@article{ITA_1999__33_3_271_0, author = {Szepietowski, A.}, title = {There is no complete axiom system for shuffle expressions}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {271--277}, publisher = {EDP-Sciences}, volume = {33}, number = {3}, year = {1999}, mrnumber = {1728427}, zbl = {0951.68066}, language = {en}, url = {http://archive.numdam.org/item/ITA_1999__33_3_271_0/} }
TY - JOUR AU - Szepietowski, A. TI - There is no complete axiom system for shuffle expressions JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 271 EP - 277 VL - 33 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/item/ITA_1999__33_3_271_0/ LA - en ID - ITA_1999__33_3_271_0 ER -
%0 Journal Article %A Szepietowski, A. %T There is no complete axiom system for shuffle expressions %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 271-277 %V 33 %N 3 %I EDP-Sciences %U http://archive.numdam.org/item/ITA_1999__33_3_271_0/ %G en %F ITA_1999__33_3_271_0
Szepietowski, A. There is no complete axiom system for shuffle expressions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 3, pp. 271-277. http://archive.numdam.org/item/ITA_1999__33_3_271_0/
[1] Axiomatizing shuffle and concatenation in languages. Inform. and Comput. 139 (1997) 62-91. | MR | Zbl
and ,[2] Shuffle binoids. Theor. Informatics Appl. 32 (1998) 175-198. | Numdam | MR
and ,[3] Introduction to Automata Theory, Languages, and Computation, Addison-Wesley (1979). | MR | Zbl
and ,[4] The universe problem for unrestricted flow languages. Acta Inform. 19 (1983) 85-96. | MR | Zbl
,[5] An algebraic systems for process structuring and interprocess communication, Proc. 8 Annual Symposium on Theory of Computing (1976) 92-100. | MR | Zbl
,[6] Complete Systems of B-rational identities. Theoret. Comput. Sci. 89 (1991) 207-343. | MR | Zbl
,[7] A solution of an interleaving decision problem by a partial order techniques, Proc. Workshop on Partial-order Methods in Verification, July 1996, Princeton NJ, Ed. G. Holzmann, D. Peled, V. Pratt, AMS-DIMACS Series in Discrete Math. | Zbl
and ,[8] Theory of Automata, Pergamon Press, Oxford (1969). | MR | Zbl
,