@article{ITA_1999__33_1_47_0, author = {Selmi, Carla}, title = {Strongly locally testable semigroups with commuting idempotents and related languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {47--57}, publisher = {EDP-Sciences}, volume = {33}, number = {1}, year = {1999}, mrnumber = {1705855}, zbl = {0940.68072}, language = {en}, url = {http://archive.numdam.org/item/ITA_1999__33_1_47_0/} }
TY - JOUR AU - Selmi, Carla TI - Strongly locally testable semigroups with commuting idempotents and related languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 47 EP - 57 VL - 33 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/item/ITA_1999__33_1_47_0/ LA - en ID - ITA_1999__33_1_47_0 ER -
%0 Journal Article %A Selmi, Carla %T Strongly locally testable semigroups with commuting idempotents and related languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 47-57 %V 33 %N 1 %I EDP-Sciences %U http://archive.numdam.org/item/ITA_1999__33_1_47_0/ %G en %F ITA_1999__33_1_47_0
Selmi, Carla. Strongly locally testable semigroups with commuting idempotents and related languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 1, pp. 47-57. http://archive.numdam.org/item/ITA_1999__33_1_47_0/
[1] Finite Semigroups and Universal Algebra, River Edge. N.J. World Scientific, Singapore (1994). | MR | Zbl
,[2] The algebra of implicit operations. Algebra Universalis 26 (1989) 16-72. | MR | Zbl
,[3] Equations for pseudovarieties, J.-E. Pin Ed., Formal properties of finite automata and applications, Springer, Lecture Notes in Computer Science 386 (1989). | MR
,[4] Implicit operations on finit e J-trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. | MR | Zbl
,[5] On pseudovarieties, varietes of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990) 333-350. | MR | Zbl
,[6] Relatively free profinite monoids: an introduction and examples, J. B. Fountain and V.A.R. Gould Eds., Semigroups, Formal Languages and Groups (to appear) (Da rivedere). | MR | Zbl
and ,[7] Free profinite semigroups over semidirect products, Izv. VUZ Matematika 39 (1995) 3-31; English version, Russian Mathem. (Izv. VUZ.) 39 (1995) 1-28. | MR | Zbl
and ,[8] On the varieties of languages associated with some varieties of finite monoids with commuting idempotents. Inform. and Computation 86 (1990) 32-42. | MR | Zbl
, and ,[9] Languages and scanners. Theoret. Comput. Sci. 84 (1991) 3-21. | MR | Zbl
and ,[10] Characterization of locally testable events. Discrete Math. 4 (1973) 243-271. | MR | Zbl
and ,[11] Automata, languages and machines. Academic Press, New York, Vol. B (1976). | MR | Zbl
,[12] On pseudovarieties. Adv. in Math. 19 (1976) 413-418. | MR | Zbl
and ,[13] Algebraic decision procedures for local testability. Math. Systems Theory 8 (1974) 60-76. | MR | Zbl
,[14] Variétés de Langages Formels, Masson, Paris (1984). | MR | Zbl
,[15] Monoids of upper triangular matrices. Colloq. Math. Societatis Janos Bolyai 39 Semigroups, Szeged (1981) 259-272. | MR | Zbl
and ,[16] The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. | MR | Zbl
,[17] On finite monoids having only trivial subgroups. Inform. and Control 8 (1965) 190-194. | MR | Zbl
,[18] Langages et semigroupes testables. Doctoral thesis, University of Paris VII, Paris (1994).
,[19] Over Testable Languages. Theoret Comput. Sci. 162 (1996) 157-190. | MR | Zbl
,[20] Piecewise testable events. Proc. 2nd GI Conf., Springer, Lecture Notes in Computer Science 33 (1975) 214-222. | MR | Zbl
,[21] Implicit operations on pseudovarieties: an introduction, J. Rhodes Ed., World Scientific, Singapore, Semigroups and Monoids and Applications (1991). | MR | Zbl
,[22] Locally testable languages. J. Computer and System Sciences 6 (1972) 151-167. | MR | Zbl
,[23] Locally testable semigroups. Semigroup Forum 5 (1973) 216-227. | MR | Zbl
,[24] Opérations implicites et variétés de semigroupes finis. Doctoral thesis, University of Paris VII, Paris (1993).
,