
INFORMATIQUE THÉORIQUE ET APPLICATIONS

ANNE PRELLER

P. DUROUX
Normalisation of the theory T of Cartesian closed
categories and conservativity of extensions
mathb f T [x] of mathb f T

Informatique théorique et applications, tome 33, no 3 (1999),
p. 227-257
<http://www.numdam.org/item?id=ITA_1999__33_3_227_0>

© AFCET, 1999, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1999__33_3_227_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Theoretical Informaties and Applications
Theoret. Informaties Appl. 33 (1999) 227-257

NORMALISATION OF THE THEORY T OF CARTESIAN
CLOSED CATEGORIES AND CONSERVATIVITY

OF EXTENSIONS T[x] OF T

ANNE PRELLER1 AND P. DUROUX1

Abstract. Using an inductive définition of normal terms of the
theory of Cartesian Closed Catégories with a given graph of distin-
guished morphisms, we give a réduction free proof of the decidability
of this theory. This inductive définition enables us to show via func-
tional completeness that extensions of such a theory by new constants
( "indet er minâtes" ) are conservât ive.

AMS Subject Classification. 03F05, 03B25, 18D15.

1. INTRODUCTION

The decidability of the theory of Cartesian Closed Catégories is well known, see
for example [7] where this property is established by passing to the internai lan-
guage of a CCC and showing that the equality of this simply typed lambda calculus
can be captured by a rewrite system which is Church-Rosser. A good overview of
such methods in a rather gênerai setting can be found in [5].
Obtulowicz [8] has proved the decidability of théories of Cartesian Closed Caté-
gories by algebraic techniques which avoid the requirement of finding a noetherian
and confluent rewrite system. However, he imposes equalities on objects which in
gênerai are isomorphic, but not equal. We propose a proof by syntactic means only
within the theory T of Cartesian Closed Catégories over a graph of generators.
The key notion is an inductive définition of the normal terms of the theory T. This
définition of normal terms of T follows closely the définition given in "Categori-
cal reconstruction of a réduction free normalisation proof of lambda-calculus" by
Altenkirch et al in [1], Our normalisation of the terms of the theory of CCC also is
réduction free, however we avoid the semantic sets, i.e. the category of presheaves
introduced in [1] and also in [4], both building on [2], The authors of [1] already
indicate in a footnote that only the properties of cartesian closedness of their
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228 A. PRELLER AND P. DUROUX

category of presheaves are relevant. We follow up this hint, using a Martin-Löf
style axiomatisation of Cartesian Closed Catégories over a graph of generators. In
such an axiomatisation, not only the usual equalities, but also denotation state-
ments as " ƒ is an arrow of domain A and codomain B" are part of the formai
theory, making the implementation of the normalisation algorithm more elegant.
Having carried out réduction free normalisation in the syntax of CCC, it may be
used to décide equality of simply typed lambda-calculus with surjective pairing
via the usual interprétation.

Due to the présence of an arbitrary generating graph, the simply typed lambda-
calculus associated to T may have non inhabited types. This makes the question
whether extensions T[x : 1 —» A] of T obtained by adding an "indeterminate"
x are conservative over T, less easy to answer. Indeed, functional completeness
reduces this question to the problem whether the second projections from A x B
to B in the freely gênerated CCC are epimorphisms. If there is an arrow a : 1 —» A
in T, then the second projection from A x B to B is a split epimorphism (compose
to the right with (a o ter(B),id(B))) and so T[x : 1 —> A] is conservative over T.
Recently Cubric has proved in [3] that extensions are conservative in the gênerai
case, again by a détour to lambda calculus. We obtain conservativity of extensions
directly in the language of Cartesian Closed Catégories as an easy conséquence of
functional completeness and inductive normalisation.

Section 2 présents the formai theory T of CCC's over a graph of generators,
Section 3 contains the main results. In Subsection 3.1, the normal terms together
with the related neutral and eut- free terms of T are defined. Subsection 3.2
the operator -h is introduced and its properties are studied, among them the
basic one: for normal g and ƒ, the term g + ƒ is normal and provably equal to
g o ƒ. Subsection 3.3 gives the algorithm which calculâtes the normal form of a
term and contains the technical results. Finally, Subsection 3.4 recalls briefly the
functional completeness with the properties needed here and gives the theorem of
conservativity of extensions of T.

We wish to thank Martin Hofmann for his precious help at the early stages of this
work during his stay at the LIRMM. His inductive définition of the normal forms of
arrow-terms in T set us on the right track.

2. MARTIN-LÖF STYLE AXIOMATISATION OF THE THEORY
OF CARTESIAN CLOSED CATÉGORIES WITH A DÏSTINGUISHED

GRAPH OF OBJECTS AND MORPHISMS

2.1. THE LANGUAGE

We allow for arbitrary object- and arrow-constants in the theory of Cartesian
Closed Catégories. We assume that there is an object-constant 1 for the terminal
object and an arbitrary number of other object-constants. From these we define
the object-terms as usual. We use upper case letters for object-terms, lower case
letters for arrow-terms. The arrow-constants are given by a set G, called the
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generating graph of the theory. It consists of all the object-constants and of triples
(c, A, B) where c is called an arrow-constant and A and B are object-terms1. We
assume that for every arrow-constant c there is exactly one triple (c, A, B) in
G. Then there is a list of variables denoted by the letters x, y, z etc. We will
distinguish between the theory of Cartesian Closed Catégories T[G] axiomatised
with terms constructed from the constants in G alone and those where we add
variables and context information. For example, T[G][# : D —> A] is the extension
of T[G] obtained by adding the variable x and the formulae x : D —>• A and
x = x : D -» A. As G is fixed, we will write T for T[G], T[x : D -» A] for
T[G][x : D —> A] etc. Due to the absence of variable binding functional symbols
in the theory, the distinction between variables and constants is quite artificial;
it is useful in the formulation of functional completeness simulating a variable
binding mechanism.

There are two kinds of formulae: equalities and the denotations. Both are
divided into two sorts: object-equaiities and arrow-equalities, object-denotations
and arrow-denotations.

A denotation is of the form

1) A object,
2) f:A^B,

judgements which are of the form 1) or 2) have the meaning "the term A dénotes"
respectively that "the term ƒ dénotes and has domain A and codomain J3", the
latter will be read as " ƒ is an arrow (or a morphism) of domain A and codomain

An equality is of the form

3) A = B, meaning that A and B are equal objects
4) ƒ = g : A -> £?, meaning that both ƒ and g have domain A and codomain

B and are equal.

As there are no dependent objects in the theory of Cartesian Closed Catégories,
every object-term dénotes and the derivable object-equaiities are exactly the iden-
tities A = A, for all object-terms. The situation is somewhat less trivial if we
attempt a BNF style définition of arrow-terms:

t = c/fst/snd/ev/ter/t o t/{t,t)/t*.

These expressions do not always correspond to a denoting arrow-term. However,
the question whether for a given BNF expression ƒ there are object-terms A and
B such that ƒ : A —» B holds in T, is decidable. This follows easily from the
axiomatisation below, as the dérivation of a denotation uses only denotations of
subterms.

lThe word "triple"here has nothing to do with monads, we use it in the naive sensé: a
séquence of three things.



230 A. PRELLER AND P. DUROUX

2.2. THE THÉORIES T, T[X : A -> B]

The rules of the theory are divided into two groups, the logical and the non-
logical ones. Among the logical rules there are the gênerai ones such as symmetry
and transitivity of arrow-equality, assumption, and the spécifie ones, associated
to the various functional symbols and called the construction rules. One kind of
construction rules introduces a functional symbol, the other one expresses the com-
patibility of the symbol with arrow-equality. The basic properties of a Cartesian
closed category are expressed in the non-logical rules under the form of equalities
of arrows.

We omit symmetry and transitivity of arrow-equality and object-equality which
the reader will easily provide, if needed.

A object B object A object B object
x : A —»> B x = x : A —> B

where x is a variable.
Either of the two rules above is referred to as an x-assumption.
General renexivity of arrows will be derivable under the assumptions of reflex-

ivity of the variables occurring in the arrows. As will be readily verified, the only
derivable equalities between objects are of the from A = A.

Below cornes the full list of rules spécifie to the theory of CCC's. The con-
struction rules which present the functional symbols corne in two groups, the
introduction rules (on the left) and the compatibility rules (on the right).

C object C = C

for every object-constant C,

for every arrow-constant ƒ where ( ƒ, C, D) is the unique triple in the gênerating
graph G starting with ƒ,
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S object

idS : S -> S

s: S - » T t:T -> R

tos : 5 -> R

t:T->R
idRot = t:T -> Rf toidT =t:T -» R

s: S ->T t:T -> R u : R ~¥ V

idS

s = sf :S

tos

=

—)

=

t

5 =
idS'

T

t! o s

sf

t =
S -

l

S

:T-
ï R

-> R

u o (t o s) = (u o t) o s : S -> y

A object S oèjeci A = Af B = Bf

AxB object

A object B object
fst(A,B) : A x B -> A

f:U^A g:U^B
(f,g):U^AxB

f:U-*A g:U->B
fst(Ay B) o {ƒ, g) = ƒ : U -> /

h:U -+ AxB

J

fst(A,B)

ƒ :

A

4 =

~v

U

xB =

--A'
fst{A'

<ƒ',ƒ>

A

9

1 x B'

B = Bf

3{):AxB

= g':U-

:U -^ B

> B
B

{fst{A, B) o h, snd(A, B) o h) = h : U -> A x B

A object A = A!
ter(A) : A -> 1 ter(A) = ter(^) : A -

ƒ : A->1
ƒ = ter(A) :A^V

A object B object A = A' B = Bf

BA object BA = BfA'

A object B object A = A' B = B'
ev(A, B) : BA xA^B ev(A, B) = ev{A',Bf) : BA x A ̂  B

ƒ :C x i 4 B f = f :C x A^ B
ƒ * :C -> BA ƒ * = ƒ'* : C -> S A

ƒ : C x A - > B
ev(A, B) o (ƒ * o ƒ st(C, A), snd(C, A)) = / : C x i ^ 5

h:C-*BA

(eu(A, B)o(ho fst(C, A), snd(C, A)))* ^ h : C ̂  BA'

Notations:
We refer to the term ( ƒ, g) : U —> A x B as a pair. Similarly, ƒ si(A, 5 ) :
and snd(A, 5) : A x B -y S are the first and second projection, ev(A, B) : I?A x
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A -> B is called évaluation and ƒ* : C -» I?"4 the abstraction oî f : C x A -^ B.
Finally, £er(A) goes under the name of terminal arrow.

Whenever the context permit s, the arguments A, B are omitted so that we just
use fst, snd, ev, id, ter. It is always understood that the missing arguments are
such that the term dénotes, The so called type checking algorithm does just that:
it invents names for arguments such that the term dénotes and rejects the term,
if this is not possible.

By analogy to À-calculus, the term (eü o(hofst, snd})* is called the r]-expansion
of h, and {fst o ƒ, snd o ƒ) the rj-expansion of ƒ.

Définition 1. A dérivation is a tree labelled by formulae such that each label
other than that of a leaf is obtained from its immédiate predecessors by one of the
rules above. Moreover, if se ver al x-assumptions occur in the tree, they all have the
same domain and codomain. A dérivation is closed, if all its leaves have an empty
label. The Theory T[G] or T, for short, consists of all formulae which are the root
of a closed dérivation without occurrences of variables and with all constants in
G.

The Theory T[x : A —»• B] consists of all formulae which are at the root of
a closed dérivation having no other occurrences of variable-assumptions than x :
A^BOTX=^X:A^B. Clearly, x is the only variable which couid occur in
a formula belonging to T[x : A -» B). We also say that a formula holds or is
derivable in T[x : A —> B], if it is the label of the root of a dérivation. We shall
say that s equals t in T[x : A —> B], if s = t is derivable in T[x : A —> B]. It
is easy to see that a dérivation has no occurrences of x in any of its labels if and
only if no x-assumption has been applied.
N.B. A closed dérivation may have occurrences of x- assumpt ions. In opposition
to type theory, there is no primitive mechanism for discharging assumptions or
binding variables. Discharging is simulated with the help the K-construction of
functional completeness.

As an example of an equality derivable in T we mention the frequently used
equality.

f*ot={fo{tofst,snd))\

3. NORMALISATION

3.1. NEUTRAL, NORMAL AND CUT-FREE TERMS

We begin with the joint inductive définition of neutral and normal terms of T.
Cut-free terms are an extension of both neutral and normal terms. They play the
same role as the éléments of the semantic sets of [1], Le. they are needed in the
search of the normal form of an arbitrary arrow-term. Suppose that the generating
graph has no arrows, hence is reduced to a set of object-constants O. Then T[OJ
together with the congruence relation of derivable equality is the free P — CCC
on O, a notion defined in [4]. Consider the Yoneda functor Y from T[O] to the
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category of presheaves over T[O] and the functor [ ] generated by the injection
J from O to the category of presheaves which sends À in O to Y (A). There is
an isomorphism q from [ ] to Y. For all objects X and Ay the inverse UA,X of
qA,x maps a term g : X —» A, element of Y(A), to an element of the semantic
set [A]x- To find the normal form of ƒ : B -» A, we need only those éléments of
[B]^ which can be written as [f]uA,A(idA). As terms of'T [O] are simpler concepts
than éléments of the set [B]A, we prefer to define the "action" [f]x : [A}x -^ [B}x
for ƒ : A —̂  B directly on the cut-free terms which are the syntactical variant to
these éléments, avoiding thus set theory and lambda- calculus. The price to pay
for avoiding these powerful théories are tedious proofs in the theory of CCC's.

We treat the notions of neutral, normal, and cut-free terms as syntactical and
therefore belonging to the meta-theory. These notions can be easily formalised
in category theory itself: add new atomic formulae to the language of T, namely
ƒ . D y Q m e a n ing that ƒ is a normal arrow-term of domain D and codomain

No

C. Similarly, ƒ : D —^ C expresses that f is a neutral term of domain D and
iVe

codomain C and ƒ : D > C says that ƒ is a cut-free arrow-term of domain D
and codomain C.

In the following, the letter O will stand for an arbitrary object-constant different
from the object- constant 1.
Définition 2. A dérivation of ƒ : D > C (respectively ƒ : D > C) is given

No Ne
by the following rules:

(identity rule)

id(A) :A —y A
V } Ne

(terminal arrow rule)

ter(D) : D —* 1 ter(D) : D >
No Ne

(swivel-rute)

0 an object-constant
(pair rule)

different

ƒ :

f-
ƒ :

from I

D—>
No

D

D
Ne

No

g*-

0

0

D —>B
No

No
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(projection rules)

f-
ƒ st{A

(abstraction rule)

f - D

ƒ * :

(constant-rule)

D —>
Ne

,B)of

AxB

:D >
Ne

xA > B
No

D—>
No

BA

a: D
No

co a

f : D >
J Ne

A snd(A, B)o f

(évaluation rule)

AxB

Ne

f :D > B A

J Ne
ev{A,B)o{f,a) :

> B c.B^C

:D—>C
Ne

D —> B
Ne

where c is an arrow constant in the générât ing graph.

Définition 3. A cut-free term ƒ of domain D and codomain C is derived by the
following rules:

f :D -

(f,i

f

ƒ :

ƒ :

>
Cf
Q) •

: D

D

D

A

D

X

—>C
Ne
—>c
Cfg:D

—>A
Cf

A—>
Cf

—>B
Cf

xB

B

ƒ * : D > BA

Cf
Notice that id : 1 -> 1 and ter : 1 —> 1 are both neutrals, but only the latter is
normal. It follows immediately from the définition that a normal term of codomain
BA is necessarily an abstraction, Le. of the form ƒ*; and that a normal term which
has a product as codomain is a pair. On the other hand, a neutral term is neither
an abstraction nor a pair. The dominant symbol of a complex neutral is the
composition o. In fact, a neutral other than id or ter is of the form v o g where
v is one of fst, snd, ev or c. The last rule applied in the dérivation of a neutral,
normal or cut-free term is uniquely determined by the syntactical form of that
term. Hence the dérivation of ƒ : D > C, ƒ : D —> C and ƒ : D —> C is

No Ne Cf
unique.

Cut-free terms can be interpreted as natural déductions, if one changes the
discharge mechanism of the introduction rule of implication slightly: if H is a
natural déduction of B such that all leaves are labelled C A D, then ^ B is a
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natural déduction of C D B where H@ is obtained from H by replacing the label
C A D by ÇA D for every leaf (only the leftmost occurrence of C is discharged).
Ignoring the discharged factor C, consider D the label of every leaf of the new
déduction «j^g- Now interpret the rules defining neutral and normal terms the
obvious way. For example the identity rule corresponds to the logical axioms, the
projection rules to the élimination rule and the pair rule to the introduction rule
of conjunction etc. Then all cut-free terms are interpreted as natural déductions
without cuts, the normal terms correspond to déductions where the change from
élimination to introduction rules along a branch occurs at atomic nodes. The
neutral ones make no use of introduction rules along any major branch.

In order to express "action" in the syntax of T, we first define an operator +
which when given two composable cut-free terms, will calculate a cut-free term
provably equal to the composition of the two given terms. This operator is first
defined for the cut-free terms which have no occurrences of ev nor *, i.e. the
cut-free terms of cartesian catégories. Then the définition is extended to the case
where the left argument is arbitrary and finally to the genera! case.

Définition 4.

1) A simple projection is a neutral term which is derivable using the identity
and projection rules only.

2) Every simple project ion and terminal arrow ter(D) is a generalised projec-
tion. If ƒ : D —)> A and g : D —>• B are generalised projections, then
(f,g).D —» A x B is a generalised projection.

3) A generalised neutral is either a neutral or a pair of generalised neutrals.
Hence, a simple projection is either the identity or obtained from it by composing
it with the projections fst and snd repeatedly. Generalised projections are deriv-
able using the terminal arrow rule, the identity rule and the projection rules first
and after that pair rules only. In gênerai, they are not neutrals, but generalised
neutrals. In any case, they are cut-free terms.

We now are ready for the operator + which associâtes to a cut-free term ƒ : D —» C
and a generalised projection t : X —> D a new cut-free term ƒ + t : X -4 C 2.
Later, in Subsection 3.2, this operator will be extended to arbitrary cut-free terms
in both arguments.

Définition 5. Let ƒ : D —>• C be a cut-free term and t : X —> D a generalised
projection.
I) Suppose first that ƒ is a generalised projection. Define by induction on the
dérivation of ƒ a new term ƒ + t:

0) id-\-t = t
1) ter(D) + t = ter(X)
2) {fst o f) + t = fst o (ƒ + t), if ƒ + t is not a pair,
3)

2 ƒ + 1 is a meta-notation, a name for the term given in the définition. The letter X stands
for an arbitrary object term.
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4) (snd o f) + t = snd o (ƒ + t) , if ƒ + t is not a pair,
5) (sndo ƒ) + * = / 2 , if ƒ + t = (fuh)
6) ( ( / i , / 2 » + i = ( / i + t , / 2 + i).

Hence, ƒ + t is defined for ail gêneralised projections ƒ and t and is again a
generalised projection.
II) Now suppose that ƒ is an arbitrary cut-free term. Then define ƒ -h1 again by
induction on the dérivation of ƒ by the equalities 1) through 6) above and by

7) (coa) + tEEco(a + t)
8) ƒ* + * = (ƒ + (t + (fst o id), snd o id})*
9) (eu o ( / , a ) ) + * = ez; o</ + £,a + £)

L e m m a 1. (ï) if f : D —> C is a generalised neutral, then f + t : X -ï C is
a generalised neutral If moreover C is a power BA (respectively a constant
O), then f + t : X -ï BA (respectively f + t : X —> O) is neutral;

(ii) if f : D —¥ C is normal, then ƒ + t : X —> C is normal;
(iii) if ƒ : D —>> C is neutral and t a simple projection, then ƒ + t : X -^ C is

neutral;
(iv) if ƒ : D —» C is a cut-free term and t : X -^ D a generalised projection, then

f + t:X~->Cisa cut-free term;
(v) if f : D -ï C is a generalised projection, then ƒ -\-id = ƒ ;

(vi) Tfte equality f + t = f ot is provable in T .

We omit the proof of Lemma 1 which is straightforward.
Notation: A useful abbreviation is f+^st for ƒ + (fst o id).

3.2. THE OPERATOR +

We extend the operator + which until now is defined on the right for generalised
projections t only to arbitrary cut-free terms t. This operator provides us with a
"composition" of cut-free terms which, when restricted to normal terms, yields a
normal term.

In the définition of the operator -h, we use the notion of the degree d(f) of a
cut-free term ƒ :

The complexity c(D) of an object term D is defined by induction on the con-
struction of the term: The complexity of a constant O or of 1 is 0. The complexity
of a product is the maximum of the complexities of its factors. The complexity of
a power BA is

Then we define by induction on the dérivation of a cut-free term its degree d(f):

d(f) = 0 for neutral ƒ,

d(f*) = c(BA) for ƒ : £ ) - > B
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N.B. For an arbitrary cut-free term ƒ : D —> C, we can only say that d(f) < c(C).
Only for a normal term ƒ we have the equality d(f) = c(C). Notice also that if
d( ƒ ) = 0 if and only if ƒ is a generalised neutral. In particular, if the codomain of
ƒ is not a product and d( f ) = 0, then ƒ is neutral.

Définition 6. Let ƒ : D —» C and t : X —y D be arbitrary cut-free terms. Define
a new cut-free term ƒ + t : X ->• C such that d(f + i) < max{d(/),d(£)} by
induction on pairs of natural numbers (n, m) ordered in alphabetical order where
n = d(t) and m is the maximal length of the branches of the dérivation tree of
ƒ : D — • C:

Cf
(0)
(1) £er(L>) + * = ter(X)
(2) (/st o ƒ) +1 = /st o (ƒ +1), if ƒ +1 is not a pair,
(3) (fstof)+t = fUiff + t=(fuf2)
(4) (snd o ƒ) +1 = snd o (ƒ + £), if ƒ + t is not a pair,
(5) (sndof) + t = / 2 , if ƒ + *={ƒ!,/2)
(6) «A , / 2 ) )+ * = <ƒ!+«, ƒ2+ *>
(7) (c o a) + i = c o (a +1)
(8) ƒ* + t = (ƒ + <t + (fst o id), snd o id))*
(9) (ev o (ƒ, a}) -\-t = ev o {ƒ + i, a + t), if ƒ + t is not an abstraction

(9') (ev o(f,a))+t = h + (id,a +1), if ƒ +1 = h*.

In fact, this operator extends the operator given in Définition 5 of which it re-
produces the ten defining equalities 0) to 9). Only now an alternative has been
added for the évaluation rule, namely 9'): if ƒ is neutral and ƒ -f £ is defined for
an arbitrary cut-free term t, then it does no longer follow that ƒ +1 is neutral as
it did in the case where t was a generalised project ion. So, at the next step, when
we want to define (ev o {ƒ, a)) + £, we must take care of the alternative where
ƒ -J-1 is not a neutral, but an abstraction. As the term ƒ -f- t may well have a
longer dérivation than ƒ, we need a second induction index besides the length of
the dérivation of ƒ. It is provided by the degree n of t.

L e m m a 2. For arbitrary cut-free ƒ:£>—)• C and t : X —» D, the term f -\-t : X —>
C is well defined, cut-free and satisfies d(f +1) < max{d(/),d(£)}. Moreover, if
f is normal, then so is f -\-t. If f and t are neutral, then f -\-t is a generalised
neutral In particular, if C is not a product, and f and t are neutral, so is f -\-t.

Proof First show for an arbitrary cut-free ƒ that the term ƒ + t is well defined
and has the desired properties for all cut-free t of degree 0. Proceed by induction
on m, Le. by induction on the dérivation of ƒ. For example, consider the case
where the dérivation terminâtes with the abstraction rule. Hence f ~ h* where
the lemma folds for h and all 5 of degree 0. Then equality 8) is used to define
h +t. Définition 5 and Lemma 1 make sure that t 4- (fst o id) is already defined
and that d({t + (fst o id), snd o id)) — 0. Hence the induction hypothesis applies
to h and (t + (fst o id), snd o id). In tHë case where the dérivation terminâtes by
the évaluation rule, then one of the defining equalities 9) or 9') must be used. Let
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ƒ = ev o (g, a) : D > BA with neutral g : D —» BA and normal a : D —» A.
Ne

By induction hypothesis, d(g + t) < max{d(#), d(£)} = 0. Hence # + t is neutral
and thus it is 9) which is applied. As a + t is normal by induction hypothesis, the
resuit ing term ƒ + 1 is neutral and has degree 0. Notice by the way that the last
rule in the dérivation of ƒ -f t is the évaluation rule, the same as in the dérivation
of/.

Finally, assume n > 0 and that h -f 5 is defined and has the desired properties
for all cut-free s of degree less than n and for arbitrary cut-free h. Now show by
induction on the dérivation of the cut-free ƒ : D -» C that ƒ + £ is well defined and
d(/ 4- i) < max{<2(/), d(i)} for all cut-free t of degree n. According to the last rule
in the dérivation of ƒ, one of the defining equalities above is used. For example,
consider the case of equality 8). As d({t + (fst o id), snd o id)) — d(t) — n we
reason as above. Suppose now that the dérivation terminâtes with the évaluation
rule, Le, f ~ ev o {g,a) : D > BA with neutral g : D -> BA and normal

Ne
a : D —» A. If g + t is neutral, the argument is simular to the one given in the
correpsonding case above. If g + 1 = /i*, the equality 9') is used. To show that
h + (id, a +1) is defined it sufïices to remark that the degree of (id, a + t) is less
than n. Indeed,

c(BA) = d(h*)

= d(<? +1)

< max{d(^),d(i)} by induction hypothesis on g,

by neutrality of g.

Hence, c(A) and c(J5) are strictly less than n = d(t). By induction hypothesis,
a + i is a normal term. lts degree is no greater than the complexity c(A) of its
codomain A Therefore, d((id,a + t}) < d(a + t) < c(A) < n. By induction
hypothesis, h + (id,a -f t) is defined and a cut-free term of codomain B. Hence,
n)c(B) > d(h + (id,a + £)). Finally,

d(et; o {̂ , a) -f t) = d(ft + (id, a + £)) < n = d(t) = max{d(e^ o {g} a)),

as ev o (y, a) is neutral.

Warning: Before going on with the properties of the operator +, remark that it
is not commutative. For example

id* -\-id= {id + (fst o idy snd o id))* = (fst o id, snd o id)*

whereas

id + id* = zd*.

The somewhat misleading notation has been adopted for historical reasons. Our
+ généralises the (.)+ut defined in [1] for weakening morphisms w.
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If one interprets cut-free terms as natural déductions, then the operator + can
be seen as "grafting" the déduction tree corresponding to t onto the tip of every
branch of the tree corresponding to ƒ, simultaneously eliminating the cuts created
by such grafting. The proof of Lemma 2 follows closely the usual proof of eut-
elimination by conversion, given for natural déductions. In category language, the
operator -f- is the cut-free version of composition: D

Lemma 3. For arbitrary cut-free ƒ and t, the equality f -h1 = f o t holds in T.

Proof. By induction on the index (n,m). Assume that the property holds for
all cut-free s of degree less than n = d(t) and all cut-free ft. In order to show
that it also holds for n, proceed by induction on the dérivation of ƒ. Consider
for example the case of equality (9'), the other cases are straightforward. Assume
that ƒ-ht =• ft* and that ƒ -ht = ƒ:ot and a + t = aot in T by induction hypothesis.
Then

ev o (ƒ, a) +1 = ft -h (idra + t) property of {id, a-ht), as d((id, a -h t)) < n

= h o (id, a-ht),

= h o (id, aot) property of a

— ev o (ft* o fst, snd) o (id, aot ) ,

= ev o (ft*,aot),

= ev o ( ƒ" + t a o t) définition of h

= ev o (f o t, a o t) property of ƒ

= ev o (ƒ, a) o t.

a

3.3. REWRITING, ACTIONS AND NORMAL FORMS

We defîne a normal term rewrite(f) : D ~> C for any cut-free term f' : D —> C
such that the equality rewrite(f) = ƒ : D —»• C holds in T. In fact, the operator
rewrite replaces a terni by its maximal ^expansion.

Définition 7. The term rewriteff) is defined by induction on the codomain of ƒ.
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rewriteo(f) = ƒ, if the codomain of ƒ
is the constant O

rewritei(f) ~ ter(D), if the codomain
of ƒ is 1

rewriteAxB((g<>h>)) = (rewrite Aig),

rewriteAxB(f) = (rewriteA(fst o ƒ), rewriteB(snd o ƒ)) if ƒ is not a pair.

rewriteBA(h*) = (rewriteB (h))*

rewriteBA(f) = (rewrit€B(ev o
rewriteA(snd o id))))*, if ƒ is not

an abstraction.

Whenever the context permits, we omit the subscript in rewrite.

It follows immediately from the définitions that
Remark 0) rewrite(f) is normal for ail cut-free ƒ.
Remark 1) The equality rewrite(h) ~ h : D —> C is derivable in T.
Remark 2) If a is normal, then rewrite(a) = a.
The latter is f aise for neutrals. However, if we apply rewrite to two neutrals

and get the same resuit, then they were already identical beforehand, unless the
codomain has "to many" factors 1 as we shall explained below.

The flattened object associated to S, in symbols Fl(B), is obtained by deleting
ail exponents in B :

Fl{O) = O

Fl(l) = 1

Fl{A x B) = Fl(A) x Fl(B)

Fl(BA) = Fl(B).

The object-term C is said to be ambiguous^ if 1 is the only constant occurring in

Remark 3) Assume that C is not ambiguous and let h : X —>- C and h! : X —• C
be neutrals such that rewrite(h) = rewrite(h'). Then /i = Zi'.

Remark 4) Let h : X -> C and /i' : 1 ^ C be any cut-free terms. If C is
ambiguous, then rewriteQi) = rewrite(hf).

These Remarks can be easily verified. Remarks 3) and 4) are seen using induc-
tion on the complexity of the codomain C.

Accepting the intuition that cut-free terms are the syntactical version of élé-
ments of the form [f]iiA,A(idA) in the sets [B]A as defined in [1], rewrite can be
compared with ç, as it transforms a cut-free term into a normal one. It remains
to define the syntactical version of the functor [.] of [1] respectively [4]. This is
the next (and last) concept we need before defining normalisation. We call [h] the
"action" induced by an arbitrary term h on cut-free terms. Action also is a sort of
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composition, but now the term on the left is arbitrary, only the term on the right
is cut-free.

Définition 8. Let ft : D —> C be any denoting term and ƒ : X —> D a cut-free
term. The cut-free term [h](f) : X —>• C, called the result of the action by h on f
is defined by induction on the complexity of ft as follows:

=f
\ter(D)](f) =ter(X)

\c](f) = c o rewrite(f) where c is an arrow-constant

[ƒ«*]((ƒ!, ƒ2» =flt

[fst}(f) = fst ° ƒ> ïf ƒ is n o t a Pa*r

[snd](f) ~ snd o ƒ, if ƒ is not a pair

H({^*,a)) =g +(id,a)

[eü]((/,a)) = e^ o {ƒ,rewrite(a)}, if ƒ is not an abstraction,

= ev o {/si o ƒ\rewrite(snd o ƒ)), if ƒ is not a pair

L e m m a 4. For all denoting h : D —ï C and cut-free f : X —ï D the equality

[h](f) = hof:X^C holds in T .

In particular, the equality

rewrite([h](id)) = h : X -> C is derivable in T .

The proof is straight forward and we will skip it.

Définition 9 (Normal Form). The normal form nf(h) : D -> C of an arbitrary
term h : D —» C is defined by

n/(/i) = rewrite([h](id)).

N.B. it follows immediately from Lemma 4 that the equality nf(h) — h : D —> C
is derivable in T.

Theorem 1. For every h : D —• C of T? nf(h) is normal and the equality h =
nf(h) : D ->• C ZioMs m T. ƒƒ ft : £> ^ C, then nf{h) = ft. Tfte equality

No
h = g : D ^ C is derivable in T, f/ and onty ifnf(h) = nf(g).

Proof The first two assertions follow immediately from the preceding lemmas,
namely that for every ft : D -^ C of T,

• nf(h) = rewrite([h](id)) is normal,
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• the equality h = nf(h) : D> -> C holds in T,
The last two assertions correspond to the three properties,

• nf(h) = h for normal h,
• if n/(fi) = nf(g), then the equality h = g : D —> C is derivable in T
• if h = g : D —»• C is derivable in T, then nf(h) = nf(g). p

Only the last property, namely uniqueness of normal forin, needs still proving, the
two preceding ones are easy conséquences of the preceding lemmas. To establish
uniqueness, we need a few properties of the operator +. They are given by the
following Lemmas 5 to 9:

Lemma 5 (Associativity). Let be given ƒ : D —> C\t : X —> D and t' : Y -—>
Cf Cf Cf

X. Then ( ƒ + t) + i1 = ƒ + (t + tf), provided ont of the following holds:
SPECIAL CASE I: f is a generalised projection, t and tf are arbitrary.
SPECIAL CASE II: t is a generalised projection, ƒ and t1 are arbitrary
SPECIAL CASE III: tf is a generalised projection, ƒ and t are arbitrary

Proof Show each special case separately, using induction on the dérivation of
ƒ. Considering the abstraction and the évaluation rule (the others are routine),
assume ( ƒ + s) -f s' = ƒ + (s + s') for ail s, sr of the right kind. Then

Abstraction rule,

( ƒ * +1) + tf = (( ƒ + (t+fs\ sud o td» + {t+fst
r sud o id)Y

= (ƒ + ((t+ / s t , snd o id) -f {t+fs\ sud o id)))* property of ƒ

= (ƒ + «(*+ / r t) + (t+fstrsndoid},

snd o id + (t+fst, snd o id}))*

= ( ƒ + « * + (/s* ° ̂  + <*'+/s*> snd o id)),

sndoid)))* (Eq. 1)

= (ƒ + (((t + tf)+f*\ snd o id)))* (Eq. 2)

where the equalities below still need justification
(Eq. 1) (t + fst o id) + (t /+^st, snd o id) = t + (fst o id -f- {i'+/5

(Eq. 2) t + (*'+ƒ•*) = (t + f ) + / s *

Evaluation Rule: Suppose the property holds for neutral ƒ and normal a, show
it for ev o (ƒ, a).

Three cases have to be distinguished:

Case 1: (ƒ + t) + t; is neutral:
Then,
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(ev o <ƒ, a) 4- t) 4- tf = ev o {(ƒ + t) 4- i', (a + t) + i')

= ei> o {ƒ + (t + i7), a -f- (t 4-1')) property of ƒ and a

= (CÜ o <ƒ, a » + (* + *')

Case 2: (ƒ + t) is neutral, (ƒ + *) + *'== #*:
Then, ƒ + (t + t') = (ƒ +1) +1 ' = 0*, property of ƒ.
Therefore

(eu o {ƒ, a) +1) + i' == g + (id, (a + i) + t')

= # + (id, (a + (t + t')) property of a

= ev o {ƒ, a) + (t + t7) définition of +

Case 3: (ƒ 4-1) = h* : X ~> BA

Notice that d((id, a + t)) < c(A) < c(BA) = d(h*) = d(f +1) = d(t).
Then ( ƒ + t) + tf = (h + {t'+fst,snd o id)f == ƒ + (t + f) , property of ƒ.
and

(ev o {ƒ, a) + *) + t' = (h 4- (id, a + *)) + i'

~7i +«id, a + *>+*') (Eq. 3)

= ft 4- {t\ a + {* + £')) property of a

= ft + <£7 + zd, a + (t 4- t7)) (Eq. 4)

= h + (f + (/«st o id 4- (ad, o + (t + t7)}),

snd o «d 4- (id, a + (t + *')))

= h + ((t74- fstoid) + {id,a+(t + tf)),

snd oid+ (id, a + (t + £'))) Special Case II

= ft +({t+fs\sndoid)

= (ft +{t / + / s t ,sndoid))

+ (id,a + (*H-t')> (E<1- 5)

= (ev o {ƒ, a)) + (t + t') définition of +

where the three mentioned equalities still need to be proved:
(Eq. 3) (ft + (id, a + t))+t' = ft + ((id, a + t) 4-1')»
(Eq. 4) t' + id = t1
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(Eq. 5) h + « t ' + / s t , sud o id) + (id, a + (t + *')» = (^ + <t'+/st, sud o id))
+ (id, a + ( £ + £')>

Now finish the proof by showing the property
1) first in the SPECIAL CASE I by induction on ƒ. In this case, the equalities

(Eq. 1) - (Eq. 5) are not needed;
2) next, in the SPECIAL CASE II, again by induction on ƒ ; now (Eq. 1) and

(Eq. 2) are justified by SPECIAL CASE I. The equalities (Eq. 3 - Eq. 5) are
not needed as Case 3 of the Evaluation Rule does not arise, because t has
degree 0.

3) in the SPECIAL CASE III, using induction on the pair (n, m) where n = d(i)
and m is the length of the dérivation of the cut-free term ƒ. In this case
(Eq. 1) and (Eq. 2) hold by SPECIAL CASE II, (Eq. 4) is established in
Lemma 1, (Eq. 3) is true by induction hypothesis (remember: d((id^a-\-t)) <
d(a + t) < c(A) < c(BA) = dfa*) = d(f +t) < max{d(/),d(i)} = d(t) as ƒ
is neutral).

Finally (Eq. 5) holds by SPECIAL CASE II. D

This associativity of the operator + can be extended to arbitrary cut-free terms
ƒ, t, tf provided the last one, £', satisfies tf -\~id = tf. We shall see later that this is
true for ail normal or neutral t1,

The next three Lemmas jointly make sure that the binary operator -f is com-
patible with the unary operator rewrite, Le. from rewrite(f) = rewrite(f/) and
rewrite(t) = rewrite(tf) follows rewrite(f+t) ~ rewrite(f/ +tf) for arbitrary cut-free
ƒ,ƒ',* and i'.

Lemma 6. Suppose ƒ : D > CJ' : D —> C,t : X —> D and tf : X —> D,
Cf Cf Cf Cf

then

(1) rewrite(f + t) = rewrite(f) + t

(V) rewrite(f) = rewrite(f') implies rewrite(f + t) = rewrite(ff +1).

(2) rewrite(t) = rewrite(tf) implies rewrite(f + t) = rewrite(f + t')

(3) rewrite(f + id) = rewrite(f)
Corollary. If f is normal or a generalised neutral, then ƒ + id~ ƒ.

Proof of Corollary. If ƒ is normal, then so is ƒ + id. As rewrite leaves normal
terms invariant, the identity ƒ -\-id~ ƒ follows at once from Lemma 6, (3). If f is
a generalised neutral, use induction on the dérivation of ƒ. D

Proof of Lemma 6. Notice that (1) implies (1'). We prove the properties (1), (2)
and (3) simultaneously by induction on n = max{d(t), d(t')}.

Let n be given, assume that (1), (2) and (3) hold for ail cut-free g and ail
cut-free s and sf such that d{s) < n and d{sf) < n.

(1) is proved by induction on the codomain C of ƒ :
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For atomic C the property is trivial. If C = A x B, the cases where ƒ is a
pair or where ƒ and ƒ' + t are both neutral, are straightforward. Remains the case
where ƒ is neutral, but ƒ + t is a pair (^1,^2)- From this follows immediately

{fstof)+t = 9l

(sndo ƒ) +t = g2.

Therefore,

rewrite AXB{Î +1) = { rewriteA(gi), rewriteB{g2))

rewriteB((snd o ƒ) + t))

= {(rewriteAif st o ƒ)) 4-1,

rewrites {sud o ƒ)) + £)

= { rewrite(f st o ƒ),

rewriteB(snd o ƒ)) -f t

== rewriteAxB(f) +t

Finally, suppose C = I?"4.
If ƒ is an abstraction, say f = g* where ^ D x

, snd o

snd o i

rewriteBA (ƒ + t) = rewriteBA ((g +

= (rewriteB(g +

= (rewritesig) +

= (rewriteB(g))* 4-1

= rewriteBA ( ƒ ) H- t

If ƒ is not an abstraction, hence a neutral, then

property of A and 5

définition of -f

E, then

)

définition of rewrite

snd o zd))* property of 5

définition of +

définition of rewrite

rewriteBA (f) +t = (rewritesiev o (f*fst,rewriteA(snd o id))))* -\-t

= (rewnteB{ev o (f+fst^rewriteA{snd o id)))

+ {£ -f- /s t o id, snd o id))* définition of

= {rewrüeB{ev o {f+^8t^rewTiteA{sndoid))

+ (t -f- /s t o id, snd o id)))* property of

By the définition of -h, this last term is computed in different ways, according to
whether /+^ s t + (t + ƒ st o id^ snd o id) is an abstraction or not. But
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ƒ+fst _|_(£ + fst o id, sud oid) = ƒ + ( ƒ st o id

+ (t + ƒs£ o id, snd o id}) associativity

= ƒ + ( * + ƒs* ° id) définition of

= (ƒ + *) + fst ° ^ associativity

Hence the left-hand term above is an abstraction iff (ƒ + t)+-^st is an abstraction
iff ƒ + t is an abstraction.

Suppose that ƒ -h t is not an abstraction. Then (ƒ + t)+fst is neutral and
therefore

rewriteBA(f) +1

= {rewritesiev o{f+fst-\-(t + fstoid, sndoid),

rewriteA((snd o id)

+ (t + fstoid, sndoid))))*

= (rewriteB(ev o {(ƒ + £)+ƒ**,

rewriteA(snd o id + (t + /s t o id, snd o id)))))* property of A

== (rewriteB(ev o {(ƒ + t)+^5t, snd o

(ƒ + t).

Suppose now that f + t = g*. Then,

o ^
+ / 5 t , sud o id))*

Hence
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rewrite^(f) + t

o {f+fst, rewriteA(snd o id))

fstoid, sndoid)))*

= (rewrüe s((g + {fst o id+^st, sndoid))

+ {id,rewriteA(snd o id))))*

= (rewrüeB(g 4- {/st o id -f id, rewriteA(snd o id)}))*

= (rewritesig -f (/st o id,rewrüe A(snd oid))))*

= {rewrites{g -\-id))*

= (rewriteBA ( ƒ + t)

définition of +

associât., def. of +

définition of +

property (2)

property (3)

définition of rewrüe

choice of 5.

Indeed, the cut-free term s = {fst oid, rewrüeA(snd o id)) has degree d(s) < c(A)
< c(BA) = d(f + t)<n, hence, by induction hypothesis, properties (2) and (3)
hold for s and id. Hence (1) holds for all ƒ and all t such that d(t) = n. In
particular we have shown that (1) holds for n = 0. In that case we do not call on
properties (2) and (3), as ƒ +1 is neutral, if ƒ is neutral.

(2) is established by induction on the dérivation of ƒ: Suppose rewrite(t) ^
rewrite(t!). From this follows that rewrite({t+fst, sndoid)) = rewrite((t+fst, sndo
id)) by définition of rewrüe and (1').

Now for example, consider the case where

ƒ ^

Then,

rewrite(g* ~\-t) = (rewrite(g + (i+^5t, sndoid)))* définition of +

= (rewrite(g + (t+-^si, sndoid)))* property of g

= rewrite(g* + tf) def. of rewrite, def. of +.

As another example, consider the step where

ƒ ~ev o<5,a)

with # neutral and a normal. Suppose that the property holds for g and a. While
Computing f + t, three cases must be treated separately:

• g + t and g + tf are both neutral. By Lemma 2, this is always true, if
n = 0. First, treat the case where the codomain of g is not ambiguous. As
rewrite(g -f t) = rewrite(g -M;) by property of 5, it follows by Remark 3)
that # +£ = s +£'.
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Hence,

rewrite (ev o (g, a) +t)

= rewrite(ev o (g -h £, a + £)) définition of +

= rewrite(ev o (p -\- t,rewrite(a + t))) normality ol a-\-t

= rewrite(ev o (g -f t,rewrite(a + t'))) property of a

= rewrite(ev o (g + tf >rewrite(a + t'))) Remark 3)

= rewrite(ev o {g + £', a + £')) normality of a -f t'

= rewrite(ev o (g, a) + t'). définition of -h

On the other hand, if the codomain BA of g is ambiguous, then B, the
common codomain of eu o (g: a) + t and ev o (p, a) + t', is also ambiguous.
Use Remark 4) to conclude that

rewrüe(ev o (g, a) +t) = rewrite (ev o (</, a) + t!).

This shows already that (2) holds whenever n = 0.
• Both g + t and £ + £' are abstractions, say g + t = h* and <? + t' ~ h *.

This case can only happen, if n > 0. By property of <?, rewrite(g + t) =
rewrite(g +£'), hence rewrite(h) = rewrite(hf). Recall from Lemma 2 that

ïd, a + t» < n and d((zd, a + t')) < n.

Prom the normality of a and (1) also follows

(*) a + £ = rewrite(a + £) = rewrite(a -f t') = a + £'

Then,

rewrite(f + t) = rewrite(ev o (g, a) + £)

= rewrite(h + (îd, a + £)) définition of +

= rewrite(hf + (id, a + t)) (1')

= rewrite(hf + {̂ d, a + *')) (*)

= rewrite(f + t').

• One is neutral, the other one is an abstraction, say 5 -f t is neutral and
# +11 = h*. In this case too, n must be strictly greater than 0. Again we
have d({id,a + t')) < n. Properties (1), (2) and (3) hold for (id,a + if) by
induction hypothesis. Then

(**) rewrite (sud o id) + {id^a + tf)

Indeed,
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rewrite(snd o id) -f {id, a + t1) = rewrite(snd oid+ {id, a + £')) (1)

= rewrite(a + tf) définition of 4-

Therefore,

rewrite(f -\-t) = rewrite(ev o {g + t,a + t))

= rewrite(ev o (g + t, a + i) 4- id) (3)

= rewrite(ev o {g + £) + id, (a + £) + id)) définition of +

= rewrite(ev o ((g -f t) + id, a -f t) (3), Corollary

= rewrite(ev o ((g +t)+fst,rewrite{sndoid))

+ {id,a + tf) del of+, (**)

whereas,

f+t' ~hf + (id,a + tf) choiceof/i'.

By property of 5, we have rewrite(g + t) = rewrite(g + t'), hence

(reiünte(et; o ((p -f t)~*~fst,rewrüe(snd o id))))* = rewrite(h*).

As, rewrite(h *) ~ {rewrüe{hf))*, this implies

rewrüe(ev o {(g +t)+fs

Then,

rewrüe(f + t) = rewrüe (ev o

rewrüe (sndoid)} + {id,a-\-tf))

= rewrüe(hf + {id, a + tf}) prop. of (zd, a + t')

= rewrüe(f + £').

This terminâtes the last case of (2). Hence, property (2) holds for all ƒ, t and t'
such that max (d(i),d(i')) < n.

(3) Let ƒ : Z? —> C. To show that rewrüe(f + id) = rewrite(f) use induction

on ƒ.
For example, suppose that ƒ is of the form y* where the property holds for g.

First, notice that

rewrüe(id) = rewrite({fst o id, snd o id))
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and both id and ( ƒ st o id, snd o id) have degree 0. Hence (2) holds for them.
Therefore

rewrite(g* 4- id) = rewrite((g + (id + fst o id, snd o id))*) définition of 4-

™ (rewrite(g 4- (id + fst o id, snd o id)))* définition of rewrite

= (rewrite(g 4- {/si o id, snd o id)))* définition of 4-

= (rewrite(g + id))* (2)

= (rewrite(g))* property of 5

= rewrite(g*) définition of rewrite.

This terminâtes the proof of Lemma 6. N.B. The operator rewrite is essential hère:
id* + id is not the same as id*\ D

Lemma 7. For aZZ cut-free f : D —> C
Cf

Lemma 8. Let f : D -> C and t : X -> D be cut-free. Then [f](t) = ƒ +1 .

Proof by induction on (n,m) as in Lemma 2. For given n = d(i), use introduction on ƒ.
For example, suppose that ƒ = fst o g with g neutral, and that the property holds
for g. Then

lfstog](t) =[fst](\g]{t))

= [fst\{9 + *) property of 5

= ƒ st o id + (5 + t) Lemma 7

= (/si o id + g) + £ associativity

~ fst o g +t définition of +.

The case where ƒ = ev o < g, a > with g neutral, a normal, is as straightforward
as the preceding one:

Suppose that g and a have the property. If g +1 is neutral, then

=[ev}{(\g](t)M(t)))

= [ev](07 + *)a + *)) property of # and a

= ev o (g + t,rewrite(a -\-t)) définition of [ ]

= e?; 0(0 + t , a + i) normality of a

= e^ o (g, a) + t définition of +.

If g + t = h*> then
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[ev o(g,a))(t) = [h}((id,a + t»

= h + (id, a-\-t) as d((id, a + t)) < n

D

Corollary. If f is normal, then

1. nf(f) = rewrite([f](id)) = f.
2. Ifnf(f) = nf(g), then f = g:D -> C m T .

L e m m a 9. Let h : D -> C be any denoting term, f : X > D be eut-f ree and
Cf

t:Y->X a generalised projection. Then

Proof by induction on h. In the cases where h = ƒ st or h = snd, use Lemma 7
and associativity. If h = id or ter the property is immédiate.

Suppose h = ev. Three subcases arise.
Case 1: f = <£*,a). Then f + t=((g +{t + fstoid, sndoid))*,a + t).

Therefore

[eu](/ -ht) = (g -h {t + ƒ st o id, snd o id)) + (id, a -h t) définition of [ ]

= 9 + ((* + Z5^ ° ^) 5n<^ ° ^ ) + { î̂ a + i)) associativity

= 9 + <(* + ƒ«* ° *d) + <W» a + t),

snd o zd + {id, a + t)) définition of +

= 9 + (t + id,a + t) associât., def.of +

= g + (t, a -h t) Lemma 1, (v)

= y + ((id, a) 4-1) définition of +

= (# + {id, a)) + t associativity

= ( M ( / ) ) + t définition of +.

Case 2: ƒ = {p, a) with g neutral. Then g +1 is also neutral by Lemma 1, i).

Whence,

M(/ + t) =[ev]((g,a)+t)

= [ev]((g +t,a + t}) définition of +

= ev o (g + t,rewrite(a + t)) définition of [ ]

= ev o (g H- t,rewrite(a) + t) Lemma 6

= ev o (g,rewrite(a)) + t définition of -h

= [«;](ƒ) + *.
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Case 3: ƒ is neutral. Then so is ƒ 4-1.
Therefore,

[ev](f + t) = ev o (fst o (ƒ + i),rewrite(snd o (ƒ + t))} définition of [ ]

= ev o ((fst o ƒ) + t,rewrite((snd o ƒ) -h t)) définition of +

= ev o {(/s£ o ƒ) -h t,rewrite(snd o ƒ) + t) Lemma 6

= ei> o (/s£ o ƒ Jrewrite(snd o ƒ)} -f £ définition of +

= [ev}(f) + t.

The other steps are straightforward and are left to the reader. D

Corollary.

(i) from rewrite(t) = rewrite(tf) follows rewrite([h](f + t)) = rewrite([h](f + ?)).
(ii) In particular, rewrite([h](id)) = rewrite([h]((f st o id, sndoid))

(iii) \h](id) + id = [h](id) for arbitrary h.
Indeed, (i) follows from Lemma 9 by Lemma 6, (1). (ii) is obtained as follows:

rewrite([h](id)) = rewrite([h](id + id)) définition of +

= rewrite([h](id + (fst o id, sud o id))) (i)

= rewrite([h)((f st o id, snd o id))) définition of -f.

D
End of Proof of Theorem 1. Remains the last of the five properties constituting
Theorem 1: provably equal terms have identical normal forms, i.e. whenever the
equality h = g holds in T, then nf(h) = Tif(g).

Use induction on the dérivation of the equality: the logical rules are eas-
ily checked. For example, when checking the compatibility of composition with
equality, we must prove that from nf(g) = nf(gf) and nf(f) = nf(f') follows
nf(g o ƒ) = nf(gf o ƒ'). Assume nf(g) = nf{gf) and nf(f) = nf(f') and let

Then rewrite(h) = rewrite(hf) by induction hypothesis.
Hence,

nf(g°f) = re^nie([5f](/i))

= rewrite([g](id + ft)) définition of +

= retünie([y](i(i + ft')) Cor. of Lemma 9

= rewrite([g](id)) + ft' Lemma 6, (1)

= rewritedg'^id)) + ft' ind. hypothesis

= rezyrite([p'](ft')) Lemma 9

= nf(g'of).

The non-logical rules are also straight forward. Consider for example the equality
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ev o {h* o fst, snd) — h : D x A —» B.

Then, [ev o (h* o fst, snd)](id)

= [ev](([h*](fstoid), sndoid))

= [ev]((([h}(((fstoid)+fs\ sndoid)))*, sndoid})

~ [h](((fst oid)+fst, sndoid) + {id, sndoid)) Lemma 9

= [h]({fsto id, sndoid))

Hence, rewrite([ev o (ft* o fst, snd)](id))

= rewrite([h]({fst o id} sndoid)))

= rewrite([h](id)) Cor. of Lemma 9

Somewhat more involved is the equality

(ev o(ho fst, snd))* = h : D-ï BA

We have

[(ev o{hofst, snd))*]{id)

= {[^}{{[h}[fst){(id+fst, sndoid)),{snd}((id+fs\ sndoid))))*

= {[ev](([h](id+f3t), sndoid)))*

= ([ev]«([ft](id))+/5t, sndoid}))* Lemma 9

Let ƒ = [h](id)

Case 1: ƒ is neutral. Then, by the above,

rewrite([ev o(hofst, snd))*](id)) = rewrite(([ev]((f+fst, sndoid)))*)

= {rewrüe([ev]({f+fst, sndoid))))*

= (rewrite(ev o (f+fst,rewrite(sndoid)))* neutrality of ƒ+-^st

= rewrite(f)

= rewrite([h](id)).

Case 2: / = ^;*. Then /+^st = (g + {(fst oid)+fs\ sndoid))*
and therefore

rewrite([(ev o{hofst, snd))*](id)) = rewrite(([ev]((f+fst, sndoid}))*)
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= rewmte(([ev}(((g + ((fstoid)+fs\ sndoid})*, sndoidQ)*)

= rewrite(((g + ((fst o id)+fst, snd o id}) + (id, sndoid})*)

= rewrite((g +(fstoid, sndoid))*) associativity,

définition of +

= (rewrite(g -\-id))* Lemma 6

= (rewrite(g))* Lemma 6

= rewrite(g*)

= rewrite([h](id)).

D

3.4. FUNCTIONAL COMPLETENESS AND CONSERVATIVITY OF EXTENSIONS

Functional completeness has been formulated and established by Lambek for
extensions obtained by adding variables of domain 1. It says the following: let
x : 1 —» A be a variable. Then for every denoting arrow-term t : B —> C with
eventual occurrences of x, there is a denoting arrow-term KxeAÏ - A x B —» C
without occurrences of x such that

t = (KxeAt)o < x o terB,idB > holds in T[x : 1-> A].

The définition of KxeÂt '• Ax B —» C and the corresponding proofs from [7] are
immediately transférable into our setting:

Fact 1: Let 5 : D —> C, in T[x : 1 —y A] and suppose that t has no occurrences
of x. Then

nxeAt = t o snd(A, B) : A x B -» C in T

KxeA(t o s) =to KX£A(S) in T[x : 1 —>• A],

Fact 2: From ƒ = g : B -y C in T[x : 1 -> A] follows KXGA ƒ = «œGAff : A x E -^ C
in T.

Proposition. T[x : 1 —> A] is a conservative extension ofT iff

ƒ o snd(A, B) = ^ o snd(A, B ) : A x B - ^ C i n T impKe« ƒ = g: B -y C inT

(the second projections are epimorphisms in the associated free category),

Proof Suppose that the second projection snd(Ay B) is an epimorphism. Let
ƒ = g : B —> C be an equality derivable in T[x : 1 —> A] where x has no
occurrences in this equality. Using functional completeness we get

KxeAf = KxeA9 - Ax B -> C in T.

Therefore
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ƒ o snd(A, B)=go snd(A, B) : A x B -+ C in T,

by the Fact 1 cited above. As we can cancel snd(A, B) on the right, it follows that
ƒ = g : B -> C in T.

For the converse, compose ƒ o snd(A, B) = g o snd(A, B) : A x B —> C with
< x o ieri?, idB > on the right to obtain ƒ = g : B —» C first in T[x : 1 —> A] and
then, by conservativity, in T. D

If for every object constant C of T there is an arrow-constant a : 1 —^ C in
T, then for every object- term A of T, the theory T[x : 1 —> A] is a conservative
extension of T. Indeed, every object-term A of T is inhabited, i.e, there is an
arrow-term a : 1 —> A. Now replace x by a in the argument above to show that
the projections are epimorphisms. In gênerai however, if there are non inhabited
objects, a more involved proof seems necessary. Cubric proposes one via the À-
calculus in [3], we use the operator -f- on normal terms to show that the first and
second projections are epic. In fact, this property can be obtained for a somewhat
bigger set of morphisms, the so-called weakening morphisms which we define next.

Définition 10. fst o %d and snd o %d are timid weakening morphisms, if w is a
timid weakening morphism, then so is {u?+^st, snd o %d). Every timid weakening
morphism is a weakening morphism. If (w\,v)2) is a weakening morphism, then so
are w\ and W2-

Notice that the domain of a weakening morphism w is a repeated product where
parentheses are grouped to the left. Moreover, the angle brackets of w are also
grouped to the left. Timid weakening morphisms forget exactly one of the two
leftmost factors of their domain. For example

w = {fst o (fst o id), snd o %d) : (A x B) x C -> A x C,

wf = (w+fst, sndoid)

= {{fst o (fst o (fst o id)), snd o (fst o id)), snd o id) : ((A x B) x C) x D

-> (Ax C) x D, etc.

By Lemma 1, we know that ƒ + w is normal, if ƒ is normal and that it is a gen-
eralised neutral, if ƒ is neutral. However, in gênerai from "ƒ neutral" does not
follow "ƒ + w neutral": take ƒ = id(A x C) and w = (fst o (fst o id), snd o %d) :
(AxB)xC ^ AxC.

Lemma 10. Let f : D —» C and g : D -ï C be both neutral or both normal, and
w : U —> D a weakening morphism, Then from ƒ + w = g + w follows ƒ = g.

Proof Consider first the special case where ƒ and g are simple projections: Let

(p-m ° •-• op1otd) ~\-w ~ (qn o ... o q1 o id) + w
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where m > 0 and n > 0, and show that m ~ n and pi = qi for 1 < i < m. To see
this, it suffices to remark that w is either of the form

or is reduced to bi where for 1 < i < r, each bi is a simple projection of the form

bi = Vi o {fst o ... o (fst o id}...).

In this expression, fst is repeated k -f r — i times for a fixed k > 0 which dépends
only on u>, t>i is the first or the second projection and v% is the second projection for
i > 2. Therefore ƒ + (...{&i,&2)) -»&r) is either one of the subterms (..•(£>!, 62), —^),
for 1 < i < r, or is of the form p m o ... 0 ^ 0 bi. Moreover, this resuit détermines
the simple projection ƒ uniquely.

To prove the gênerai case, remark that if ƒ is a neutral which is not a simple
projection, then f + w must also be a neutral with a dérivation terminating by
the same rule as that of ƒ. Now use induction on the dérivation of ƒ : D —> C

Ne
(respectively. ƒ : D > C) to show for ail w that ƒ + w = g +w implies ƒ = g.

No

The induction steps corresponding to the évaluation, terminal, constant, pair or
abstraction rule are straight forward. For example, if ƒ = ƒ'*, then g -h w =
f + w = (ƒ' + {w+fst, sndoid)})*. As g is normal, it is necessarily an abstraction,
say g = (g*)*. Hence, g -h w ~ {gf + {w+fst, sndo id))* and we conclude by
induction hypothesis on ƒ'.

If ƒ is obtained by the identity rule, then g -\-w = f + w = id + w = w. As w
has no occurrences of et/, ter or c, the dérivation of g does not use an évaluation,
terminal or constant rule. Thus g also is a simple projection. Hence, ƒ = g by
the special case. If ƒ is obtained by a projection rule, say ƒ = fst o ƒ', then
the argument is different according to whether ƒ' + w is a pair or whether it is
neutral. In the former case, f' must be a simple projection. Then ƒ is also a
simple projection. It follows that g + w = ƒ -f- w has no occurrences of evy c or
ter, therefore g also must be a simple projection and we are in the special case. If
ƒ' + w is a neutral, then g + w = / s i o (ƒ' -f- te). So, # must be of the form v o gf

where v is not c, et; or ter. Hence it must be a first or second projection. If gf + w
is a pair, we are back to the special case, if not, we use the induction hypothesis.

D
Theorem 2. Every extension T[x\ : 1 —> Ai7,.^xn : 1 —» An] of T is conserva-
tive over T.

Proof. It suffices to prove this for n = 1. Indeed, we can consider previously added
variables as constants of the theory by integrating them into the generating graph.

Assume that ƒ o sud — go snd holds in T. By Theorem 1> we also have nf(f) o
sud = nf(g) o snd in T. From Lemma 1 follows that nf(f) H- snd o id — nf(g) -h
snd o id is provable in T. As both ternis in the above equality are normal, we
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have syntactical equality:

nf (ƒ) + (snd o id) ~ nf(g) + (snd o %d)

Then, by Lemma 10,

nfU) = rif (9)

and so, again by Theorem 1, the equality ƒ == g is derivable in T\ The conclusion
follows now from the proposition. D

CONCLUSION

The results above include as particular case a normalisation procedure and the
proof of conservativity of extensions of the theory of Cartesian Catégories over a
given graph. In this case however, there is a much shorter proof where the "action"
of an arbitrary term is directly defined on normal terms.

Our syntactical description of normal terms should be useful in the search for
a category of sets and maps dual to the free CCC, extending results concerning
Cartesian Catégories of Dosen and Petric' in [6]. A définition of normal forms in
the theory of bicartesian closed catégories, extending the one given here, would
also be interesting. We also can turn the usual techniques the other way round:
looking for a reduction-free normalisation of simply typed lambda calculus, we
translate this calculus into its associated theory T of CCC's and normalise terms
inT.
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