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ON DISTRIBUTIVE FIXED-POINT EXPRESSIONS

HELMUT SEIDL1 AND D AMI AN NIWINSKI2

Abstract. For every fixed-point expression e of alternat ion-dept h r,
we construct a new fixed-point expression e' of alternat ion-dept h 2 and
size Ö(r • |e|). Expression e' is equivalent to e whenever operators are
distributive and the underlying complete lattice has a co-continuous
least upper bound. We show that our transformation is optimal not
only w.r.t. alternation-depth but also w.r.t. the increase in size of the
resulting expression.

AMS Subject Classification. 68Q60, 03D70, 06D99, 68Q25.

1. INTRODUCTION

Fixed-Point calculus is a logica! formalism based on explicit notation for
inductive and co-inductive définitions. It is recognized as a useful framework
especially for reasoning about temporal properties of finite state Systems.

The role of alternation of least (/x) and greatest (v) fixed-point operators as a
souree of a sharp expressive power for the fixed-point calculus has been recognized
in the early 1980's [8,9,17]. In particular,. Park in his studies on the semantics
of parallelism [17] observed that the fair merge of two infinité séquences can be
adequately characterized only using both extremal fixed-point operators. It was
shown somewhat later that the alternation of \x and v gives rise to a strict hi-
erarchy of properties of infinité trees, corresponding to some hierarchy of Rabin
automata [13,15]. The strongest result in this direction is the infinity of the alter-
nation hierarchy in Kozen's propositional modal /z-calculus, which has been only
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recently established independently by Bradfield [5] and Lenzi [11]. A new and very
elegant pro of has been found by Arnold [2].

These facts can be contrasted with the early resuit by Park [18] stating that
the hierarchy collapses to the vu level in the algebra of u;-languages with the basic
opérations consisting of prefixing by a single letter, and binary set union1. In this
framework the fixed-point definable u;-languages are precisely w-regular languages,
and collapsing of the hierarchy to the v\x level follows from the structure of ac-
cept ance condition of Biichi automata. The resuit was subsequently gêneralized
in the second author's doctoral dissertation [14] to what is called there monadic
Kleene algebras; it was however never published elsewhere.

In recent years, an interest is coming back in fixed-point calculi weaker than the
original Kozen's modal /i-calculus. This is because of the model checking problem.
The gênerai question whether a given finite state transition System satisfies or
not a /z-calculus formula, appears to be computationally hard2. Therefore, it
would be of interest to separate a (sufnciently comprehensive) sub-calculus enjoying
better complexity. One such successful case is a sub-logic L2 proposed by Emerson
et al. [7], and proven to be strong enough to subsume, and in f act to be equivalent
to, the program logic ECTL*.

Now, an observation can be made that the logic L<i admits a collapsing property
exactly as the aforementioned calculus of Park, and in f act for the same reason:
the structure of Büchi automata.

This implies that model-checkers for L2-formulas can be constructed according
to (at least) three stratégies. The first one simply applies methods for gênerai /i-
calculus model-checking. The disadvantage is that efficiency problems may arise
due to arbitrary nesting of fixed-points. A second alternative, as proposed by Bhat
and Cleaveland [4], tries to improve upon this by exploiting special properties of
I/2-formulas. The complication still is that potentially arbitrarily nested fixed-
points have to be dealt with. The third strategy, therefore, relies on the collapsing
property. It first éliminâtes deep nesting of alternating fixed-points by transform-
ing the formula into an equivalent one of small alter nat ion-dept h (namely, 2). To
the resulting formula either a specialized algorithm is applied or ordinary fixed-
point itération. The efficiency of this third approach, however, crucially dépends
on how small the extra overhead through transformation of the formula can be
made.

In this context, we believe it worthy to understand the early resuit by Park in
its full generality, and also to clarify its complexity aspect, i.e. the complexity of
réduction of a fixed-point expression to the v\i level. To our best knowledge, the
last question has not yet been considered in liter at ure.

To attack this question, we first give a gênerai algebraic condition sufncient for
the hierarchy of fixed-point expressions to collapse to the uji~level. It requires of all
the basic opérations (over a complete lattice) to be distributive, and of the binary
least upper bound "U", additionally, to commute with the greatest lower bound of

1As the second author points out, this resuit was obtained in collaboration with J. Tiuryn.
2The model checking problem for Kozen's //-calculus is known to be in NPD co-NP [7], and

even in UPC\ co-UP [10], but it is not known whether it is in P.
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downward directed sets. (This gêneralization slightly improves the aforementioned
one of [16].) Next, we show that a fixed-point expression e of the alternation-depth
r can be transformed uniformly over the structures of the aforementioned property
to an expression of alternation-depth 2 (in fact, ufï) and size O(r - |e|). We finally
prove that this estimation of the size of the resulting expression is optimal not
only w.r.t. alternation-depth but also w.r.t. the increase in size of the resulting
expression.

2. DISTRIBUTIVE FUNCTIONS

Assume D\,D2 are complete lattices. We call a function ƒ : D\ —> D2 distribu-
tive iff ƒ (dx U cfe) = ƒ d\ U ƒ cfo. For any set F, we consider the set Dv = {ƒ | ƒ :
V —» D} as a complete lattice with componentwise ordering.

Fact 2.1. For every non-empty finite set V, a function ƒ : D\ —• £>2 *s distribu-
tive iff

for unary distributive functions fx : D\ —> D2 ^/iere /or x € F? TT̂  : P ^ —* L>i is
5fiven 6y 7rxp = px.
Proof Define f^d = ƒ (x,d) where (x, d) G Z}^ maps x to d and ail y ^ x
to !.. •

This implies that a A:-ary function Dk —> Z) that is distributive in our sensé is
a U-combination of unary distributive functions. Therefore, we usually consider
just unary distributive functions.

Assume D is a complete lattice. For monotonie ƒ : D —• £>, function ƒ* is
defined as the least fixed-point

It follows easily from the itérative characterization of fixed points, that whenever
ƒ is distributive, then ƒ* is distributive as well. Non-empty subset X Ç D is
called co-directed iS xi,X2 € X implies that X also contains some z with z^X\
and z Ç X2. Least upper bound "U" is called co-continuous if it commutes with
co-directed greatest lower bounds, i.e.,

duFlX= FI (dua;)

for every d E D and co-directed subset X Ç D.
The last condition holds in particular in any complete Boolean algebra [19].

Especially, this is the case for D = 2S (ordered by "Ç") for any base set 5.
Our considérations rely onto the following key observation. (In what follows,

for ƒ : D —> D, the least fixed point of ƒ, \ix.f (x), is abbreviated by /x/; the same
for 1/.)
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Theorem 2.2. Assume D is a complete lattice, and f,g : D —» D are monotonie
functions where g x = ƒ x U d for some d e D. Then

1. f*g = f*d;

2. If binary "U" is co-continuons and ƒ is distributive, then

Note that similar identities have been considered by Doornbos et al. in [6] for
relation algebras. Identity (2) turns out to be especially useful for the simplification
of temporal logic formulas. The following example for LTL (linear time logic on
infinité words) has been brought to our attention by Arnold.

Example 2.3. In LTL, formulas dénote languages of infinité words. Formula
pUq (p "until" q) is equivalent to the ^-formula ptx.q V (p AXx) where X is the
temporal "next" operator. We would like to demonstrate how Theorem 2.2 can
be used to dérive a useful identity for ~>(pUg). By duality, we first obtain

-i(pUg) — vx.^q A (-ip V Xx) = vx.(->q A ->p) V (-ig A Xx). (1)

Expressions -*q and -ip are interpreted as constants and X as well as intersection
with ->q as unary distributive operators. Furthermore, V represents binary lub.
Therefore, Theorem 2.2 is applicable and gives us

^(pJJq) — ( ï / i .ngAXi) V (fix,(-^q A ̂ p) V(-igAXx))
= G-iq V -«ç U (^g A-«p)

where G dénotes the "always" operator.

Proof of Theorem 2.2. In order to prove the first assertion, consider gT and F r , r
an ordinal, defined by

• g0 = ±,F° = Aar.-L;

• gT+1 = ggT, Fr+1 = ƒ oFT U / ; and

• for T a limit ordinal, gT ~ LJT/<TgT', FT — LJr '<r FT'.

Then jig = ga as well as ƒ* = Fa for some ordinal a. Therefore, it sufïices to
verify through transfinite induction that, for every ordinal r, gT = FT d.

Now consider the second assertion. By définition, {ig Q vg. Since ƒ Ç gy we
also have v f Z-vg. Therefore, v g~^v fU^xg, and it remains to prove the reverse
inclusion. Therefore define

• for T a limit ordinal, gT = r~lT><TgT , fT — n r / < T fT .

Then v g = ga and v ƒ = fa for some ordinal cr, and it sufïices to prove that, for
every ordinal r, gT Ç fT Ufig. Again, we proceed by transfinite induction.

The case r = 0 trivially holds.
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If r = r / + l, then

gr =ggT' Qg (/T'upg) = fr'ugfag) = fTu^g

by ind. hypothesis and distributivity of ƒ.
If r is a limit ordinal, then, applying the induction hypothesis to ail r ' < r, we

obtain:

g*= n / g n (r'u^g) = ( n r'
T'<T- T'<T \ / \T'<T

and the assertion follows.

3. FIXED-POINT EXPRESSIONS

Let us now study in detail the impact of identity (2) of Theorem 2.2 on fixed-
point expressions in the spirit of Example 2.3. We fix a countably infinité set of
variables X, a set of constant symbols C, and a set of unary function symbols F
(C and F are not necessarily finite).

A fixed-point expression e is given by the following grammar:

e : : = c\ x \ fe\ JJL x.e \ v x.e \ e\ U e<i \ ( e )

where c G C and ƒ € F.
An interprétation is a complete lattice D given together with an element cD,

for each c G C, and a distributive function ƒD : D —> D, for each ƒ € F.
The meaning \e\r> of a fixed-point expression e is a function Dx —> D mapping

variable assignments to values. It is defined inductively as follows. (We usually
omit the subscript D for simplicity. The symbols H, LJ, U refer to the correspond-
ing opérations in D.)

M
lie)]

I/e'l
[/xz.e'J
[ï/z.e'l

[eiUe2]

P =

P =

P =

P =

P =

P =

P =

cD

px

MP
fDile']
ïl{d | IÉ
U{d | [t

P)

'1 p{x •-
[e2] p

-> <i} Ç d }

•> d} 3 d}

where p{x i-* d} is an assignment that maps x to d and otherwise agrées with p.
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We assume that the scope of the operator 0 in Ox. e' extends to the end of the
expression e', e.g. [z/rr.ei Ue2 | coincides with [i/x.(eiLJe2)] and (in gênerai) not
with {(i/x.ei) Ue2].

It is easy to see that [e] p dépends only on the values that p assigns to the
free variables of e. For this reason we may safely write [e] p also for a partial
assignment p € Dy, whenever y Ç X contains the free variables of e. For two
(partial) assignments p and pf with disjoint domains, we dénote (the assignment
being) their set-theoretic union by p + p'.

In case [ei] = Ie2] we also will write ei = e2, as opposed to ex = e2 which
dénotes syntactical identity.

Proposition 3.1. If all fD are distributive and the opération U is co-continuous
in D, then [ejj? is distributive.

In fact, it is this proposition which allows us to call e itself distributive and thus
justifies the title of our paper.

Proof. We proceed by induction on the structure of e. The only non-trivial case
is where e equals a fixed-point expression 9x.e' (0 G {/x, v}). Let y dénote the set
of free variables of e, and p G Dy. By Fact 2.1, [e'] (p + {x •-> d}) = fxdUf p for
distributive functions fx • D —̂  D and f : Dy —> D. If e is a least-fixed-point
expression (ie., 9 = /i), then by Theorém 2.2,

[e] = [^.e'I = rxof'.

Since distributive functions are closed under composition and "*", the assertion
follows.

Accordingly, if e is a greatest-fixed-point expression (ie., 0 = v)} then by
Theorem 2.2,

Since constant functions are distributive and distributive functions are closed
under "U", the assertion follows. D

4. ALTERNATION-DEPTH

For closed fixed-point expression e, we need to détermine the maximal depth of
nesting of greatest and least fixed-points. Let e' be a non-closed subexpression e'
of e. Then the hook of e' is the smallest superexpression e" of e' with the property
that some variable that occurs free in e/ is bound in e". (Clearly, the hook of e'
must start with a fixed-point operator.) Given this définition, the level of each
subexpression of e is determined by the following topdown traversai of e.

Every closed subexpression e' receives level 1. Now assume e' is not closed but
all proper superexpressions of e' have already received levels. Thus especially, the
hook e" of e1 has received some level, say r. Then the level of e' is calculated as
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follows. If e' = ôix.ei and en = 62X^2 with #i ^ ô2 then e' receives level r -f 1.
Otherwise, e' receives level r.

The alternation-depth of closed expression e is then defined as the maximal
level of a subexpression of e. Expressions of alternation-depth 1 are also called
alternation-free. (The above définition is consistent with the alternation hierarchy
of fixed-point expressions considered in [16]. More specifically, an expression has
the alternation-depth n hère ifï it is in the class Comp (E£ U II£) considered
there.)

We illustrate this définition by the following example.

Example 4.1. Let

e = fjLx.vy.f y U (fj,z.g z U x),

Since e is closed, e receives level 1. e serves as the hook for its subexpression
e± = vy.f y U (jjbz.gz U x). Since e and e\ are of different type (e is a least-fixed-
point expression whereas e\ is a greatest-fixed-point expression), ei receives level
2. e also serves as hook for subexpression e2 = fiz.g zUx. Since e and e2 are of the
same type (both are least-fixed-point expressions), e2 receives the same level as e,
namely 1. Overall, we find that the whole expression is of alternation-depth 2.

The level numbers of subexpressions can be used to group several fixed-point
itérations into one joint itération. In the following we will always assume that ail
bound variables have distinct names which are also distinct from the names of all
free variables. The next proposition is a useful special instance of the Bekic-Park
principle [16,17].

Proposition 4.2. Assume ë is a closed fixed-point expression, and e = 6x\.ei is
a fixed-point subexpression of ë at level r (6 G {fi1 u}) where y is the set of free
variables of e. Let X = {#i, . . . , x m } ? and assume that Öx2.e2,... , #xm.em are
fixed-point subexpressions of e\ which are also o f level r and have free variables
only in X U y. Then these fixed-points can be computed jointly:

For j = 1,... ,77i; let e'j dénote the expression obtained from ej by replacing
each occurrence of ÔXi.ei with x% (i — 1,.. . ,m). Then for every p £ D^',

[e]p = (6F) Xi where
F : Dx —> Dx is given by
F (3XJ = \efj\ (p -h /?) for j = 1, . . . , m.

We now arrive at our main theorem of this section.

Theorem 4.3. For every fixed-point expression e} an expression e can be con-
structed such that the following holds.

i- Ie! D = [ë]D for every interprétation D with distributive operators, provided
that opération "U" is co-continuous.

2. ë is of alternation-depth at most 2, and every greatest fixed-point subexpression
of ë has level 1.
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3. ë has size ö(r • |e|) where r is the alternation-depth of e.

Expressions with property (2) are also said to be of class v\i (II^, in the notation
of [16]).

Proof. For the following we assume an interprétation D where opération "U"
is co-continuous. In order to get an intuition about the proof, let us first consider
the expression

e = uxr,fj,xr-i ... vxi.\iX\.f\ X\ LJ... U fr xr U d

where r = 2 * k. In order to transform the innermost greatest fixed-point subex-
pression €2 = vx2~iixi.f\ #i U . . . U fr xr U d, we calculate:

e2 = vx2. A* (/2 x2 U . . . LJ fr xr U d)

.fl (ƒ2 X2) U . . . U fl (fr Xr) U ƒ* d

2-A* (ƒ2 X2) U . . . U A* (A Xr) U ƒ* d

-p>xi-fi xi\J ...U f r x r U d where

Uf2x2-

Corresponding calculations also for greatest-fixed-point subexpressions correspond-
ing to variables x 4 , . . . , xr finally resuit in:

e = Zr U (fJ,Xr.fJLXr-i.Zr-2 U (/XiTr_2-M^r-3-2;r~4 LJ . - .

xi LJ... U fr xr U d)... )) where

A a?i U . . . U

for j — 2,4 , . . . , r. Using the gênerai identity

pLX.jiy.e = /Ltx.(e {y ^ a;})

we can simplify this to:

e = Zr U (fXXr-i.Zr-2 LJ

( A U/ 2 )a ; iU. . .U (A-i U A)^ r _i U d ) . . . )) where

Zj = . vxj.fj.yj.(fa U . . . U A_i) j/j U A ^j

for j — 2,4, . . . , r. Each A occurs at most r/2 + 1 times in the new expression.
Thus, the size of the resulting expression is bounded by O(r • |e|) - as claimed by
Theorem 4.3.

One possibility to generalize this idea to a transformation for arbitrary distribu-
tive fixed-point expressions is through vectorial fixed-points. Applying
Proposition 3.1, we can bring every distributive fîxed-point expression into form
e - provided we allow functions A t o operate on a suitable power of the base
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distributive lattice D, Then we may apply tke construction above which increases
the dimension of involved vectors at most by a factor of r + 1. Finally, we may
transform the resuit back into an ordinary expression. In gênerai however, the
latter transformation may cause an exponential blow-up in expression size. There-
fore, we prefer to present another, direct transformation which works for arbitrary
distributive expressions.

We need some terminology. Greatest-fixed-point expression e ~ vx.ei is called
simple if

• e is closed;
• e\ does not contain closed subexpressions;
• ail greatest-fixed-point subexpressions have level 1.

By définition, simple expressions are of alternation-depth at most 2. Simple subex-
pressions can be seen as a (slight) generalization of the greatest fixed-point expres-
sions Zj above. Thus, expression p x. ƒ x U '[p, y.gyUx) is simple whereas expression
vx.f x U (fiy.gy) is not, since subexpression fjiy.gy is closed.

Assume we are given an arbitrary expression ë. W.l.o.g. we assume that ail
fixed-point subexpressions are non-trivial, z.e., fixed-point variables occur in the
respective bodies at least once. Our key idea is to proceed by removing as many
greatest fixed-points simultaneously as possible.

An expression ë is called r-clean if it is obtained from an expression without in-
variables at levels > r by replacing some constant symbois with simple expressions.
Since simple expressions are closed, we conclude that closed expressions which
are 1-clean are of alternation-depth at most 2 as well. Therefore, we aim at a
construction which takes an (r + l)-clean expression ë and constructs an equivalent
r-clean expression. This construction will be made up of a séquence of local
improvement steps.

So, let us assume ë is (r+l)-clean. Consider a greatest-fixed-point subexpression
e = vx\.ef

x in ë of level r. In order to serve as a candidate for local improvement, e
should be "maximal" in the sensé that e should comprise as many greatest fixpoint
variables as possible. On the other hand e also should be "minimal" in the sensé
that e itself should not contain candidates for improvement.

Formally, we grasp these two ideas as follows. We call e a candidate if
1. e is not simple,
2. e is closed (in case r = 1) or the hook of e has level r — 1; and
3. e is minimal with this property.

Since e is chosen minimal, it may not contain further candidates as proper subex-
pressions. Since e is closed or has a hook of level r — 1, e is not situated within the
scope of another greatest fixed-point variable of the same level r being mutually
recursive with those in e.

Assume e is a candidate with set y of free variables.
Let X = {zi , . . . ,xm} where i /^.e^, . . . , ^ ^ m . e ^ precisely are the greatest

fixed-point subexpressions of e[ at level r. By définition of a candidate, the
free variables of each ef

iyi — 1,.. . ,m, are contained in X U y. Furthermore,
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let e's, s = m + 1,. . . , n, dénote the maximal subexpressions of e[ which contain
free variables only from y. None of the e's may contain any of the greatest-fixed-
point subexprëssions of level r, because otherwise they themselves would contain
candidates - which is excluded by minimality of e. Thus, the ef

s are precisely the
closed subexpressions of ex (in case r = 1) or the maximal subexpressions of e[ of
level < r (in case r > 1).

Our goal is to replace e by an expression ex U e2 where ex is simple and e2 is
r-clean.

Expression ex is obtained by replacing ail subexpressions e ,̂ s > m, wit h J_ and
then absorbing lubs e'U_L resp. l U e ' into e'. Expression e2 is constructed by
replacing in e ail occurrences of binders VXJ, j = 1,... , m, with fixj, respectively.

We illustrate the construction by the following example.

Example 4.4. Consider expression

ë~

Expression ê is of alternation-depth 3 where the maximal level of a greatest-fixed-
point expression is 2. The only candidate in ë is given by:

e = vx\ .f2 (M 2/2-̂ 2 V2 U(i/x2.h1 Xi U h2 x2 U g± y^) U d.

Observe that greatest-fixed-point subexpression vx2*h\ x\ U ^ ^ U g \ y\ is also of
level 2, but not a candidate since its hook (which is the expression e) has level 2
as well. Candidate e is transformed into e± Ue2 where

e2 = iixi.fo (fj,y2.g2 y2 U(fix2.hi xx U h2 x2 U gx yx)) U d.

In the newly generated simple expression ei, we could eliminate not only constants
but also closed subexpressions and even subexpressions which become closed if ail
free variables are replaced with ±.

Thus overall, expression ë is transformed into:

.h{&y-g2yu(//z2-h xz xuh2z2))u
2.g2 2/2 U(Atx2./ii xi U h2 x2 U gx yx)) U d)).

The greatest-fixed-point subexpressions of new expression ex indeed are ail of
level 1.

Let ë be obtained from ë by replacing candidate e with ex U e2. For the correct-
ness of our transformation, we verify:
1. ex is simple;

2. If r — 1, then ail fixed-point subexpressions of e2 outside simple subexpressions
are least fixed-points of level 1;

3. If r > 1, then ail fixed-point subexpressions of e2 outside simple subexpressions
have level at most r — 1 where variables in X have precisely level r — 1;
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4. e = e\ Ue2-
Note that the new levels of subexpressions of €2 are always determined relative to
the transformed expression ë, Le., the context of e in ë.

We only prove assertion 4. Assume e" is obtained from e£ by replacing occur-
rences of greatest-fixed-point expressions vxj.epj ^ Ï, with Xj, respectively. Since
all free variables of e£ are contained in X U y, the same holds true also for the
vxi.e". For p G Dy, we therefore can define G : Dx —> £>** by

We claim:

5. (i/G) xi = [el p;

6. (/iG)xi = [e2]p.
Assertion 5 follows since all the greatest-fixed-point expressions of e have identical
level r. Therefore by Proposition 4.2, the corresponding fixed-points can be com-
puted jointly. Assertion 6 follows analogously for the least fixed-point expressions
liXi.e[ of e2 which (according to assertion 2 and 3) all have the same level.

By distributivity, fonction G can be decomposed. For i G { 1 , . . . ,m}, define
expression e f by replacing in e" all expressions es,s > m, with _L. Additionally,
define expression ef by replacing in e" all variables Xj, j e { 1 , . . . , ?n}, with J_.

According to this construction, ef contains free variables only from X, whereas
ef contains free variables only from y, Consequently,

for /3 G Dx. Therefore, G/3 = F/3UH where F : Dx -> 2?^ and H e Dx are
given by

By Theorem 2.2, we have:

vG = vp.FpUH = vFUpiG.

Projecting this equality to the component for xi, we obtain:

[e] p = (i/G) X! = (vF) xx U (/xG) an = [ex] 0 U [e2] p.

Here, the equality between {vF) x\ and [ei] 0 is another instance of
Proposition 4.2. Overall, assertion 4 follows.

Applying the given local improvement successively to candidates at level r, we
obtain a r-clean expression equivalent to ë.

We are now going to estimate the size of the resulting expression. For that and
in the following, we feel free to view expressions as (ordered finit e) unary-binary
trees where the leaves are labeled with variables or constants, unary nodes are
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labeled with fix, vx (x a variable) or ƒ e £ whereas binary nodes are labeled with
U. Then the size |e| of e is given by.the total number of nodes of e. Moreover, we
define the basic size \e\b of e as the number of the non-binary nodes of e. Clearly,

for ail expressions e. Therefore, it sufBces to compute an upper bound for the basic
size of the resulting expression. The basic size of expression e is now split into
efb = \e\r + |e|5 where |e|s is the sum of the basic sizes of all simple subexpressions

of e, and |e|r is just the rest. Let us call |e|r the reduced basic size of e. Observe
that each local improvement step adds a new simple subexpression but leaves the
reduced basic size invariant. Therefore, it suffices to prove that the basic sizes
of ail new simple subexpressions created by the transformation starting from the
initial expression ë sum up to at most r • |ë[t,.

Creating new simple expressions is done by copying certain parts of the current
candidate. Therefore, instead of measuring their sizes directly, we as well may
count for every node in e of arity 0 or 1 how often it is possibly copied into a new
simple expression. We claim:
Claim: If node a has level r then a gives rise to at most r nodes in simple subex-
pressions of the resuit.

For a proof of this claim, consider candidate e at level r > 1 inside expression ë
which, in one improvement step, is replaced by e± U e2 according to our définition
above. Let us first consider the case r = 1. By construction, node a in e gives
rise to a node in simple expression e± iff a is not contained in a proper closed
subexpression of e. Thus, a has level 1 or 2 (w.r.t. ë). Let us consider what
happens to a in the residual expression e2 after the improvement step. According
to assertion 2 above, a receives level 1 and either is the root of a closed least
fixed-point expression or has a hook which is a least fixed-point expression of
level 1. Therefore, the residual of a in e2 will never be copied into a simple
expression again.

Now assume r > 1. By construction, node a in e gives rise to a node in simple
expression e\ iff a is not contained in a subexpression of level < r. Therefore, a
has level r or r + 1 (w.r.t. ë). After application of the improvement step, a has
level at most r — 1 (see assertion 3). Therefore, the level of (the residual of) a in
subexpression e2 through the improvement step has been decreased at least by 1.

We conclude that any node gives rise to at most r nodes of simple expressions
created by our transformation.

Remark. By fact 2.1, the above resuit can be easily extended to the case where
the expressions involve function symbols of arbitrary finite arity, provided that the
interprétation gD : Dk —> D of a &-ary symbol g is distributive over Dk.

Theorem 4.3 results in a quantitative version of the fact that fragment L2 of
the propositional /i-calculus (interpreted over finite or infinité transition Systems)
is no more expressive than its alternation-depth-2 fragment.

If $(ro) is the complexity of evaluating expressions of size at most m and
alternation-depth < 2 in D with co-continuous "U" and distributive operators,
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this results in a procedure evaluating expressions of alter nat ion-dept h r > 0. We
obtain:

Corollary 4.5. Given a complete lattice D with co-continuous "U" and distribu-
tive operators, every closed fixed-point expression e o f alternation-depth r > 0 can
be evaluated in time ö(r • $(|e|)).

In the case of fmite-state model-checking, Corollary 4.5 recovers the complexity
bounds given by Bhatt and Cleaveland in [4] from the methods of Andersen and
Vergauwen [1] for alternation-depth 2.

5. OPTIMALITY

In terminology of [16] Theorem 4.3 implies that the alternation-depth hierarchy
of fixed-point expressions collapses for lattices D with co-continuous "U" and dis-
tributive operators not only at alternation-depth 2 but, more precisely at the class
v\x. One may wonder whether this resuit could be even further improved upon,
e.g., whether or not class pv might be sufficient as well. Formally expression e
is in class \iv iff ail ju-variables are at level 1. For such expressions, however, the
transformation of Theorem 4.3 reveals the following.

Fact 5.1. Every fixed-point expression e in \iv is equivalent to an expression e'
with the following properties:

1, ef is alternation-free;

2. |e ' |=O(|e|) .

Thus, class JJLV is no more expressive than alternation-free fixed-point expressions.

Example 5.2. Consider expression

e = fjLX.vy.fyU (pz.gzUx)

of Example 4.1 which is contained in class /iz/. Applying the transformation from
Theorem 4.3, we obtain

lJLX.(vy.f y) U (fiy.f y U (pz.g zUx))

which is alternation-free.

It remains to prove that alternation-depth 2 fixed-point expressions in gênerai
are more expressive than alternation-free ones. Let E be a finite alphabet and let
Ds = 2S^ be the complete lattice of ail subsets of infinité words over E, ordered
by subset inclusion. Let C = 0 and F = E. We interpret a symbol a G E, as
left-multiplication with <r, z.e., the opération XL G D^.aL.

Example 5.3. Consider expression

e =
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of alternation-depth 2 (more precisely, of class vyi). When interpreted over D^
(where E = {1,2}), expression e dénotes the language

[e] 0 = [j/ar2.r(2x2)] 0 = ({!}*• {2})"

ie., the set of all infinité words containing infinitely many 2.

The following fact belongs to the "folklore" of the fixed-point community. It was
discovered by Park and Tiuryn around 1980 and gave an impact to the subséquent
study of fixed-point hierarchy. The resuit was communicated to the second author
by Tiuryn as early as in 1981. (It is suggested in the discussion of fair-merge
problem in [17], however we do not know any place where the resuit is explicitly
stat éd.)

Theorem 5.4 (Park and Tiuryn). The language ({1}*-{2})U; of Example 5.3 is
not definable over £>£ by an alternation-free expression. Consequently, alternation-
depth-2 fixed-point expressions (from the class v\x) are strictly more expressive than
alternation-free fixed-point expressions.

The original proof used a topological argument. Consider the Cantor topology
on {1, 2}^ [cf. [20]). Then it can be easily shown that any language definable by
an alternation-free expression (in fact, even by \w expression) is in the class Fa

(countable unions of closed sets), while the set ({1}*- {2})w of Example 5.3 is not
(precisely, it is in G$ — Fa).

Another argument can be given on the basis of the following fact, which is not
hard to prove, and also can be inferred from a more gênerai characterization of
the alternation-free //-calculus in terms of weak alternating automata of Muller
et al. [3,12].

Fact 5.5. For L Ç Ew the following statements are equivalent:
1. L = [e] 0 for some closed alternation-free fixed-point expression e over D^.
2. L can be accepted by a non-deterministic finite Büchi automaton where each

strong component either consists of accepting states or of non-accepting states.

It is easy to show that the language ({1}*- {2})w cannot be recognized by any
automaton satisfying the condition 2 of Fact 5.5.

A generalization of the expression in Example 5.3 provides us with a witness to
show that the size of the i/fi-level expression stated in Theorem 4.3 is optimal (up
to a constant factor).

Let S r = {0,1,2,... , r} , where r = 2fc. Let Lrj0 Ç (Er\{0})w be the set of
infinité words u such that l imsup^^ t i ^ ) is even, in other words, the highest
number occurring infinitely often in u is even. (Here and further we identify an
infinité word u with the séquence of its letters w(0),u(l),... ) Finally, let Lr,n
dénote the language of infinité words obtained from Lrj0 by inserting ön before
every letter 5 > 0. It is well known that Lr^n can be defined by a fixed-point
expression

U.. .UrxT)
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(see, e.<?., [16], Sect. 5). Note that the above expression has alternation-depth r
and size O(n + r). Hence Theorem 4.3 gives us an equivalent v[i expression of size
O(r - (n -h r)). We will argue that this size is indeed required. Please note that
this is slightly more than just to say that the estimation in Theorem 4.3, given
in terms of two parameters r and |e|, is exact. The example shows that the size
factor |e| matters also for fixed r - and vice versa,

Theorem 5.6. Every fixed-point expression for Lr^n of class vfi has size
fi(r • (n + r)).

Proof. In order to prove the claim, we will use the correspondence between UJJ,
expressions and Büchi automata. A translation of v\i expressions over D^ into
Büchi automata was presented already by Park [17]. A construction described
in [16] translates a fixed-point expression e (with arbitrary nesting of \x and v)
into a Rabin automaton with no more than |e| states, and if e is of class f/x, the
result is a Büchi automaton.

However, the number of states is not a convenient measure for us hère, and
neither would be the number of transitions. Instead, we introducé another simple
concept.

Let A be a Büchi automaton with the set of states Q and the transition table
given by relation Q x E x Q . An arrow of A is any pair (a,p) such that, for some
çGQ, the triple (<?, a, p) is a transition of A. It is plain to see that the construction
of [16] translates a fixed-point expression e into an automaton with no more than
|e| + |E| arrows. The component |E| is required because the resulting automaton
may need a subprogram recognizing the set of all infinité words over E which in
fixed-point expression is described by a short expression vx.x. Clearly, one such
subprogram suffices, and it costs E arrows.

In our case, this means that any v\i expression e defining Lr^n is equivalent to
a Büchi automaton with no more than |e| + v arrows. On the other hand, we will
show that any nondeterministic Büchi automaton recognizing Lry7l must have at
least k • (n + ^ ^ ) arrows, for r = 2/c. Prom there, the postulated lower bound for
|e| will clearly follow.

Let A be a nondeterministic Büchi automaton recognizing i r > n . We may assume
r > 2. Our argument is based on two claims.

Claim 1. For each i — 1,2,... , fc, there are k + 1 — i transitions (p*, 2i, &),
(Pt+i,2i,Qi+i)} . . . , (pfc,2i,Çfc), such that the states gi,&+i,... ,qu are distinct.
Consequently, there are at least fc + (fc — l) + .. . + 2 + l = fc'(^+1) arrows of the
form (s,g), s > 0.

Claim 2. Let (2,gi), (2,g2),. • • , (2,£fc) be distinct arrows that exist by
Claim 1 for the letter s = 2. Then there are distinct states <̂ ,m, for j =
1,2,... ,/c, m = 1,.. . ,n, such that the automaton has transitions (<&, 0,^,1),
and (gj>m_i, 0, Çj,m), for j = 1, 2 , . . . , Ze, and m = 1,. . . , n. Consequently, there
are at least k • n arrows of the form (0, q).

Together Claims 1 and 2 give us the required lower bound for the number of
arrows in an automaton recognizing Lr%n.
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Proof o f Claim 1. Fix a constant M greater than the number of states of A. Recall
that a run of a Büchi automaton on an infinité word u can be presented as an
infinité word, r say, over the autornaton's states, such that (r(£), u(t), r(t + 1)) is
a transition, for £ — 0 ,1 , . . . A run is aceepting if some of (especially designated)
accepting states occur infinitely often [20]. :

We first give an idea of the proof by showing that if r > 6 then there must be at
least three different arrows of the form (2,p).. In what follows, we let for simplicity
n = 0. Experienced readers can skip this part and go directly to the General case
diseussed below.

Consider infinité words

« = 12121212...

and

v = (123)^4(123)^4. . .

Fix some accepting runs of Aonu and vy say ru and rv, respectively. Pick a state
p such that, for infinitely mâny i's it holds that ru{t + l) = p while u.(t) = 2 (we say
that p occurs after reading 2). Next, by construction o f v f we can find positions
i<£<£+l<j< 3M, sucli that rv(i) = rv(j,)\ v(£) = 2, and v(£ + 1) = 3. We
claim that q = rv(ê + 1) must be different from p, and consequently the arrows
(2,p) and (2,ç) are different. The intuitive reason for this is that, in the state #,
the automaton waits for 4, while in the state p it is satisfled with having seen 2.
To prove the claim, suppose the contrary. We can find positions t\ < t2 in the
run ru such that ru{t\) = ru(t2) = p, and some accepting state occurs between t\
and t2- Using the assumption that p = ç, we can substitute to the position ê -h 1
in the run rv, the segment eut out of ru by the positions t\ and t^ Note that
in the resulting run (and the correspönding infinité word), we have two positions
(specifically, i and j -f (£2 — £L)) with the same state, and such that an accepting
state occurs between these positions while the highest number in underlying word
is 3. Then, we can pump this segment infinitely many times, and eventually obtain
an accepting run of A on an infinité word with limsup equal to 3, a contradiction.

Note that the same argument would apply if, instead of selecting the positions
i)£,j in the first block of the run rv, {Le. < 3M), we would select them in any
other block between m • (3M +1) and (m -h 1) • (3M + 1) — 1. Now, by counting
argument, we can find a state q such that, for infinitely many positions £ in the run
rv, it happens that v(£) = 2, rv(£+ 1) = q, and there are two positions within the
same block (123)M, say £g, j>, such that %i < £ < £ + 1 < ji, and rv(it) = rv(je).
By remark above, we may conclude that q ^ p.

Now let

w = (12345)M 6 (12345)M 6 .. .

and let rw be an accepting run on w.
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We claim that a state différent from p and q must occur in the run rw after
reading some occurrence of 2. Intuitively, in this third state the automaton waits
for 6. To prove this claim, we can apply to w the trick previously applied to v.
That is, we select positions i < £ < t + Z < j < 5M, such that rw(i) = rw(j),
w(£) = 2, and w(£ + 3} = 5. Now suppose that rw(£ H- 1) is equal to p or to q.
Then, by substituting at the position £ a part of the run ru or rv, respectively,
containing an accepting state, we will be able to construct accepting runs on words
with limsup equal to 5.
General case. Let A be a Büchi automaton recognizing LT)n, r = 2fc, and let M be
a constant greater than the number of states of A Let i G {1,2,. . . , k}. Recall
that according to the claim, we wish to find k + 1. — i different arrows of the form
(2i,p). For j = z, i' + 1,... , fc, let

Uj = ((0n10n2... 0n(2j - 1))M (2j)Y

and let Vj be an accepting run of A on Uj. Now, by counting argument, for each
j = i, z + 1 , . fc. , k we can find a state, say qj, such that, for infinitely many positions
£ in the run r^, we have Uj(£) = 2z, Vj{£ + 1) = qj, and moreover there exist two
positions ie and j>, such that %i < £ < £ + n < ji, rj(ie) = Vj{ji)^ and the highest
digit occurring in the underlying finit e segment of the word Uj, that isr in the
segment Uj(ii)uj(it +1)...Uj(J£ — 2)uj(J£ — 1), is precisely 2j — 1, whenever j > i,
and it is (obviously) 2% = 2j, for j = i. (The requirement £ + n < j-e will be used
later on in the proof of Claim 2. At present we need only the inequality £ < je.)

We claim that the states qi, qi+i , . . . ,(?£ are distinct, which will give us fe+1 — i
different arrows (2ï,Çi), (2i,gi+i), . . . (2i,qfc)1 as desired.

Suppose to the contrary that there are some i < a < )3 < k such that qa = qp-
Since qa occurs infinitely ofteri in ra, we can find two positions t\ < t^ such that
ra(ti) = ra(t2) =• q-a, and the segment ra(ti)ra(ti -f 1) . . . ra(t2 - l)r a(t2) of r a

contains an occurrence of an accepting state of A. Let v be the underlying finit e
segment of the word ua , i.e.,

v = ua(ti)ua(ti + 1).. .ua{t2 - 2)ua(*2 - 1).

Note that the highest digit that may occur in v is not greater than lim supt^^ ua

= 2a < 2/3-1 .
Now, by the choice of g ,̂ we can find positions %t < £ < je in the run r^, such

that ii/3(£) = 2i, rp{£ + l) = g/3, r^(z^) = r${jz), and the highest digit occurring in
the underlying segment of up is 2/3• — 1 (recall that i < 0). Let us décompose this
segment by w\W2, where

Let

U = lt/3(0)u/j(l) . . - Upfa - 1).
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Finally, consider the infinité word

Clearly \\msu^t^oouoo{t) = 20 — 1, so this word should not be accepted. Now,
assuming ga = g ,̂ we can easily get an accepting run on Uoo by "eut and past"
construction. Specifically, we can take the infinité word

. rp(ie ~ I)(r0(it)... rp{£) ra(tx)... ra(t2)

This contradiction complètes the proof of Claim 1.

Proof of Claim 2. We may assume n > 0. We will use concepts introduced in the
proof of Claim 1. Let ui,U2, • •. , wjt be the infinité words defined for i = 1. Let
r i , . . . , rfc and gi , . . . , g*; be as above. Recall that for each gJ; there are infinitely
many positions £ in the run rj , such that Uj(̂ ) = 2 - 1 = 2, Vj(£ + 1) = Çj, and
moreover there exist two positions %z and j ^ , such that ie < £ < £ + n < J£,
Tj(ie) = rj{jz), and, whenever j > 1, the highest digit occurring in the underlying
finite segment of the word Ujy that is, in the segment Uj{ig)uj{ii + 1).. .Uj(ji —
2)uj(J£ — 1), is precisely" 2j — 1. Let, for j = 1,.. . , fc, Pj Ç CJ be the set of all
positions £ with above property.

Now, by counting argument, we can additionally find states Çj,m, for
j — 1,2,... , fc, m = 1, . . . ,n, such that the automaton has transitions (ĝ -, 0, Qj,i),
and (gjjm_i, 0, qj,m), f°r J = 1,2,... , fc, and m = 2,3 , . . . , n, and moreover, for
each j — 1, 2 , . . . , fc, the segment qjqj,iQj,2 • • -Çj,n repeats infinitely often in the
run 7-j starting from some position £ in Pj (that is, Vj(£+ 1) — ç ,̂ Vj(£ + 2) = g^i,
. . . ) r J - ( ^ + l + n ) = Î 7 > ) .

We claim that gJjm — gj',m ' only if j = f and m = m'. Indeed, if there were
qj,m = <?j',m' with m ^ mf then we could easily construct an accepting run over
an infinité word having a block of O's of lengt h different than n bet ween two digits
different from 0, an obvious contradiction. Now suppose qa}Tn = qpimi for some
1 < m < n, and 1 < a < (3 < fc. We will arrive at the contradiction along the same
line as in the proof of Claim 1. (Intuitively, our hypothesis means that, although
Qa ¥^0.(3) ^n e automaton may forget this différence after m steps.) Indeed, since
the block ga<7a,i<?a,2 • • • qa,n repeats infinitely often in the run ra starting from
some position £ in P a , we can find two positions t\ < i<i in P a at which this block
occurs, such that moreover the segment ra(ti + 1 + m) ...ra(*2 +.1 + m) of the
run ra contains an occurrence of an accepting state.

Let v be the underlying finite segment of the word tia, ie., v = ua(ti + 1
+m) . . . ua(t2 + m). As before, we note that the highest digit occurring in v is not
greater than l i m s u p ^ ^ ua = 2a < 2(3 — 1.

Now, by the choice of the block qpqp,\qp,2 • - • <?/3,n, we can find a position £ in
Pp at which this block occurs. That is, we have two positions i£<£<£ + n<je
such that rp(ii) = r^(j^), and the highest digit in the underlying segment of up is
2p — 1. Note that the block qpq/3,iqpy2 • • • Qp,n occurs in r@ between the positions
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£ and je\ in particular we have £ + 1 + m < je. We will now use the fact that
rp(£ + 1 + m) = ç/3)Tn = qaym in order to "fooi" the automaton, similarly as in the
proof of Claim 1. That is, we let

wi — up(ie)up(ie + 1) . . . u$(£)... up{l + 1 + m)

w2 = up(£ + 1 + m + 1) . . . up(jt - 1)

(not harmful if W2 = e), and

and consider the infinité word

Again, we have limsup^oo Uoo(t) = 2/3 — 1, and so this word should not be
accepted. On the other hand, whenever an automaton enters in v in the state
qpm = gûj7n, it may leave this word in the same state passing by an accepting state.
Therefore, by using a "eut and past" construction, we can obtain an accepting run
on Uoo similarly as in the proof of Claim 1.

This remark complètes the proof. •

6. CONCLUSION

We have presented a transformation on fixed-point expressions which allows to
reduce the alternation-depth to 2 in case all operators are distributive and binary
"U" is co-continuous. More precisely, we have proved that under this proviso the
alternation-depth hierarchy collapses at the level i/fi. We have also shown that our
transformation is not only optimal w.r.t. the resulting alternation-depth, but it is
also optimal (up to a constant factor) w.r.t. the size of the transformed expression.

We like to thank André Arnold for many useful comments and Thomas Wilke for
interesting remarks on classes of Büchi automata.
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