@article{ITA_1999__33_4-5_357_0, author = {Davoren, J. M.}, title = {Topologies, continuity and bisimulations}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {357--381}, publisher = {EDP-Sciences}, volume = {33}, number = {4-5}, year = {1999}, mrnumber = {1748661}, zbl = {0940.03021}, language = {en}, url = {http://archive.numdam.org/item/ITA_1999__33_4-5_357_0/} }
TY - JOUR AU - Davoren, J. M. TI - Topologies, continuity and bisimulations JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 357 EP - 381 VL - 33 IS - 4-5 PB - EDP-Sciences UR - http://archive.numdam.org/item/ITA_1999__33_4-5_357_0/ LA - en ID - ITA_1999__33_4-5_357_0 ER -
%0 Journal Article %A Davoren, J. M. %T Topologies, continuity and bisimulations %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 357-381 %V 33 %N 4-5 %I EDP-Sciences %U http://archive.numdam.org/item/ITA_1999__33_4-5_357_0/ %G en %F ITA_1999__33_4-5_357_0
Davoren, J. M. Topologies, continuity and bisimulations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 4-5, pp. 357-381. http://archive.numdam.org/item/ITA_1999__33_4-5_357_0/
[1] The algorithmic analysis of hybrid Systems. Theoret. Comput. Sci. 138 (19953-34. | MR | Zbl
, , , , , , , and ,[2] Duality and the completeness of the modal μ-calculus. Theoret Comput. Sci. 151 (1995) 3-27. | MR | Zbl
, and ,[3] Set-Valued Analysis. Birkhäuser, Boston (1990). | MR | Zbl
and ,[4] Reinterpreting the modal μ-calculus, A. Ponse, M. de Rijke and Y. Venema, Eds., Modal Logic and Process Algebra. CLSI Publications, Stanford (1995) 65-83. | MR
and ,[5] Modal Logics for Continuous Dynamics. Ph. D. Thesis, Department of Mathematics Cornell University (1998). | MR
,[6] On hybrid Systems and the modal μ-calculus, P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode and S. Sastry, Eds., Hybrid Systems V. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1567 (1999) 38-69. | Zbl
,[7] The tool KRONOS, R. Alur, T. Henzinger and E. D. Sontag, Eds., Hybrid Systems III. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1066 (1996) 208-219.
, , and ,[8] The theory of hybrid automata, in Proc. of 11th Annual IEEE Symposium on Logic in Computer Science (LICS'96). IEEE Computer Society Press (1996) 278-292. | MR
,[9] What's decidable about hybrid automata? J. Comput. System Sci. 57 (1998) 94-124. | MR | Zbl
, , and ,[10] Logic and Bisimulation. Ph. D. Thesis, Department of Philosophy, Utrecht University (1998).
,[11] Boolean algebras with operators, part i. Amer. J. Math. 73 (1951) 891-939. | MR | Zbl
and ,[12] Results on the propositional µ-calculus. Theoret Comput. Sci. 27 (1983) 333-354. | MR | Zbl
,[13] O-minimal hybrid Systems. Technical Report UCB/ERL M98/29, Dept. EECS, UC Berkeley (1998). | MR
, and ,[14] Decidable hybrid Systems. Technical Report UCB/ERL M98/39, Dept. EECS, UC Berkeley (1998).
, and ,[15] Models for hybrid Systems: Automata, topologies, controllability, observability, R. Grossman, A. Nerode, A. Ravn and H. Rischel, Eds., Hybrid Systems. Springer-Verlag, Berlin, Lecture Notes in Comput Sci. 736 (1993297-316.
and ,[16] Topology, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 1 (1992) 641-761. | MR
,[17] Modal and temporal logics, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 2 (1992) 477-563. | MR
,[18] Tame Topology and O-minimal Structures. Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser. 248 (1998). | MR | Zbl
,[19] A note on the completeness of Kozen's axiomatization of the propositonal µ-calculus. Bull. Symbolic Logic 2 (1996349-366. | MR | Zbl
,