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ON-LINE FINITE AUTOMATA FOR ADDITION
IN SOME NUMERATION SYSTEMS

CHRISTIANE FROUGNY1

Abstract. We consider numération Systems where the base is a
négative integer, or a complex number which is a root of a négative
integer. We give parallel algorithms for addition in these numération
Systems j from which we dérive on-line algorithms realized by finite
automata. A gênerai construction relating addition in base fi and ad-
dition in base j3rn is given. Results on addition in base j3 — Vfc, where
b is a relative integer, follow. We also show that addition in base the
golden ratio is computable by an on-line finite automaton, but is not
parallelizable.

1. INTRODUCTION

A positional numération System is given by a base and by a set of digits. In
the most usual numération Systems, the base is an integer b > 2 and the digit set
is {0, . . . , b — 1}. In order to represent complex numbers without separating the
real and the imaginary part, one can use a complex base. For instance, it is known
that every complex number can be expressed with base i\/2 and digit set {0,1}
(see [20]). For example, -3 /2 - iV2/2 = (101 • 1 1 ) ^ . Recently there have been
several contributions to complex arithmetic [2,10,15,18,26,31].

Among the complex bases (3 that have been considered so far, the most studied
ones have the property that there is a power of (5 which is an integer, namely for
base ƒ3 = iVb, where b > 2 is an integer, /32 = —6, and for base ƒ3 = —l=bz, (3A = —4
[19,28]. In those Systems, the digits are integers. We might also mention that some
authors have considered numération Systems with complex digits. For instance,
every complex number has a représentation in base 2 using digit set {0,1,2,1 + i}
[27]. Herreros [18] has studied the représentation of complex numbers using base
2 and digit set {0,1,C> ••- >C5}> where Ç6 = 1. Robert [30] has considered base
zV3 and digit set {0,1, (1 + iV
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In this work, we do not consider the question of the representability of the
complex plane, but we focus on the addition process. Addition of two numbers
in the classical 6-ary numération system, where 6 is an integer > 2, has a linear
time complexity. In order to save time, several solutions have been proposed.
A celebrated one is the Avizienis signed-digit représentation [3], which consists
of changing the digit set. Instead of taking digit s from the canonical digit set
{0, . . . ,6 — 1}, they are taken from a balanced set of the form {ö, . . . , a}, where
a dénotes the digit — a, a being an integer such that 6/2 < a < b — 1 (6 has to
be > 3). Such a numération system is redundant, that is to say, some numbers
may have several représentations. This property allows one to perform addition in
constant time in parallel, because there is a limited carry propagation. A similar
algorithm for base 2 has been devised by Chow and Robertson [8] using digit set
{ï, 0,1}. Hère addition is realized in parallel with a window of size 3. In terms of
automata theory, such fonctions are called local: a function is p-local if the value
of an output digit is determined through a window of size p.

On-line arithmetic is the performing of arithmetic opérations in Most
Significant Digit First (MSDF) mode (that is, from left to right), digit serially
aft er a certain latency delay [12]. This allows the pipelining of different opéra-
tions such as addition, multiplication and division. It is also appropriate for the
processing of real numbers having infinité expansions. It is well known that when
multiplying two real numbers, only the left part of the result is significant.

On-line multiplication uses parallel addition, and this allows one to have a
linear time algorithm for multiplication. It is then necessary to use a redundant
numération system (see [32]).

In this paper, the finite state automata is our model of computability.
A function is computable by a finite automaton if it needs only a finite auxil-
iary storage memory, independent of the size of the data. In that setting, one
knows that addition of two integers in the classical 6-ary system is computable
by a finite automaton but that squaring is not (see [11]). Actually, the natural
finite automaton one designs to perform addition processes numbers in the Least
Significant Digit First (LSDF) mode (that is, from right to left), and is called a
right subsequential automaton. Moreover, one input digit gives one output digit.

On-line finite automata have been introduced by Muller [25]. They are
sequential finite automata processing data in MSDF mode, and such that one
input digit gives one output digit, after a certain latency delay. They are a spe-
cial kind of left subsequential automata. The Avizienis and the Chow-Robertson
algorithms for parallel addition in intégral base lead to the construction of on-line
finite automaton for addition (see [16,25]). There is a genera! result which says
that if a function is p-local, then it is computable by an on-line finite automaton
with delay p — 1. However, in this paper, we will always give an explicit construc-
tion of an on-line finite automaton realizing a local function, having less states
than the gênerai one.

Let us reeall a result we shall use latter on: a function is said to have a bounded
delay if it is realized by a finite automaton such that on every loop, the input and
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the output have same lengt h. If a function has a bounded delay and if it is left
(sub)sequential, then it is computable by an on-line finite automaton [16].

Parallel algorithme for addition in bases —2, iy/2, 2i and — 1 + i have been
given in [26]. Results on addition in bases —6, iVb and — 1 + i in connexion with
automata theory have been presented in [15]. Note that in the System defined by
Herreros, addition can be performed in parallel [10,18], and is computable by a
right subsequential finite automaton [31]. In the Robert's System, addition is a
right subsequential function [31].

In this paper, we first consider addition in négative base, and we show that
properties similar to addition in the standard 6-ary system are still satisfied. We
then show how algorithms for addition in base iy/b can be deduced from those
in base —b. We give the full constructions because they explain the gênerai case.
We then present a gênerai resuit which says that if ip and ip are two digit set
conversions, (p in base fi and ip in base 7 = /3m, then if ip is local, resp. computable
by an on-line automaton, resp. letter-to-letter right subsequential, so is (p (Th. 1).
Conversely, if ip is computable by a letter-to-letter finite automaton so is ip, but
not on the same digit sets (Prop. 10).

From that we dérive that, if b is an integer, \b\ > 2, in base j3 = \/&, addition
on {0, . . . , |6| — 1} is a right subsequential function. If |6| > 3, let D = {â, . . . , a}
where a = [\b\/2\ + 1. Then addition in base 0 on D is a (m -f l)-local function
and it is computable by an on-line finite automaton with delay m. If \b\ > 2 is
even, let a = \b\/2 and Df = {â, . . . ,a}. Then addition in base )3 on Df is a
(2m + l)-local function and it is computable by an on-line finite automaton with
delay 2m. This applies in particular to base f3 — — 1 ± i.

We then consider a base which is not a root of an integer, namely base r, where
T is the golden ratio. We give the explicit on-line finite automaton with delay 3
realizing addition in base r and digit set {0,1}. The same construction is valid
for the Fibonacci numération system. Note that addition in those Systems is not
computable in parallel.

2. PRELIMINARIES

2.1. Nurnber représentations

Let P be a real or complex number such that \(3\ > 1, and let A be a finite set
of real or complex digits. A ^-représentation of x with digits in A is a finite or
a right infinité séquence (xk)k<n with Xk G A such that x = J2k^ixkPk- ^ ^s

denoted by
(xn - • • XQ • £_iX_2 • " ' )(3-

We will present the results for finite words, if the expansions are infinité the
constructions are similar, To perform addition in a given numération system with
base p and digit set A, the process will always be the same: take two numbers
x = xn-i ---xo and y = yn_! • • • y0 such that x = Z£=o xkfik, y = J2lZl VkPk,
with Xk and y^ in A. In parallel, compute Zk = Xk + y h • Then Zk is an element of
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B = {c + d | c, d G A}, and x + y = X)fc=o zfc/^- Addition consists of transforming
the représentation zn~x • • • zo of # -h y on 2? int o an equivalent one sn_i+; • • • SQ,
such that x 4- y = Z)£IQ+* $kPki with sfe G A.

2.2. WORDS AND AUTOMATA

Let us recall some définitions. More details can be found in [11]. An alphabet
A is a finite set. A finite séquence of éléments of A is called a word, and the set
of words on A is the free monoid A*. The empty word is denoted by e. A factor
of a word w is a word ƒ such that there exist words wf and w/f with w = wf fwff.
When wf = e, ƒ is said to be a prefix of u>, and when wn — e, ƒ is said to be a
suffix of w. The prefix (resp. suffix) is strict when it is not equal to the entire
word w. The length of a word w = W\ • • • wn with Wi in A for 1 < i < n is denoted
by \w\ and is equal to n. By wn is denoted the word obtained by concatenating w
n times to itself. The set of words of length n (resp. < n) of A* is denoted by An

(resp. A^n).
The set of infinité séquences or infinité words on A is denoted by AN. The

infinité word vvv • • • is denoted by vw.
An automaton over A, A — {Q,A,E,I,T), is a directed graph labelled by

éléments of A\ Q is the set of states^ I C Q is the set of initial states, T C Q
is the set of terminal states and EcQxAxQis the set of labelled edges.
If (p, a, q) E E, we write p —> q. The automaton is finite if Q is finite. The
automaton A is deterministic if i£ is the graph of a (partial) function from Q x A
into Q, and if there is a unique initial state. A subset H of 4̂* is said to be
recognizable by a finite automaton if there exists a finite automaton A such that
H is equal to the set of labels of paths starting in an initial state and ending in a
terminal state. A subset K of AN is said to be recognizable by a finite automaton if
there exists a finite automaton A such that K is equal to the set of labels of infinité
paths starting in an initial state and going infinitely often through a terminal state
(Büchi acceptance condition, see [11]).

Let X and Y be two alphabets. A 2-tape automaton is an automaton over
the non-free monoid X* x Y*: A= (Q,X* x Y*,EJ,T) is a directed graph the
edges of which are labelled by éléments of X* x Y*. Words of X* are referred to
as input words, words of Y* are referred to as output words. If (p, (ƒ, g),q) G E,

we write p —y q. The automaton is finite if the set of edges E is finite (and
thus Q is finite). These finite 2-tape automata are also known as transducers.
A relation R of X* x Y* is said to be computable by a finite 2-tape automaton if
there exists a finite 2-tape automaton A such that R is equal to the set of labels
of paths start ing in an initial state and ending in a terminal state. It is equivalent
to saying that R is a rational subset of X* x y*. A function is computable by a
finite 2-tape automaton if its graph is computable by a finite 2-tape automaton.
These définitions extend to relations and fonctions of infinité words as above.

A 2-tape automaton A is said to be left sequential if edges are labelled by
éléments of X x y*, if the underlying input automaton obtained by taking the
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projection over X of the label of every edge is deterministic and if every state
is terminal (see [5]). A left subsequential 2-tape automaton is a left sequential
automaton A = (Q,X x Y*, E, {<?o},̂ ), where w is the terminal function UJ\
Q —> Y*, whose value is concatenated to the output word corresponding to a
computation in A

A 2-tape automaton A is said to be letter-to-letter if the edges are labelled by
couples of letters, that is, by éléments of X x Y.

An on-line finite automaton with delay Ö is a particular left subsequential
automaton (see [16]): it is composed of a transient part, in which every path
of length S starting in the initial state i0 is of the form

. i/ . o2/e aô/e .
«o —> H —> ' ' ' —> lS>

where ai G X, for 1 < i < 5, and the only edge arriving in a state io, . . . , i$-\ is as
above, and of a synchronous part where edges are labelled by éléments of X x Y.
This means that the automaton starts reading words of length < Ö outputting
nothing, and after that delay, outputs serially one digit for each input digit.

The same définition works for functions of infinité words, considering infinité
paths in A, but there is no terminal function u> in that case.

All the automata considered so far work implicitly from left to right, that is
to say, words are processed from left to right, but one can define similarly right
automata processing words from right to left.

2.3. LOCAL FUNCTIONS AND ON-LINE AUTOMATA

The notion of local function cornes from symbolic dynamics (see [4,23]), where it
is defined on biinfinite words and often called a sliding block code. The définition
on infinité words is the following one. A function ip: XN —» YN is said to be
p-local if there exist a positive integer p, a function $ from Xp to Y such that if
x = (xi)i>o G XN and y = (yi)i>o £ YN, then y = ip(x) if and only if for every
i > 0, yi = $(xi • • «Xi+p-i). This means that the image of x by <p is obtained
through a sliding window of length p. The following resuit is folklore.

Fact 1. A p-local function is computable by an on-line finite automaton with
delay p — 1.

Proof. Let the set of states be Q = X-3?'1 and the initial state be e. Edges

are of the form: for a G X, set- e —* a, for di • • • di G Q with 1 < i < p — 2

set d\ * • • di —> d\ - • • dia, and for d\ - • • dv-\ G Q, set d\ • • • dv-\ -—>P

d2 • -dp-ia, •

In this paper the constructions of on-line automata associated with p-local
functions we give are différent. Using the redundancy of représentations, we can
construct on-line automata with the same delay p — 1, but having less states.

It is known that the underlying input automaton of any sequential automaton
realizing a p-local function is a p-local automaton^ that is, the arrivai state of any
path of length p is entirely determined by the label of the path (see [4]).
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One can define local fonctions of finite words (see [6,33]). A function yp:
X* —>> Y* is said to be p-local if there exist nonnegative integer l and r sueh
that r +1 -f 1 = p, and a function <£ from Xp to Y such that if x = x\ • • * xm G X*
and y — yi' —yn £ Y*<> then y = y?(x) if and only if for every 1 < i < n, y* =
<ï>(:ẑ _j • * • a?i+r)ï with the convention that, if at the borders x%-\^ . . . , Xfc-i are not
defined, $(ccfc • • *Xi+r) — <3>(e * ••• ££/- - "£i+ r) , and similarly, if Xj+i, . . . ,#i+r are
not defined, $(xi-i • • -Xj) = $(a:i_i * • * Xj-e • • • e). A p-local function can be com-
puted in parallel with a window of length p. It is both left and right
subsequential (see [33]).

Note that, when dealing with représentation of numbers, one can always assume
that a représentation is prefixed or suffixed by an adequate number of zéros. In
the sequel, we will always consider fonctions such that input and output have the
same length.

2.4. STANDARD 6-ARY NUMBER SYSTEM

Let us recall some results on addition base 6, where b is an integer > 2.

Proposition 1. 1) Addition in base f3 ~ b, b > 2, with digits in A — {0, . . . ,
b — 1}? is a letter-to-letter right subsequential function.
2) Suppose that b > 3, and let D = {à, . . . ,a} where a = \b/2\ + 1. Then
base b addition on D is a 2-local function, and is computable by an on-line finite
automaton with delay 1.
3) Suppose that b = 2a; a being an integer > 1̂  and let D = {ö, . . . ,a}. Then
base b addition on D is a 3-local function, and is computable by an on-line finite
automaton with delay 2.

1) The fact that addition is a right subsequential function can be found in [11].
2} That addition is a 2-local function is due to Avizienis [3]. For the on-line finite
automaton realizing addition in that case, see [25].
3) That addition for b — 2 is a 3-local fonction is in Chow and Robertson [8]. For
the construction of the on-line automaton, see [25] and [16].

3. NÉGATIVE BASE NUMÉRATION SYSTEMS*

Let j3 = —by where b is an integer > 2. It is well known (see [20,21,24]) that
any real number can be represented without a sign in base — b with digits from
the canonical digit set A = {0, . . . ,&— 1}. Integer s have a unique représentation
of the form dk • • • do- We show that properties satisfied by base b addition are also
valid for base —b~

P r o p o s i t i o n 2 . Addition ïn base (3 = —b, b>2} with digits in A — {0, . . . , 6—1},
is a letter-to-letter right subsequential function.

Proof. As explained above in Section 2.1, we have to convert représentations over
B = {0, . . . , 26 — 2} into equivalent représentations over A. Number
représentations are processed from right to left. We construct a right subsequential
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automaton A — (Q, B x A, Ey {<7o}> u)) as follows. The set of states is Q = {1,0,1}.
The name of a state indicates the value of the carry. The initial state is qo = 0.

Let q be in Q and let z be in B. By the Euclidean division of q + z by (3 = —6,
there exist unique S E A and q' such that q+z — —bqf+s. Since —1 < q+z < 26—1,
—2 < qf = (s — (q + 2;))./& < 1 and thus qf G Q. Hence one defines an edge

= f3q' (1)

The terminal fonction u> is defined by CJ(0) — ey a;(l) = 1 and CJ(1) = 1(6— 1).
Let zn~\ - - zo G B* and N = Y^kZo zk(3k- Starting in initial state qo = 0, and

reading from right to left, we take the unique path

0
ZQ/CLQ zn/an

Since, for 0: < k < n — 1, qk + Zk — /îçjb+i + ûjt, we get JV = a0 +
aTt-i/3

n~1 + ^n/371- Thus the ^-représentation of N is uj(gn)an_i - * • ao• G A*. D

Example 1. Let j3 = —2 and 4̂ — {0,1}. Here is the right subsequential
automaton realizing addition in this system1.

0/0,1/1

1/0,2/1

Let x =• 11001, y = 11101, thus x + y = 22102. In the automaton, from right
to left,

and üj(ï) = 11? thus x + 2/ = 22102 = 1101010.

Remark 1. Addition in base ~b with digits in A is not left subsequential.

Proof. Let us consider 6 = 2 and A = {0,1}. Let d be the left-distance defined by

d(v, w) = \v\ + \w\ — 2\v Aw \

where v Aw dénotes the longest common prefix to v and w.
1I thank Paul Gastin for his set of macros Autograph.



86 C. PROUGNY

Let v = (01)n02 and w = (01)n+1. Then d(v,w) = 4. The conversion of v
on A is vf — l(10)n+1, and that of w is w' — w. We have d(v'',iu') = 4n + 5,
thus the left-distance between v' and wf becomes unbounded when n goes to
infinity, as the distance between v and w is bounded. There is a resuit in [9] which
says that, if a function <p is left subséquential, then it has the following property:
\fk > 0, 3K > 0, d(V)iv) < k => d((p(v),<p(w)) < K. It implies that addition on
A cannot be realized by a left subsequential 2-tape automaton. D

We introducé another set of digits in order to obtain a redundant numération
System, analogous to the Avizienis signed-digit représentation [3]. Let a such
that 6/2 < a < b — 1 and let D = {ö, . . . ,a}. Then every real number has
a représentation in base —b with digits in D. The System is redundant because
\D\ = 2a + 1 > b. We consider the smallest balanced digit sets allowing one to
perform addition in parallel.

Proposition 3. Let (3 — —b, where b is an integer > 3, and let D = {â, . . . , a}
where a = \b/2\ + 1. Then base —b addition is a 2-local function. Addition is
computable by an on-line finite automaton with delay 1.

Proof. 1) Let x -f y = ££=o 2fejSfc, with zk G C = {(2a), . . . , (2a)}. Write z* on
the form Zk = pCk+i + r^, with the following rules: if a < Zk < 2a, let Cfc+i = ï
and vu = Zk — 6; if —2a < ^ < —a, let c^+i = 1 and r& = 6 4- z^. If | ^ | < a — 1,
let Cfc+i = 0 and Tk = z^. Put 5fc — r^ + c/c for 0 < A; < n — 1 and s^ = cn. Thus

If a < zk < 2a, then a - b < rk < 2 a - 6 and a - 6 - l < s f c < 2 a - 6 + l .
Since a < 6 — 1, sk < a, and since 2a < 6 + 1, s* > —a, hence sk G D. The case
—2a < Zk < —a is symmetrie, and the case \zk\ < a — 1 is trivial. Thus s ^ D for
0 < & < n. Hence s^ is a function of ZkZk-i-> and addition is 2-local.

2) To avoid overflow, we assume that input words begin with a 0. Let z — Zk G C
and let p(z) = (e,r) = (c^-j-i,?^) as determined in the above algorithm. We
construct an on-line automaton C = (Q,C x (D U e),£?, {<7o},̂ ) with delay 1
realizing addition. Let K — {—a + 1, . . . ,a — 1}. The set of states of the
automaton is Q = {e} U K% and the initial state is go = e. Synchronous edges are

defined by: for any q G K and for any z G C, q z-^-±q r in E, with (c, r) = p(z).
Since |c| < 1 and | g | < a — l , c + gG-D and r G K, There is a transient edge

All edges of C satisfy the following condition

q ^A r G E <=> 0q + z = 0d + r, (2)

that is to say, the two words qz and dr have the same numerical value in base (3.
The terminal function is defined by oj{q) — q for any q G Q.

Let Zn-i • • * zo G C* and iV = X^Zo ^fc/^- Starting in initial state go =
reading from left to right, we take the unique path

0/e zn-i/an zn~2/a-n-\ zo/ai
e—^0 —> qi —> " -Çn- i —> Qn-
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, andLet w(g„) = a0. By (2) we get E L o
addition is realized by £.

Note that the automaton C has 2a states, compare with the on-line automaton
constructed in Fact 1 which has \C\ + 1 = 4a + 2 states. D

Example 2. Let (3 — — 3 and let D = {2, . . . , 2}. Below is the on-line finite
automaton with delay 1 realizing addition in this System.

0/0,3/1,3/1 1/1,2/2,4/0

0/1,3/2,3/

"1/1,4/2,2/0

2/2,1/1,4/0

Take x = 0202 and y = 02Ï2. Then x + y = 04Ï4. We have in the automaton

and ÜJ(Ï) = ï? thus x + y = Î10Ï.

In the case that j3 = — 2, the previous algorithm does not apply. We give an
algorithm for that case as well as for any even 6, which is analogous to the Chow
and Robertson algorithm for base 2.

Proposition 4. Let /3 = — 6? where b = 2a, a being an integer > 1, and let
D = {â, . . . ,a}. Then base —b addition is a 3-local function and is computable
by an on-line finite automaton with delay 2.

Proof. 1) Let x+y = Y2Zo zkPh\ with z f e 6C = { î , - , i i } , and let zk = /?cfc+i+rfc

be defined by:
If a + 1 < Zk < >̂, let Cfc+i = ï and r/c — ^ — 6; if —b<Zk< —et — 1, let Ck+i = 1
and r/c — b+ Zk-
If Zfc = a and if ^ _ i < 0 then let cu+\ = ï and r/~ = ö, else let cjt+i = 0 and
rk = a.
If Zfc = - a and if zk-i > 0 then let Ck+i = 1 and rjfe = a, else let c/c+i = 0 and
Tk = - a .
If |zfc| < a - 1, let Cfc+i = 0 and rfc = ^ -
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Let sjfc = rjfc + e*; for 0 < fc < n — 1 and sn = cn. Clearly x + y = Xlfc=o 5fc0fe- We
have to show that S& G £>. When a-\-1 < |z*;| < 6, whatever the value of Zk~i is,
we get jrjtl < a — 1 and |cfc| < 1, thus ]sfc| < a.
If Zfc = a, and if z^-i < 0 then r^ = — a and c^ = 0 or 1, thus Sk = — a or — a 4-1
and thus belongs to L>. If z& — a and JJ&_X > 0, then r^ = a and cjt = —1 or 0,
and so Sfc = a - 1 or a. The case Zk = —a is symmetrie.
If |zfc| < a — 1, Tk = z& and |c*;| < 1, thus s^ G D. Since S& is a function of

c-i^fc-2) addition is a 3-local function.

2) We construct an on-line finite automaton C — (Q, C x (OU e),E, {qo}^) with
delay 2 realizing addition. Input words begin with a 0. If z = ^ G C is such that
û + 1 < |̂ fc| < & or \zk\ < a — lj we define p(z) = (c,r) = (cjfc+i,rjt) as in the above
algorithm. If \z\ = a we put p(z) = (c, r) = (0,^).

Let K = {(d,e) € i? x D | if d = a then e > 0 and if d = -a then e <
0} \ {(1, a), (î, â)}. These two couples are removed because they are equivalent to
(0,â) and (0,a) respectively, since b = 2a. The set of states of the automaton is
Q = {(e} e), (e,0)} LJ i^. The initial state is go = fo ^)- The synchronous part of C
is defined this way: let (d,e) G K.

— If |e| < a — 1, then for each z G C, there is an edge (d, e) ^-^ (c -f- e, r) where
(.c, r) — p{z). Since |e| < a — 1, |c + e| < a. If c + e = a, then e = a — 1 and c = 1,
thus r > 0, and (c + e, r) G K (the symmetrie case is similar).

— If e = a and z < 0, put (d, a) —» (c — a,r) where (c, r) = p{z). Since z < 0,
c = 0 or 1, and c — a G D. We know that d ^ —a, thus d — 1 G D. If c = 0, then
r = z < 0, thus (c - a, r) G i^.

— If e = a and z > 0, put (d,a) —•> (c + a,r) where (c^r) = p(z). In that case
c = 0 or —1, and thus c + a £ D. If c = 0 then r = z > 0, thus (c + a^r) G X.

— The case e = — a is symmetrie: if z > 0, put (d, a) —> (c + a, r) where

(c, r) = p(z). If z < 0, put (d, a) -̂—• (c — a, r) where (c, r) = p(z).
The transient part of C is defined by:

— (e, e) —> (£)0), and for z G C, there is an edge (£,0) —> (c)r) where (c,r) =

Hence, for any edge in £

(d, ƒ) ^ (e, s) € E ^ P2d +0f + z = {32x + f3e + g (3)

Le. the two words d/z and xeg have the same numerical value in base j3. The
terminal function is defined by a;((d, e)) = de for (d, e) G Q.

Let zn-i - • • ZQ e C* and TV" = J22=o zkPk- Starting in initial state qo = (e, e),J22=o
we take the unique path

Zn-2/cLn
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Let <v((dn,fn)) = oioo- By (3), Y2lUkPk = E L o ^ - w i t h a" e D, and
addition in base —b with digit set D is realized by the on-line automaton £, with
4a2 +1 states. The construction o.f Fact 1 gives an automaton with 16a2 + 12a+ 3
states. •

Corollary 1. The digit set conversion in base —b between numbers written with
digits in the canonical digit set A = {0, . . . , b — 1} into their représentation with
digits in D = {â, . . . , a}, with a = [b/2\ + 1 , or b = 2a, is computable in parallel
in constant time.

Proof. Since AcC, the resuit follows. D

Remark 2. The inverse conversion, from D to A, cannot be computed on-line,
but is right subsequential.

In the same spirit, in [1] it is shown that conversion between numbers written
in base 6, b integer > 2, with digit set A = {0, . . . ,6—1} into their représentation
in base —b with the same digit set is right subsequential. We now show how to
convert directly a classical expansion in base b with digit set A = {0, . . . ,6—1}
into an equivalent représentation in base —b and digit set D = {â, . . . , a}, where
a + 1 < b < 2a.

Proposition 5. Let b be an integer > 2. The conversion from base b and digit set
A — {0, . . . , 6—1} into base —b and digit set D = {â, . . . , a}} with 6/2 < a < 6—1,
is a right subsequential function.

Proof. The set of states of the automaton is Q — {e, 0,1, ï} . The initial state is
£. Let z G A. Edges are defined by:

if 0 < z < a, let e ^ 0; if a + 1 < z < b - 1, let e z ^ h ï;

if 0 < z < a, let 0 ̂  e; if a + 1 < z < b - 1, let 0 *^z 1;

if 0 < z < a - 1, let 1 z ^ 1 0; if a < z < b - 1, let 1 z /fZ^+1 ï ;

if 0 < z < a - 1, let ï ^-Zf^1
 £] if a < z < 6 - 1, let ï z / ^ 1 l.

The terminal function u) is given by oj{e) = w(0) = e, CJ(1) = 1, and o;(ï) = ï. It
is straightforward to check that, since a -h 1 < 6 < 2a, the output is in Z). G

Note that the inverse conversion is also right subsequential.

4. BASE j3 -

The interest of choosing a complex base and intégral digits to represent complex
numbers is that computations are handled in a compact way, as when using an
intégral base for real number computations.

Let P — iVb> where 6 is an integer > 2. Any complex number is representable
in base (3 with digits in the canonical digit set A = {0, .... ,6— 1} (see [17,19,20]).
If 6 = c2 is a square then every Gaussian integer has a unique finit e représentation
of the form ak - - aG - a_i, ai G A.
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Let j be an integer > 0, possibly infinité, and let n > 0. Since (32 = —6, we
have

(a2n * ' * Go ' a _ i • - • a-2j)p = (o>2nQ>2n-2 " ' * ^0 * &-2 ' ' * 0>-2j)-b

Thus, if z = a; -f iy G C, o; and y in IR, the /^-représentation of ̂  can be obtained
by intertwinning the — 6-representation of x and the — ̂ -représentation of y /Vb,

Base f3 = —iy/b satisfies the same properties. We treat only the case f3 — i\/b.
Most studied cases are (3 = 2% and A = {0, . . . , 3}, strongly related to base -4 ,
and/? = zx/2and,4 = {0,l} ( [15,20,21,26]).

We now show how properties satisfied by base —b addition can be extended to
base iVb.

Proposit ion 6. Addition in base f3 = iVb, b > 2, with digits in A— {0, . . . ,6—1}
is a letter-to-letter right subsequential function.

Proof. Since (32 = — 6, the automaton will be deduced from the right subsequential
automaton A = (Q, B x A,E, {ço}> <*>) realizing addition in base —b (Prop. 2).

Let B = (5, B x A, F, {s0}, er) be defined as follows. The set of states is S —
Q x Q and the initial state is s0 — ((ft? CO)- The set of edges F is defined by

The terminal function in a state (p, q) is defined by the /3-expansion of /3p + q, that
is to say, <r((0,0)) = e, <r((0,l)) = 1, a((l,0)) = 10, a((l, 1)) = 11, <r((l,ï)) =
11(6 - 1), a((ï, 1)) = 10(6 - 1)1, a((ï, ï)) = 11(6 - 1)(6 - 1).

The automaton B is right subsequential (and letter-to-letter). Take a word
22n-i * • * 20 € B* and let Z = J^lZö1 zkPk- Theve is a path in B

if and only if there is in A a path

W°0 -Z2/Û2 Z4/CI4 Z2-n.-2/a,2n-2

qo —> qi —> Ç2 —> -"Qn-i —> Qn

and a path
zi/ai z^jaz zs/a5 Z2n-11 a>2-n,-1

?0 —"> Pi • P 2 > '"Pn-1 > Pn*

Since #n&2n-2a2n-4 • • * Q>2ao is the —5-expansion of Yl^Zo Z2k(~b)k and
ö2n-3 * * • «3^1 is-the —6-expansionof Y^kZo Z2k+i(~b)k, and a((pn,qn)) = (3pn+qn,
we get that pnqn^2n-i^2n~2 ' ' 'ÛIÛO is the /^-expansion of Z. Thus the right
subsequential automaton B realizes addition in base (3 = i\/b. D
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Addition in base iVb and digit set A cannot be computed on-line: consider
(0001)n0002 and (0001)n0001 (see Rem. 1). Similarly to négative base -6 , we
consider digit sets for which addition can be parallelizable.

Proposition 7. Let (3 = iy/b, where b is an integer > 3, let a = [b/2\ + 1 and
let D = {â, • • • , a}. Then base (3 = iy/b addition is a 3-local function. Addition is
computable by an on-line finite automaton with delay 2.

Proof. 1) Let zk € C = {(2a), • • • , (2a)} and write zk = /32ck+2 +rfc = (-b)ck+2 +
rfc, as in Proposition 3:
if a < zk < 2a, let ck+2 — ï and rk—zk — b, if —2a < zk < —a, let cjt+2 = 1 and
rk = b + Zfc, if \zk\ < a — 1, let C&+2 = 0 and rk = zk. In any case, \ck\ < 1 and
\rk\ <b — a < a— 1.

Let Sfc = rfc + Cfc for 0 < k < n - 1, sn = cn, s^+i = cn+1 , and s^+2 = cn + 2 .
We have x + y = J27=o Sk$k w* tn \Sk\ — a* ^ince s& is a function of zk and 2:^-2,
addition is 3-local.

2) To avoid overflow, input words begin with 00. Recall that the on-line automaton
C = (XU£,Cx(DU£), S, {e}, w), where X = {-a+1, . . . , a - 1 } , realizes addition
in base —b with digit set J9, see Proposition 3.

We construct an on-line automaton with delay 2, A4 — (5, Cx (DUe), JF, {SO}, <J)
as follows. Let the set of states be S = {(e, e), (e, 0)} U (if x X), the initial state
be SQ = (e,f:). The synchronous transitions of A4 are defined this way: for any p
and g in K,

The transient part is (e,e) —^ (e,0) and (e,0) —^ (0,0). The terminal function
is cr(g,]?) = gp for (g,p) G 5. Note that for any edge in M

(q,p) ^ (q\pf) e F <=> (32q + (3p + z = p2x + Pqf+p' (4)

Le. the two words qpz and xq'p' have the same numerical value in base /?.
Let z2„_i • • • ZQ € C* and Z = Y^JQ1 zkfik- There is a path in M

(Ê,e) ^ (e,o) ^ (0,0) ^-iZ?»*1 (o,go Z 2 ^ a 2 - . . .

(Pn-l)9n-l) ^~>3 (Çn-l)Pn) > (Pni<

if and only if there is in C a path

0/e Z2n-2/cL2n Z2n-4/ci2n-2 ZQ f Q>2

e —> 0 —> gi —^ • • • gn_i —> qn

and a path
^ 0/e n Z2»-i

Pu-
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Letting a0 = qn and a± = pn, we have that Y^kZo Z2k(-b)k = Y^k=oa^{~b)k,
Efc=oz2fc+i(-6)fc = 5Zfc=aa2fc+i(—&)fc a n ( i t n u s the représentation of Z on the
alphabet D is <22n+2a2n+i * * * ÛI&O- O

We now consider the case where b is even.

Proposition 8. Let j3 — iVb, where b > 2 is even, let a = 6/2 and fe£ D =
{â, . . . , a}. Then base (3 = i\/b addition is a 5-local function. Addition is com-
putable by an on-line finite automaton with delay 4.

Proof. 1) For zk € C = {-&, . . . , b} let zk = /?2cfc+2 + r* = (-6)cfc+2 + rfc, as in
Proposition 4:
if a H- 1 < zk < 2a, let Ck+2 = î &nd r^ = 2̂  — 6,
if —2a < Zfc < — a — 1, let ê +2 — 1 and rk = 6 + f̂e,
if Zfc = a and if ^ - 2 < 0, let ck+2 = ï and rjt = â else let Cfe_j_2 = 0 and ?> = a,
if Zfc = â and if z^-2 > 0, let C&+2 = 1 and rk = a else let ĉ +2 = 0 and r^ = â,
if \zk\ < a - 1, let c/c+2 = 0 and rk = ^ .
Let s*; = rfc -h Cfc for 0 < fe < n — 1, sn = cny and sn+i — cn+i. Then x -\-y ~
YH=Q

 skPk- That Sfc belongs to D is proved in Proposition 4. Since Sfc is a function
of Zfc, Zk~2 and z/c_4, addition is a 5-local function.
2) Consider words with digits in C, beginning with 00. Let C = (Q,C x (DU
e),S, {(e,.e)}7 a>) be the on-line finite automaton with delay 2 realizing addition
on D in base —b with if = {(rf, e) G D x D \ if d = a then e > 0 and if d — — a
then e < 0} \ {(l,a), (I,â)} and Q = {(e,e), (e,0)} U K (Prop. 4). We construct
an on-line automaton with delay 4, M = (5, C x (£> Ue),F, {so}> 0") as follows.

Let us define the shuffle of two words by (d, ƒ) LU (e, g) = (d, e, ƒ, #). Note that
this is not the gênerai shuffle product, but the internai shuffie product (see [11]).
Let K LU K = {(d, ƒ) LU (e^) | (d, ƒ) e K, (e,g) G K}, Let the set of states
be S = {(£,£) LU (e,e); (e,e) UJ (e,0); (£,0) LU (e,0)} U {(e,0) UJ (c,r) | (c,r) G
{-1,0,1} x D} U (if LU if) and the initial state be s0 = (e,e) LU (£,Ê). The
synchronous transitions of A^ are• defined this way: let (d, ƒ) LU (e,^) G if LU K,

, ƒ) uu (e, g) ^ (e, g) LU (d', ƒ') G F <=*• (d, ƒ) ^ (d', ƒ')

The transient part of M is: (eye) LU (£

(e,0) - ^ (e,0) LU (e,0). For 2; G C, let p(z) = (c,r) 6 {-1,0,1} x £> such that

z = P2c+r. We defïne edges (e, 0) LU (e, 0) —> (er0) LU (C, r) where (c, r) = p(z);

for z' G C, (e, 0) LU (C, r) ^ 1 (c, r) LU (C', r') where (c', r') = p(z').
Note that for any edge in A4

(d, ƒ) u_i (e, g) ^ (d', ƒ') m. (e', j ' ) e F ^ /3*d + /?3e + /î2 ƒ + 0g + z (5)

i.e. the two words defgz and xd'e'f'g' have the same numerical value in base /?.
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The terminal fonction is cr((d, ƒ) LU. (e, g)) = de f g for (d, ƒ) LU (e, g) G S.
Let z2n-i '-z0 G C* and Z — Yl'k^ô1 zkPk- There is a path in M

(e, e) LU (e, e) ^ (jr> £) m (e, 0) ^ (e, 0) LU (e, 0) Z2^/e (e, 0) LU {dx, h) z ^ e

{d,,h)^{el)gi)
Z2n-^^ (eugi)^(d2, f2)

 Z2"=^a2n •••

(en_i,^n_i) uu(dn_i, fn-i) —^"(dn-i, fn-i) Uuj (en,gn) -̂ ->4 (en,gn) Lu(dn, ƒ„)

if and only if there is in £ a path

(er,e)—^ (e,0) —> {di,h) —> ' ' ' («n-i, Jn-i)

and a path

(£r,e)—>(e,0) —> (eugi) —> - - - (en-u9n-i)

Letting a3 = eny a2 = dn, oi = #n and a0 = / n , we have that Y^ZQ Z2k(~b)k =
Z)Loa2ft("6)fer Efc=o ^2/c+i(-6)fc = Z)fe=oa2fc+i(-&)fe and thus the représenta-
tion of Z on the alphabet D is a2n+ia2n *

Corollary 2. T/ie dz^ü se^ conversion in base (3 — is/b between numbers written
with digits in the canonicai digit set A = {0, . . . ,6—1} into their représentation
with digits in D = {â, . . . , a } ; whith a ~ [b/2\ + 1? or b = 2a, is computable in
parallel in constant time.

Remark 3. The inverse conversion, from D to A cannot be computed on-line,
but it is a right subsequential fonction.

5. A GENERALÏZATION

We now consider two complex bases /? and 7 with the property that, for some
natural m > 0, /?m = 7. Let x — (xnrn-iXnrn-2 • • • XQ)J3 be a représentation in base
(3 on a certain alphabet X of digits of a number Z ~ Ylo<k<nm-i xkPk (it is always
possible to suppose that représentations have length a multiple of m by padding
with some zeroes). Let, for 0 < j < m — 1, x^ = (xmfc+j)o<Jfe<n-i- Then obvi-
ously x = u j m {x^rn~V}\x^rri~2\ .,. ,;CW,:E(0)) where uum dénotes the ra-shufrle2

of m words of same length. Hence (xnm-i^nm-2 * * '#o)/3 = y3m~1(x^m~1))7 -h

First we show a resuit on automata, which is more or less folklore, but we will
use latter on the construction given in its proof. Let L C .A*, and dénote by U^™-

2 In Section 4, p i_u q stands for LU2 {p, q).
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the set of m-shuffies of éléments of L of same length

«8*0 • • • ^ V ^ i • • • «S- i^ -a * • • C l 1 | n > 0,
GLforO < j < m~ 1}.

Proposition 9. If L is recognizable by a finite automaton, so is Lu-Sm.

Proof. Let A == (Q, Ay E, / ,T ) be a finite automaton recognizing L, and let B —
(5, A, F, J, t/) as follows: S = Q^™, J = i1^™, 17 = T1^-, and there is an edge

LLJm (PO, **• , P m - l ) " ^ L J - l m ( p i , • • • , P m - l ^ ) G F <^=^> p0 - ^ qE E. ( 6 )

So there exist a path in B

(<Zo°, ••• , C - 1 ) - ^ J J m («5, ..- .C" 1 . ?? ) - ^ m («g» • • • . C " 1 . ^ «})

if and only if for each 0 < j < m — 1 there is a path in A

Hence L1-̂ "̂  is recognized by ö. D

Recall the notations: let x = #nm-i • * *xo be a ^-représentation on X of Z =
Eo<Knm-i xfc^fc» a n d l e t ' for 0 < j < m - 1, xW = (xmfc+j)o<fc<n-i. Let
2/ = Unm-i * * *2/o be a /9-representation on Y of Z, and let, for 0 < j < m - 1,
2/(j) = (2/mfc+j)o<fc<n-l-

Theorem 1. Let X and Y be two finite alphabets of digits. Let ip: X* -> Y* be
a digit set conversion in base (3 and let I/J: X* —> Y* be a digit set conversion in
base 7 = Pm such that

y = (p(x) «=> y{j) = îj){x{j)), for 0 < j < m - 1.

— If ip is p-local then ip is (p — l)m + 1-locaL
— If ip is computable by a letter-to-letter finite automaton, so is ip.
— If ip is computable by an on-line finite automaton with delay Ô, then (p is
computable by an on-line finite automaton with delay m8.
— If ip is letter-to-letter right subsequential, so is ip.
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Proof. 1) Suppose that ip is p-local: there exist l and r such that p = l + r + 1
and ^: Xp —»• y such that for each 0 < j < m — 1 and 0 < A; < n — 1, ymk+j —
^(zm(fc+O+^m(fc+j+i)+j * * • ^mCfc-O+j)- Hence 2/™*^ is determined through a
window containing rrm(fc+j)+j • • • xm(k_r)+j of length (p - l)m + 1, and ip is a
(p — l)m + 1-local fonction.
2) Suppose that ip is computable by a letter-to-letter fînite automaton A = (Q,Xx
F, £?, /, T). By the same construction as in the proof of Proposition 9, we define a
letter-to-letter fînite automaton B = (S, X x Y, F, J, U), with 5 = Q^™, J = J1-"™,
[7 = 71LjJmj a n ( i edges are defîned as in équation (6).

Let x — xnm-i"-XQ G X* and y = <p(x) = ynm-i'-'Vo € Y"*. Since
y(i) — i/)(x(iï) for 0 < j < m — 1, (x^\y^) is the label of a path recognized
by A. That B recognizes ip is proved as in Proposition 9.
3) Suppose that ip is computable by an on-line fînite automaton A = (Q>X x
(Y U e),£')g0î^) with delay 5, where a;: Q —> y* is a partial terminal func-
tion. By the same construction as above, we define a letter-to-letter fînite au-
tomaton B = (S,X x ( F U £ ) , F , S O , ( T ) , with S = QUUm, s0 =L±jm (q0, . . . ,ç0),
cr(i_um (po, . . . ,pm-i)) ^LUm (w(po), • - • , w(pm_i)) for states pj G Q such that
u(pj) is defîned. Edges are defîned as in équation (6). Clearly, B is left subse-
quential. Moreover, if A has delay ö, every path of length mô in B is labelled by
couples belonging to X x £, so B is on-line with delay m£.
4) Suppose now that ip is recognized by a letter-to-letter right subsequential au-
tomaton A. The same construction as in 3) can be used, with the only change on
the définition of edges, that is, équation (6) is replaced by

LJJm (PO, • • • jPm-l) " ^ L U m (ç,Pl, • . . ,Pm-2) G F <=> p m _ i - % Ç G £ . (7)

D

One can ask about the converse problem: are properties satisfied by base /3
transférable to base 7 = /?m? The answer is well-known for standard num-
ber Systems: digits are to be grouped by blocks of length m, More generally,
let x — Xnm-iXnm-2 • * * #o a word of length nm in X*. It can be written as
x = £[n~1] • •.xi0', where, for 0 < k < n - 1, x^k] = #(/c+i)m-i#(fc+i)m-2 * * *Xkm is
the fc-th block of length m of x (from the right). Dénote by w(x^ ) the value in base
jöofthis word, ie . n(x^) = X(fc+i)m_1/Ö

m"1H Vxkm, and put £fc = TT(X^). Let
• • • d0) | dj e X for 0 < j < m - 1}. Then £fc G Xm . Analogously,

Proposition 10. Let X and Y be two finite alphabets of digits, and let ip: X* ->
F* be a digit set conversion in base (3. Let ip: X^ -> Y^ be a digit set conversion
in base 7 = f3m defined by

— If ip is q-local with q = (p — l)m + 1 then ip is p-local.
— If <p is computable by a letter-to-letter finite automaton} so is ip.
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Proof. 1) Let y = <p(x), and suppose that (p is g-local: then y^ is determined by a
window of length q. Hence a factor of length m, yk * • • 2/jt-m+i» '1S determined by
a window of length q -f- m — 1. It is necessary that g - f m - l b e a multiple of m to
have V a p-local function for some p, so g + m — 1 = pm, and q — m(p — 1) + 1.
2) Suppose that ip is computable by a letter-to-letter fînite automaton B = (Q, X x
Y, F, / , T) We define a letter-to-letter finite automaton A = (Q, Xm x Ym, £, / , T):
let £ — 7r(a;m_i • • • aro) € Xra and x — ̂ (Vm-i * * * 2/o) ̂  ̂ m- Then

„I r- T?\ . . ^m-l/tfm-1 Xm-2/ym-2 XO/VO f n

D

Corollary 3. If ip is computable by an on-line finite automaton with delay mÖ
(resp. is letter-to-letter right subsequential) and if every element of Xm has a
unique P-représentation onX} then ip is computable by an on-line finite automaton
with delay S (resp. is letter-to-letter right subsequential).

In gênerai, the représentation on X is ambiguous. However, suppose that on Y
every element has a unique /3-representation, and that ip is a letter-to-letter right
subsequential function satisfying a relation like équation (1), then ip is also letter-
to-letter right subsequential: suppose that, in B there are two paths of length
m

Xo/yO Xl/yi Xrn~l/yrn-l /

q —> gi —> "*<?m-i —> Q

and
q —> pi —> --Pm-i —> P

such that 7r(#m_i - • • XQ) = 7r(vm-i * • *^o) — £• By équation (1), we get that

£ + q = Xm-iF"-1 + • • • + x0 + q = pTq1 + ym-ipm~l + • - • + Vo

and

Since the /3-representation on y is unique, p' = g', and 2/0 — w0i • • • j 2/m-i =
tüm_i, hence, letting x = ?r(ï/m_1 • • • yo)> there is a unique edge in A with input
label £

and 4̂ is right subsequential.

6. APPLICATIONS

Results on base ƒ? — i^/b presented in Section 4 are of course a corollary of
Theorem 1 with m = 2 and 7 = —6. The same results hold true for base — iVb.
Here we consider other roots than square ones.
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6.1. BASE /? = - l ± i

Let us first recall some results on base (3 = —b±ir where b is an integer > 1,
It is known [19,28] that any complex number is representable in base (3 = — b ± i
with A = {0, . . . , b2} for canonical digit set. Every Gaussian integer has a unique
représentation of the form a& • • • a0, with a2* € A. We recall the following resuit [31]:
Addition in base {3 — —b±i, with digits in A = {0, . . . , 62}, is a letter-to-letter
right subsequential function.

Remark that (—1 ± i)4 = —4, but that for any b > 2, there is no integer k ^ 0
such that (—6 ± z)fc is an integer.

Proposition 11. 1) On digit set D = {3, . . . ,3}7 addition in base j3 = —l±i is
a h-local function, and it is computable by an on-line finite automaton with delay
4.
2) On digit set Df = {2, . . . , 2}, addition in base j3 = —izLi is a 9-local function,
and it is computable by an on-line finite automaton with delay 8.

Proof 1) It is a conséquence of Proposition 3 and of Theorem 1 with 7 = — 4 and
m = 4.
2) It is a conséquence of Proposition 4 and of Theorem 1. D

Note that, since in Theorem 1 digit sets in base (3 and in base 7 must be the
same, we cannot say anything about addition in base /3 = —1 ± i on the minimally
redundant digit set {ï, 0,1}.

Remark 4. Conversion in base — 1 ± i between digit set D = {3, . . . ,3} or
Df = {2, . . . , 2} and A = {0,1} is not on-line computable, but is eornputable by
a right subsequential automaton.

In référence [1] it is shown how to obtain the (—1 + ^-représentation of a
Gaussian integer from the 2-represent at ion of its real and imaginary part by means
of a right subsequential automaton.

6.2. BASE /? = y/b

Number représentation in base (3 — \/2 has been studied by Körmendi in [22J.
More generally, let b be an integer, \b\ > 2, and let m be a positive integer.

Then, regardless of the problem of which sets can be represented in base /3, the
following resuit is a simple corollary of Propositions 1-4 and Theorem 1.

Proposition 12. Let b in Z such that \b\ > 2, and let (3 = \/b.
1) Addition in base j3 on {0, . . . , |6| — 1} is a letter-to-letter right subsequential
function.,
2) If \b\ > 3, let D• = {ö, . . . , a} where a — [\b\/2\ + 1. Then addition in base
(3 on D is a (m+ l)-local function. Addition is computable by an on-line finite
automaton with delay m.
S) If \b\ > 2 is even, let a = \b\/2 and D = {â, .... , a}. Then addition in base
(3 on D is a (2m + 1) -local function. Addition is computable by an on-line finite
automaton with delay 2m.
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7. GOLDEN RATIO BASE

This section présents results on numération Systems which are of a different
kind: there is no power of the base which is an integer. Nevertheless, we think they
might be of interest, because they give an example where addition is computable
by an on-line finite automaton, but is not locaL

Let 0 > 1 be a real number. Any real number x e [0,1] can be represented in
base /3 by the following greedy algorithm [29]:
Let X\ = Yf3x\ and let r± = {/3x} be the fractional part. Then iterate for k > 2,
xk = L/3r/c_iJ and rk = {/3rk-i}. Thus x = Y^k>i xk(3~k, where the digits xk are
éléments of the canonical alphabet A = {0, . . . ,~[/3J} if (3 £ N, A = {0, . . . ,/? —1}
otherwisé. The séquence (xk)k>i is called the j3-expansion of x. When fi £ N,
a number x may have several different /^-représentations on A: this System is
naturally redundant. The /^-expansion obtained by the greedy algorithm is the
greatest one in the lexicographie ordering.

Here we focus on numbers f3 which are deflned as follows: j3 is the dominant
root of an équation of the form

Xm _ ^ m - 1 _ aX™~2 aX-b

where a > b > 1 are integers, and ra > 2. Such a root is a real number > 1. The
numération Systems defined by bases of that kind are called confluent numération
systems. The canonical alphabet is then equal to A — {0, . . . ,a}. The most
studied case is the golden ratio r = (1 + \/5)/2, with 771 = 2, a = b = 1.

We have proved in [13] that addition on A = {0, . . . , a} in a confluent numér-
ation System is left sequential3. Moreover it has a bounded delay — it is realized
by an automaton having ail its loops letter-to-letter [14] — so by the resuit of [16]
quoted in the introduction, it is then computable by an on-line finite automaton.
We present here a direct construction of the on-line automaton for base r.

Proposition 13. In base r ~ (1 -h V/5)/2J addition on {0,1} is computable by an
on-line finite automaton with delay 3.

Proof. Input words start with 00. We define an on-line finite automaton C =
(Q, {0,1, 2} x ({0,1} U e), E, {e}). The transient part of C is of the form

_ £ ^ 0 ^ 0 0 a n d 0 0 ^ 0 0 0 ; 00-^001; 00 ̂  002.
In the synchronous part of C edges must satisfy the property

S1S2S3 - ^ tit2t3 e E «=> s i r " 1 + s2r~2 + s3r~3 H- dr~4

= er"1 + txr~2 + t2r~s -h t3r"4 (8)

and for any state S1S2S3 £ Q, s\T~l -h s2r~2 + S3T~S G [0,l[. Edges are the
following ones:

3The resuit of addition belongs to the alphabet A, but is not the greedy /3-expansion.
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— for d G {0,1,2}, 000 ^ QOd

— 001

— 002

— for

— 101

— 010

— 0Ï2

— 1Ï2

— 01Ï

— l l ï

0/0

0 /0

de
o/ i

0/0

0 /0

o/i

0/0

o/i

010;

l l ï ;

{0,1,
010;

100;

01Ï;

01Ï;

001;

001;

001

002

i /o

i / i

2}, 100 - '

101

010

0Ï2

1Ï2

01Ï

l l ï

i / i

i /o

i /o

1/1

i /o

1/1

100;

000;

^OOd

100;

101;

010;

010;

002;

002;

001

002

101

010

0Ï2

112

01Ï

l l ï

2 /0

2 /1

2/1

2/1

2 / 0

2/1

2 / 0

2/1

101

001

101

012

100

100

1Ï2

1Ï2 D
The on-line automaton £ is not a local automaton, since it has two loops wit h
same input label

oio n loi n oio
n i HX 002 °A iiï.

In fact, we can prove the following.

Proposition 14. Addition in base r on alphabet {0,1} is not a local function.

Proof. Let us suppose that addition (p: {0,1, 2}N —» {0,1}N in base r is a p-local
function for some p. Thus there exists a function $ : {0,1,2}p —» {0,1} such that
iîx = (xi)i>i G {0,1, 2}N and y = (yi)*>i G {0,1}N, then y = tp(x) if and only if
for every k > 0, yk = $(xk * * * Zfc+p-i). Since $(lp) can take only value 0 or 1, for
n large enough, the image of a factor containing only n ones is in {0, l}*0^{0,1}*
or in {0, l}*l'{0,1}*, for some large L Since the word 0001n0w has no equivalent
r-representation containing a large factor of zeroes, 3>(lp) must be equal to 1. On
the other hand, the word 0021n20w has no equivalent r-representation on {0,1}
with a large factor entirely composed of ones. Therefore addition in base r is not
local on {0,1}. D

Actually, it is possible to show that addition in base r is 12-local on the alphabet
{0,1, ...,12}(see[7]).

These results are also valid for linear numération Systems defined by a linearly
récurrent séquence U = (un)n>o of the form

Un+m = aun+m-\ + cmn+m-2 H h aun+1 + bun, n > 0

UQ = 1, Ui — (a + 1)*, 1 < i < m - 1
where a > b > 1 are integers, and m > 2. Every positive integer N has a
représentation in this System on the alphabet A = {0, . . . ,a}, meaning that one
can write N as N = dnun-{ MO^OÎ with digits dk G A, using a greedy algorithm:
Let n such that un < N < un+i; let dn be the quotient of the division of N by
un, and let rn be the remainder: dn — q(N,un) and rn = r(N,un). Then iterate
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dk = çt(?k+i t Uk) and Tk = r(vk+i, Wfc) for n — 1 < fc < 0. The word dn • * • d0 G A*
is the normal {/-représentation of N, As above addition is left subsequential [13]
and has a bounded delay, so is comput able by an on-line flnite automaton.

For m = 2, a = b = 1, we get the Fibonacci numération system.

Corollary 4. Addition on {0,1} m £/ie Fibonacci numération system is com-
putable by an on-line finit e automaton with delay 3, but is not parallelizable.

Proof. It is the same automaton as in Proposition 13 with a terminal function u
defined by: if sis2S3 € Q, u;(si$2S3) is equal to the Fibonacci représentation of
the integer S\U2 + #2^1 + $3^0- O
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