a will depend
polynomially on the size of the sample, but even in this case the implicit con-
dition ea(4)(cn(x)) —> 0 remains true, as the logarithm in équation (31) cannot
compensate the growth in the denominator.
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