
INFORMATIQUE THÉORIQUE ET APPLICATIONS

ANDREA CORRADINI

FABIO GADDUCCI
Rewriting on cyclic structures : equivalence between
the operational and the categorical description
Informatique théorique et applications, tome 33, no 4-5 (1999),
p. 467-493
<http://www.numdam.org/item?id=ITA_1999__33_4-5_467_0>

© AFCET, 1999, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1999__33_4-5_467_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informaties and Applications
Theoret. Informaties Appl. 33 (1999) 467-493

REWRITING ON CYCLIC STRUCTURES:
EQUIVALENCE BETWEEN THE OPERATIONAL

AND THE CATEGORICAL DESCRIPTION*

ANDREA CORRADINI1 AND F A B I O G A D D U C C I 2

Abstract. We present a categorical formulation of the rewriting of
possïbly cyclic term graphs, based on a variation of algebraic 2-theories.
We show that this présentation is equivalent to the well-accepted oper-
ational définition proposed by Barendregt et al - but for the case of
circular redexes, for which we propose (and justify formally) a different
treatment. The categorical framework allows us to model in a concise
way also automatic garbage collection and rules for sharing/unsharing
and folding/unfolding of structures, and to relate term graph rewriting
to other rewriting formalisms.

Resumé. Nous présentons une formulation catégorique de la réécrit-
ure des graphes cycliques des termes, basée sur une variante de 2-theorie
algébrique. Nous prouvons que cette présentation est équivalente à
la définition opérationnelle proposée par Barendregt et al, mais pas
dans le cas des radicaux circulaires, pour lesquels nous proposons (et
justifions formellement) un traitement différent. Le cadre catégoriel
nous permet de modeler également la "garbage collection" automa-
tique, et des règles de "sharing/unsharing" et "folding/unfolding" des
structures. En outre, ce cadre nous permet d'exploiter pour associer la
réécriture des graphes des termes à d'autres formalismes de réécriture.

AMS Subject Classification. 18C10, 18D05, 18D10, 68Q10,
68Q42, 68R10.

Keywords and phrases: Term graphs, directed acyclic graphs, term graph rewriting, categori-
cal models, traced monoidal catégories, 2-categories, algebraic théories, gs-monoidal théories.

* Research partly supported by the EC TMR Network GETGRATS (General Theory of Graph
Transformation Systems) and by the British EPSRC grant R29375. Research partly carried
out during the stay of the second author at Fachbereich 13 Informatik, Technical University
of Berlin, Pranklinstrafie 28/29, 10587 Berlin, Germany.
1 Dipartimento di Informatica, University of Pisa, Corso Italia 40, 56125 Pisa, Italy; e-mail:
andrea@di.unipi.it
2 Division of Informaties, University of Edinburgh, Mayfield Road, EH9 3JZ Edinburgh, U.K.;
e-maïl: fabio@dcs.ed.ac.uk

© EDP Sciences 1999

468 A. CORRADINI AND F. GADDUCCI

INTRODUCTION

The classical theory of term graph rewriting studies the issue of representing
terms as directed graphs, and of modelling term rewriting via graph rewriting (we
refer for a survey to the book [53] and the références therein). With respect to the
standard représentation of terms as trees, the main operational appeal of using
graphs is that the sharing of common sub-terms can be represented explicitly.
Intuitively, the rewrite process is speeded up, because rewriting steps do not have
to be repeated for each copy of an identical sub-term. Also, by allowing term
graphs with cycles, one can represent in a finitary way certain structures that
arise when dealing with recursive définitions (as for the implementation of the
fixed point combinator Y proposed in [58]). For these reasons term graph rewriting
is often used, in the implementation of functional languages [48].

However, in our opinion there is an unsatisfactory gap between the achievements
of the théories of term and of term graph rewriting. In particular, a solid ground
for the theory of term rewriting is provided by the existence of three different yet
equivalent characterisations, namely the operational, classical one (described in
terms of redexes and substitutions [42]), the logical one (we think of the rewrit-
ing logic formalism [44]), and the categorical one, based on algebraic (cartesian)
2-theories [49]. While the operational description is the most suited for imple-
mentation purposes, both the logical and the categorical ones provide an inductive
définition of the rewrite relation over terms, that lays the ground for the develop-
ment of proof and analysis techniques based on structural induction. Moreover, the
categorical account has the advantage of being independent from représentation
details, stressing the intrinsic algebraic structure of terms and their rewriting; in
f act, one can safely claim that the essential structure of the collection of terms over
a given signature is "cartesianity". It is worth noting that a similar "triangular"
correspondence also exists for other rule based formalisms like for example Pétri
nets, where the operational définition of, say [50] parallels a categorical counter-
part based on symmetrie strict monoidal catégories [45] and a logical one based
on (the multiplicative fragment of) linear logic (see [43] for a survey).

Much less satisfactory are the achievements of the theory of term graph rewrit-
ing, which has been studied by many authors, but only in operational style. In
f act, term graphs havç been represented as directed graphs satisfying a number
of constraints [3], as suitable labelled hyper-graphs called jungles [36], or as sets
of recursive équations [1], among others. Only recently we have shown in [13]
that the rewriting of acyclic term graphs can also be presented in a categorical
way similar to the 2-categorical présentation of term rewriting. In fact (ranked,
acyclic) term graphs over a signature £ are in one-to-one correspondence with the
arrows of the free gs-monoidal category generated by S (this resuit is presented
in [15], where we also explain the origin of the acronym gs-, which stays for graph
substitution). And acyclic term graph rewriting séquences over a rewriting System
1Z (according to the définition in [3], the most widely accepted in the literature)
are faithfully represented by the cells of the free gs-monoidal 2-category generated
by a suitable représentation of the rules of 1Z.

REWRITING ON CYCLIC STRUCTURES 469

The gs-monoidal catégories are symmetrie strict monoidal catégories equipped
wit h two transformations, the duplicator "V" (read nabla) and the dis charger "!"
(bang), from which cartesian catégories can be recovered requiring their naturality.
As shown in [15], the non-naturality of V is related to the fact that term graphs
with different degree of sharing are distinct, while that of ! allows for the présence
of garbage in a term graph (Le., nodes not reachable from the roots).

The main contribution of this paper is the généralisation of [13] to the cate-
gorical représentation of possibly cyclic term graph rewriting. This is not a minor
point, since it is shown in [30] that in the présence of suitable, quite natural, shar-
ing stratégies, cyclic term graphs can be generated during rewriting even if starting
from an acyclic graph and rules are acyclic. In this paper we stick to acyclic rules,
yet allowing for arbitrary cycles in the term graphs which are rewritten.

In Section 1 we first introducé (possibly cyclic) ranked term graphs, and three
opérations on them: composition (a counterpart of term substitution), (disjoint)
union and feedback, then showing that every term graph can be obtained as the
value of an expression containing "atomie" term graphs as constants, and compo-
sition, union and feedback as operators. With respect to a similar resuit for acyclic
term graphs in [15], two are the main différences. Firstly, the feedback opération
is new, and it is exactly what we need to gênerate cycles. Secondly, a new kind
of nodes (called "_L-nodes") shows up, which were not needed in the treatment
of acyclic term graphs. Such nodes are produced by the réduction of "circular
redexes", and they can safely be considered as "cycles of length zero".

In Section 2 we present our définition of term graph rewriting, a little variation
of that in [3] (their relationship is analysed in Sect. 5). In Section 3 we recall the
basic définitions about gs-monoidal 2-categories, introducing their traced, coun-
terpart: to this aim, we extend to the 2-categorical level the présentation of the
"feedback" operator in [21], investigated in more generality in [37]. The traced
structure is the categorical counterpart of the feedback opération on term graphs,
and cyclic term graphs over E can be represented as the arrows of the free traced gs-
monoidal category generated by E. Extending the corresponding resuit for acyclic
graphs in [13], in Section 4 we prove that if the term graph rules of a rewriting
System are represented as cells over this category, and a traced gs-monoidal 2-
category is freely generated by them, the resulting cells faithfully represent the
term graph rewriting séquences of the System satisfying a mild restriction.

An interesting conséquence of this resuit is that by representing (cyclic) term
graphs as arrows of a suitable free category, we highlight the intrinsic algebraic
structure of such term graphs, independent ly of a spécifie représentation: like
"cartesianity" is the essential structure of terms, so "traced gs-monoidality" turns
out to be the essential structure of (cyclic) term graphs. Even if 2-categories equiv-
alent to ours have been considered independently in [34,46], in both works the
focus is the relation between such categorical structures and a logical présentation
of term graph rewriting. On the contrary, to our knowledge our correspondence re-
sult is the first that explicitly and formally relates a categorical and an operational
description of term graph rewriting, thus completing a triangular correspondence
analogous to those for term rewriting and Pétri nets mentioned above.

470 A. CORRADINI AND F. GADDUCCI

In Section 5 we focus on the différences between our définition of term graph
rewriting and that originally proposed in [3], related to the different handling of
circular redexes and to garbage collection. In particular, in Section 5.1 we explain
the disagreement wit h [3] on circular redexes. The paradigmatic example of such
redexes is the application of rule Ri : I(x) —» x to the graph having one node
labelled / and one looping edge (the /-loop): the point is that according to the
définition of rewriting in [3], the J-loop reduces to itself, while using our définition it
reduces to a X-node, and this fact is explained in terms of the categorical structure.
In Section 5.2 we show that small modifications of the formai définitions allow
us to capture term graph rewriting with automatic garbage collection as well. In
Section 5.3 we discuss how to introducé rules for the automatic folding or unfolding
of structures, showing that this allows us to relax a technical restriction on redexes
in the main correspondence resuit. In Section 5.4 we summarise the relationship
between traced gs-monoidal 2-catégories and other 2-categorical models of term
(graph) rewriting proposed in the literature using suitable adjunctions, relating
e.g. term graph rewriting to rational term rewriting (as introduced in [14]) by
exploiting the categorical framework. Lastly, in Section'5.5 we sketch an historical
overview of the various algebraic characterisation of the notion of fixed point,
mostly related to itération théories [7].

1. (CYCLIC) TERM GRAPHS

This section introduces (ranked, possibly cyclic) term graphs as isomorphism
classes of (ranked) labelled graphs. Since our main concern is to stress the underly-
ing algebraic structure, the following présentation of term graphs slightly départs
from the standard définition of [3], as explained below.

Définition 1.1 (graphs). Let £ be a (one-sorted) signature, z.e., a ranked set of
operator symbols, and let arity be the function returning the arity of an operator
symbol, ie., arity(ƒ) = n iff ƒ G Sn . A labelled graph d (over E) is a triple
d = (A/", Z, s), where N is a set of nodes, l : N -^ S is a partial function called the
labelling function, s : N —̂ N* is a partial function called the successor function,
and such that the following conditions are satisfied:

• dom(l) = dom(s), z.e., labelling and successor fonctions are defined on the
same subset of N; a node n £ N is called empty if n $ dom(ï)\

• for each node n G dom{l), arity(l(n)) = length(s(n)), le., each non-empty
node has as many successor nodes as the arity of its label.

If s(n) — (ni, , nfc), we say that Ui is the z-th successor of n and dénote it by
s(n)i. A labelled graph is discrete if ail its nodes are empty. A path in d is a sé-
quence (no , io,ni , . . . Jm-i.rim), where m > 0, nO î . . . ,nm G JV, ï0) • • • , W i G N
(the natural numbers), and Uk is the ifc_i-th successor of n^-i for k € {1 , . . . , m}.
The length of this path is m; if m > 0, the path is proper. A cycle is a proper
path like above where n0 = nm . If a € N is a, node of a graph d = (TV, l, s)> then
by d\a we dénote the full subgraph of d containing all the nodes reachable from a
via a path.

REWRITING ON CYCLIC STRUCTURES 471

For a graph d we often dénote its components by N(d), la and Sd, respectively.
Moreover, N$(d) and N^(d) dénote the set of empty and non-empty nodes of d,
respectively (thus N(d) = N^(d) i±l N$(d), for i±i disjoint union).

Définition 1.2 (graph morphisms, category G^). Let d and df be two graphs. A
(graph) morphism ƒ : d —• df is a function ƒ : N(d) —>• A (̂d') that preserves
labelling and successors, Le., such that for each node a € ATs(d), ldf{f{o)) — 'd(a),
and Sd>(f(a))i = f(sd(a)i) for each i G { 1 , . . . ,arity(ld(a))}. A morphism ƒ : d —>
d' is Y>-injective if its restriction to N%(d) is injective.

Graphs over E and graph morphisms for m a category denoted G^.

For each z e N, we shall dénote by 1 the set z = {1 , . . . , z} (thus 0 = 0).

Définition 1.3 (ranked graphs and term graphs). An (i, j)-ranked graph (or also,
a graph of rank (iyj)) is a triple g = (rJd,v)i where d is a graph with at least j
empty nodes, r : i —» N(d) is a function called the root mapping, and v : j —• N$(d)
is an injective function from j to the ernpty nodes of d, called the variable map-
ping. Node r(k) is called the k-th root of d, and v(k) is called the fc-th variable
of d, for each admissible k. An empty node which is not in the image of the
variable mapping is called a ±-node, for reasons which will be discussed briefly in
Section 5.4.

Two (i, j)-ranked graphs g — {r,d,v) and g1 = (rf
yd

f, vf) are isomorphic if there
exists a ranked graph isomorphism <j> : g —• g\ Le., a graph isomorphism <f> : d —> d'

An (i,j)-ranked term graph G (or itó/i ranA; (z, j)) is an isomorphism class of
(i, j)-ranked graphs. We shall often write G*- to recall that G has rank (z, j) .

Term graphs are defined in the séminal paper [3] as labelled graphs (as in
Def. 1.1) with a distinguished node, the root Thus there are two différences with
the above définition. Firstly, our notion of term graph looks "more abstract",
because it is defined as an isomorphism class of graphs. This allows us to dis-
regard the concrete identity of nodes when manipulating term graphs, provided
that the opérations we introducé are well defined on isomorphism classes. Ad-
mit tedly, in most of the lit er at ure about term graph rewriting, isomorphic graphs
are informally considered as equivalent (for example, the identity of nodes is not
depicted in the usual graphical représentation of term graphs), thus our définition
just formalises a common way of "reasoning up-to isomorphism".

Secondly, our term graphs are ranked: we equip term graphs with lists of
distinguished nodes in order to define composition opérations on them. In [3]
this technique is not used simply because it is not needed for the goals 'of the
paper, and the single root used there has a different role, being used to relate a
term graph with a term unfolded from it. Summarising, we can safely see our term
graphs as a minor variation of those in [3].

We introducé now three opérations on ranked term graphs. The composition of
two ranked term graphs is obtained by glueing the variables of the first one with
the roots of the second one, and it is defined only if their number is equal. This
opération allows us to define a category having ranked term graphs as arrows.

472 A. CORRADINI AND F. GADDUCCI

Next, the union of term graphs is introduced: it is always defined, and it is a sort
of disjoint union where roots and variables are suitably renumbered. Finally, the
feedback over a term graph with at least one variable and one root is defîned as the
introduction of a connection from the rightmost variable to the rightmost root,
possibly resulting in a cycle. These three opérations provide ranked term graphs
with a traced monoidal structure, that will be made explicit in Section 4.

Définition 1.4 (opérations on ranked term graphs). Composition. The com-
position of two term graphs G/3

k = [(r', d', vf)) and GJ = [(r, d, v)] is the term graph
Gn

k] Gj of rank (i, k) obtained by glueing the variables of G with the correspond-
ing roots of G". Formally, G'-ĵ G* is defined as [(irtd ° r,du,ind< o vf)], where
(d", irid • d —> d", iud' ' d! —>• d") is the (chosen) pushout of (v : j_ —• d, r' : j —> d')
in category G s (set j is regarded as a discrete graph)1.

Union. The union or parallel composition of two term graphs GJ = [(r, d, t>)]
and Gfk

t = [<r',d',î/)] is the term graph G*. © G'f of rank (i -h fc, j + Z) obtained
by the disjoint union of the components of G*- and G'f. Formally, G* ® G'f is
defined as [{r 0 r', d l±l d', t; © ?/)], where d t±J d' is the (chosen) coproduct of d, d' in
category Gg, r © r' : i + k —+ d i±) d' is the unique morphism induced by r and r',
and v © f' : j + Z —• d l±l d' is defined similarly.

Feedback. The feedback over a term graph G^ \ = [(r, d, f}] is the term graph
(GZj^\y of rank (i,j) obtained by glueing the j + 1-th variable of G with its
i + 1-th root. Formally, (G*^)^ is defined as [(ud or o inr, d'\ Ud°v° inv)], where
(df,Ud) is the (chosen) coequalizer of rf,vj : 1 —» d (with r/(l) = r(i + 1) and
Vf (1) = i>(j H-1)), in r : i —> i + 1 is the inclusion morphism such that inr(x) = x,
and inv : j —> j + 1 is defined similarly.

In the rest of the paper we adopt the following notation for repeated applica-
tions of feedback: G^ dénotes G, and G*™ dénotes (G^Y. Note also that the
various operators are defined "explicitly" on the concrete graphs contained in the
équivalence classes, as indicated by our use of chosen colimits. Thus, given g G G,
we will sometimes dénote g^ for the représentative of the graph in G^ uniquely
obtained from g (see e.g. Lem. 4.7), and similarly for the other operators.

Example 1.5 (term graphs, composition, union and feedback). In the term
graphs shown in Figure 1, variable nodes are represented by the natural num-
bers corresponding to their position in the list of variables, and are depicted as
a vertical séquence on the left; _L-nodes are drawn as _L, as expected; non-empty
nodes are represented by their label, from where the edges point ing to the suc-
cessors leave; the list of numbers on the right represent pointers to the roots: a
dashed arrow from j to a node indicates that it is the j-th root.

xActually, the pushout of two arrows in G s (as well as the coequalizer, see later) does not
always exist: it does however in the case we are interested in, since the morphism v : j —• d
is injective and has only empty nodes in the codomain. See [17] for necessary and sufRcient
conditions for their existence in the equivalent category of jungles.

REWRITING ON CYCLIC STRUCTURES 473

1—2^9; 1

2<..±-2-7-2
l—2^ff; 1 l—i—/i*-l l—2^—i—/ i - l 3—i—h"""-\3 1—

2<...J._-2-/-2 2 / 2^ ±-2-/' 4 / \ 4

"""""••'••\3 3 / 5 / 5

4 4 6
Gi G2 Gi ; G2 Gi ® G2 GJ

FIGURE 1. Two term graphs and some opérations on them.

For example, the first term graph Gi has rank (4,2), five nodes (three empty
(1, 2, and _L) and two non-empty, ƒ and #), the successors of g are the variables 2
and 1 (in this order), the successors of ƒ are g and _L, and the four roots are y, ƒ,
2, and ƒ. The second term graph G2 has rank (1,4), five nodes (four empty (1, 2,
3, and 4) and one non-empty, ft), the successors of ft are the variables 1 and 4 (in
this order), and the only root is ft.

Composition of term graphs can be performed by matching the roots of the
first graph with the variables of the second one, and then by eliminating them, as
shown by Gi ; G2. The last two term graphs show the result of union and feedback.
Intuitively, the feedback over a term graph G is obtained by "redirecting" the
pointers from the last variable of G to its last root, and then by eliminating both
the last variable and the last root (as it can be grasped by comparing G\ and G\).
If the last variable coincides with the last root, it follows from the formai définition
that the corresponding node becomes a _L-node, since it remains an empty node,
but it lies now outside of the range of the variable mapping.

In [15] we presented a décomposition result for ranked, acyclic term graphs
containing no _L-nodes, obtained as the value of an expression containing suitable
atomic term graphs as constants, and composition and union as operators. We
extend this result to the possibly cyclic case, showing that an arbitrary term graph
can be obtained by using also the opération of feedback.

Définition 1.6 (atomic term graphs). An atomic term graph is a term graph in
{Gf \ f € £} U {Gid,Gp,Gv,G\,G®}, which are depicted in Figure 2.

Since every node of an atomic term graph is a root or a variable, such term
graphs can be formally defined as follows (using, a bit improperly, r, v, s, and l for
the root, variable, successor, and labelling functions, respectively):

• G f has rank (1, j) , with Z(r(l)) = ƒ, and s(r (l)) x = v(x) for x e j , for each
ƒ G E with arity(f) = 7.

• Gid has rank (1,1), with r (l) = v(l).
• Gp has rank (2, 2), with r (l) = v{2) and r(2) = v(l) .
• G v has rank (2,1), with r (l) = r(2) = v(ï).
• Gi has rank (0,1), one empty node, and no roots.
• G0 is the empty graph having rank (0, 0).

474 A. CORRADINI AND F. GADDUCCI

2^ / 1 1 1-......-1 1-::; 1 1 0 0 0
: / 2' ""2 "2
3 Gid Gp Gv G\ G$

Gf

FIGURE 2. Atomic term graphs.

A term graph expression is a term over the signature eontaining all ranked term
graphs as eonstants, union and composition as binary operators, and feedback as
unary operator. An expression is weü-formed if all occurrences of composition and
feedback are defined for the rank of the argument sub-expressions, according to
Définition 1.4; its rank is then computed inductively from the rank of the term
graphs appearing in it, and its value is the term graph obtained by evaluating all
operators in it.

Lemma 1.7 (décomposition of acyclicterm graphs). Every acyclic term graph
eontaining no _L -nodes can èe obtained as the value of a weli-formed term graph
expression eontaining atomie term graphs as eonstants and composition and union
as operators.

Proof See [15], Theorem 9. G

Proposition 1.8 (décomposition of term graphs). Every term graph can be
obtained as the value of a well-formed term graph expression eontaining atomie
term graphs as constants, and composition, union and feedback as operators.

Proof The proof is by induction on the number of cycles. For the base case, fi'rst

notice that G± = (Gv)* is the term graph of rank (1,0) consisting of a single
J_-node which is the only root. Now suppose that G of rank (£, j) has no cycle and,
say, k J_-nodes. Let G' of rank (i,j-\-k) be obtained from G by adding its k ±-nodes
as variables j + 1 , . . . , j -f k. Then it is easy to check that G = G^} ©G^} ; G'2. The
statement then follows by Lemma 1.7, because G' is acyclic and has no _L-nodes.

For the inductive case, let G be a term graph of rank (i, j) with at least one
cycle p = {aoyiQ.ai, , i m _ i , a m) . Let Gf be the term graph of rank (i,j 4- k)
obtained from G by making all the non-empty nodes in the subgraph G\a\ empty,
and adding them as the j + 1,.... , j + k-ih variables. Furthermore, let G" be the
term graph of rank (j + k: j) which is the subgraph of G eontaining all its variables
and G\ai, and where all the nodes are roots in the same order in which they appear
as variables in G'. Then G — Gff ; Gf. Finally, let Gu be the term graph of rank
U + k + 1, j + 1) obtained from G" by adding a new root (the (j + k + l)-th)
pointing to ai, a new variable (the (j -f l)-th), and such that su(ao)i0 = vu(j + 1),
that is, the successor in Gu at position io oi ÜQ is the new variable. Then it is
easily seen that Gn — (Gu)\ and the statement follows by induction hypothesis
on G' and Gu, since both have at least one cycle less than G. •

2For a term, graph H, H(°) dénotes G0) and iï:(n+1) =; H^ e H.

REWRITING ON CYCLIC STRUCTURES 475

2. TERM GRAPH REWRITING

Following [3], a term graph rewriting raie is defined as a single (acyclic) graph
with two roots, which is intended to represent not only the left- and right-hand
sides (corresponding to the subgraph rooted at the first and second root, respec-
tively), but also the fact that the two sides can share some subgraph.

Définition 2.1 (rule, redex, rewriting System). A rule (over E) is a triple
R = (d, n, rT), where d is an acyclic graph (over E) having no _L-nodes, and
ri,rr are two distinct nodes of d, called the left root and the right root, respec-
tively. Furthermore, we require that (1) node n is not empty, (2) ail nodes of d
are reachable from ri or rr, and (3) ail empty nodes in d are reachable from ri.

A redex in a graph d0 is a pair A = (R, ƒ) where R = (d, n, r r) is a rule, and
ƒ : d\ri —» do is a graph morphism which is non-self-overlapping, i.e., such that
for each a G N^(d\n) - {n}, f (a) ^ f (ri). Node f(n) of d0. is called the root of
the redex A. A redex {R, ƒ) is E-injective if so is ƒ.

A (term graph) rewriting System is a pair 1Z = {{Ri}^^/, S) such that R^ is a
rule over S for ail i £ I.

Conditions (1) and (3) correspond directly to analogous, standard restrictions
for term rewriting rules (recalling that empty nodes are essentially variables), while
(2) is a -"no-junk" condition.

A redex in a graph do spécifies where a given rule can be applied, and the
application of the rule consists essentially of deleting the root of the redex, and of
adding a fresh copy of the right-hand side to the resulting graph, Connecting it in
a suitable way. The (images of the) other nodes in the left-hand side of the rule
(Le., those in N-z(d\ri) — {ri}) are necessary for the application of the rule, but are
not deleted by the rewriting, because in gênerai they can be shared in do: as such
they can be considered as read-only resources or context conditions [47]. Under
this interprétation s elf-overlapping redexes are not allowed because they provide
an inconsistent spécification: if a G N%(d\ri) — {ri} and f (a) — f(ri), then the
same node should be deleted and preserved at the same time3.

We are now ready to introducé our operational définition of term graph rewrit-
ing. The relation between this définition and the corresponding one in [3] is
discussed in Section 5.

Définition 2.2 (term graph rewriting). Let #o = {ro,do,^o) be an (i,j)-ranked
graph, and let A = {(d, n, r r), ƒ : d|n —» do) be a redex. We say that #o rewrites to
<74 via A, denoted as #0 —>A 54, if 54 is the (i, j)-ranked graph (tr&oroyd^ trA°vo)r

whose components are obtained through the construction below.
[Root undefine phase]: Let d\ be the graph obtained from d0 by making

the root of the redex empty: that is, ldx and Sdx are undeflned on f(n), and
agrée with ldQ and Sd0 elsewhere.

3 The restriction to non-self-overlapping redexes corresponds to the identification condition in
the double-pushout approach to graph rewriting [16]. Even if Définition 2.2 could be applied as
it is to self-overlapping redexes, the main resuit of the paper would not hold anymore.

476 A. CORRADINI AND F. GADDUCCI

[Build phase]: Let d2 be the graph obtained by adding to d\ (a copy of) the
part of the rule graph d not reachable from r\\ that is, N(d2) = N(d\) l±J
(N(d) — N(d\ri))j and ld2 and sd2 are determined in the expected way from
2du ld* a n d Sd1} Sd, respectively. And let ƒ : N(d) —> N(d2) be the obvious
extension of function ƒ : N(d\ri) —» N(d0).

[Redirection phase]: Let ds be the graph obtained by replacing in d2 ail
références to the root of the redex by références to the image of the right root:
that is, d3 = {N(d2),ld2iSdz}> where sd3(a)i = sd2(a)i if sd2(a)i ^ / (n) , and
Sd3(a)i = f(rr) if sd2(a)i = fin).

[Root removal phase]: Let d± be the graph obtained from d$ by removing
node f (ri)—unless f (ri) = ƒ(/>), in which case d± — d3. And let the track
function tr& : N(do) —*• N(di) be defined as tr&(a) = f(rr) if a — f {ri), and
tr&(a) — a.otherwise.

We will say that A = (R, ƒ) is a redex in a term graph G if it is a redex in one
of its éléments, say g = (r, dy v). In this case, if g —>A g1 then we write G —>A G',
where Gf = [g*], or simply G —>R G1 if ƒ is clear from the context4.

A term graph rewriting séquence Go —>̂ Gn over a rewriting System 7£ is a
séquence of n > 0 rewriting steps Go —>AX GI • • • Gn-\ -^An Gn, where at each
step a rule of TZ is used. A rewriting séquence is Yi-injective if ail redexes in it are.

Example 2.3 (rewriting séquence). Let S be the signature containing the
constants {a, 6,0}, the unary operators {@,n, l,r} and the binary operator p.
Term graphs over E are intended to represent manipulations on lists of a's and
&'s, where 0 is the empty list, p(air) is the pairing operator, l(eft) and r(ight) are
the obvious selectors, @ is a pointer and n(ext) moves a pointer. The top row
of Figure 3 shows the term graphs representing rules Ri : n(@(p(x,y))) —• @(y)
and R2 • r(p(x,y)) —» y; rule R2 is called "collapsing" because its right root is a
variable. The rest of the figure shows.the rewriting séquence Go —•R,! G3 —»R2 G4,
where also some inter médiat e stat es are depicted. A node enclosed in a square is
the left root (in the rules) or the root of the redex (in the other graphs), while a
node enclosed in a circle is the right root (in the rules) or its image. Term graphs
G\ and G<i are the results of the root undefine and build phase, respectively, of the
rewriting Go —>n± G3. Note furthermore that G4 is obtained from G3 via root un-
define, and the remaining phases of the rewriting G3 —>R2 G4 leave it unchanged
because the images of the left and right root coïncide.

3. TRACED GS-MONOIDAL 2-CATEGORIES

We open this section recalling some basic définitions about 2-categories [38,39].
We then introducé gs-monoidal 2-categories [13], and their traced extension, that
will be used in our characterisation of term graph rewriting.

4The extension is sound, since for each h € G and ranked graph isomorphism <p : g —> h> A
induces a redex in h, obtained by eomposing ƒ with 0. Furthermore, if g —>̂ <?' and h
h!, then it is easy to check that gf and hf are isomorphic.

REWRITING ON CYCLIC STRUCTURES 477

a—i-^p—î—@—i-|n| x—i—p—i—\r\

y—

Ri R-2

a—i—p—i—@r 1 a—i— P—i—@ 1 a—i—P—i—(Q) — 1
^i I I

3 j, ! p 3 £ i pi 3

Vl>- - 4 S^> 4 N^> -- 4

0 {*1 ^"2

a—i—P—i—@-l

6 - l 4 ; : 3

V_J_~4

G3 G4

FIGURE 3. A sample term graph rewriting séquence.

Définition 3.1 (2-categories). A 2-category C is a structure (Obc, C, *,îd) such
that O6C is a set of 2-objects and, indexed by éléments in Obc, C is a family
of catégories C[a,&] (the hom-catégories of Ç), * is a family of functors *^ c :
C[a,6] x C[6,c] —> C[a,c] and id is a family of objects ida e |C[a,a]|, satisfying
for each a € C[a, 6], /? G C[6, c], and 7 G C[c, d]

[category] ida * a = a = a * zd̂ (a * /3) * 7 = a * (/3 * 7)
where for the sake of readability the indexes of * are dropped, and the arrow idida

corresponding to the identity on the object ida is denoted by the object itself.

The underlying category of Ç, denoted Cu , has éléments of Obc as objects, and
objects of the hom-category C[a,6] as éléments of the hom-set Cu[a, b]: Cu is
well-defined thanks to the category axioms. As usual, we call arrows and cells of
the 2-category C the objects and arrows of the hom-categories, respectively. By
a : ƒ => g : a —• b we mean that a is a cell in C[a, b] from f to g.

For the sake of brevity, we present the following définitions directly at the
2-categorical level: the analogous définitions for (ordinary) catégories are easily
obtained as a special case.

Définition 3.2 (2-functors and (natural) 2-transformations). Let Ç, D be
2-categories. A 2-functor F : C —> D is a pair (Fo, Fm), where Fo : Obc —» 06^ is a
fonction and F m is a family of functors FO>Ö : C[a, b] —• C[Fo(a), ^0(6)] commuting
in the expected way with * and preserving id.

478 A. CORRADINI AND F. GADDUCCI

Let F, G : C —» D be 2-functors. A 2-transformation r\ : F => G is a family
of arrows of D, indexed by objects of C, such that r]a G |D[Fo(a),Go(a)]|; it is
natural if moreover it vérifies Fa^(a) * 775 = rja * Ga,b{oc) for every cell a e C[a, &].

Définition 3.3 (traced gs-monoidal 2-categories). A gs-monoidal 2-category is a
structure C = (Ç, 0 , e, p, V, !}, where Ç is a 2-category and

• e is a distinguished object in Ç and & : Cx Ç —> Cis a. 2-functor, satisfying
[monoid] ide 0 a = a = a 0 zde (a (g) j3) 0 7 = a 0 (/3 (8) 7)

• / ? : (8) = > ® ° X : Ç x Ç - ^ Ç i s a natural 2-transformation (where X is the
2-functor that swaps its two arguments), such that pe^e = ide and satisfying
[symmetry] (ida ® /a&)C) * (Pa,c ® îdb) = Pa®fe,c Pa,b * P6,o = ida®6

• V : Idç =» O o A : Ç -> Ç and" ! : ƒdç => e : Ç -> C are
2-transformations (A is the diagonal 2-functor), such that !e = Ve = ide

and satisfying
[duplication] Va * (ida 0 Vo) = Va * (Vfl ® ida)

Va * (ida&a) = î^a Va * pa,a = Va

[monoidality] Va®ö * (*da 0 pb,a 0 idb) = Va 0 V& !a®6 =!a®!ö.
A traced gs-monoidal 2-category is a structure Ct = (C, ®, e,p, V, !,tr), where
C = (C, 0 , e, p, V, !) is a gs-monoidal 2-category and

• ^ra b : C[a 0 w, 6 0 w] —> C[a, b] is a family of functors indexed by 2-objects
in C, satisfying
[naturality] tr^h(a * (idb 0 0)) = ttv

ab({ida 0 /3) * a)

*^d((a 0 i d-) * /Ö * (7 ® iiu)) = a * *rïi6(/3) * 7
[vanishing] tr^a) = a « r S . t ^ ^ ^ (a)) = trv

a%
u{a)

[superposing] tr^ac0b(idc 0 a) = idc 0 tr£b(a)
[yanking] ^ t 1x(pu ,u) = W«.

A gs-monoidal 2-functor F : C —> P is a 2-functor which preserves all the relevant
structure "on the nose", ie., such that F(e) = e', F(a 0/3) = F (a) 0 ' F{f3), and
so on. A traced gs-monoidal 2-functor F : Ct —> Vt is a gs-monoidal 2-functor
which preserves also the traced structure.

We dénote as TGS-2Cat (GS-2Cat) the category of small traced gs-monoidal
(gs-monoidal, respectively) 2-categories and corresponding 2-functors, and as
TGS-Cat (GS-Cat) its full sub-category including only small catégories.

Many structures similar to the 2-categories defîned above have been studied in
liter at ure: we refer the reader to the concluding remarks of [13] and [15], as well
as to Section 5.5 below, for a comparison between a few approaches. We sketch
now how to generate from a given signature a free traced gs-monoidal category,
called its traced gs-monoidal theory.

Définition 3.4 (generalised signatures). A generalised signature E is a four-tuple
(M, T, s, £), where M is a monoid, T a set of operators, and s,t : T —> U(M) are
(the source and target) fonctions, for U(M) the underlying set of M. A morphism
of generalised signatures f : S —» E' is a pair (fM • M —• M', / r : T —> T'), where
f M is a monoid homomorphism and / T a function preserving sources and targets.
Generalised signatures and their morphisms form a category, denoted GenSig.

REWRITING ON CYCLIC STRUCTURES 479

Note that a one-sorted signature is a generalised signature where M is the tree
monoid generated by a singleton (whose éléments we dénote by natural numbers),
and ƒ : n —> 1 if arity(f) = n.

Proposition 3.5 (free traced gs-monoidal catégories). Let Vt : TGS-Cat —>
GS-Cat be the functor mapping a traced gs-monoidal category to the underly-
ing gs-monoidal ont (forgetting the traced structure), and let Vgs : GS-Cat —>
GenSig be the functor mapping a gs-monoidal category to the underlying gener-
alised signature (forgetting all the structure but the monoidal structure on objects).
Both functors admit a left (free) adjoint, denoted GS : GenSig —» GS-Cat and
T: GS-Cat -» TGS-Cat; respectively.

Proof. See [15], Example 14 and Définition 18 for an explicit description of the
left adjoint GS. Let C = (C, ®, e, p, V, !) be a gs-monoidal category. Then the
associated traced category is the structure T(C) = (T(C), ©, e,p, V, !, £r), where
the objects of T(C) are the same as the objects of C, while the arrows are the
équivalence classes of the set of terms generated by the following inference rules

T(C)
t:a-+be T(C) trc

ab(t) : a -> 6 G T(C)

s : a - > & , t : 6 - > c € ^(C) s : a -> btt : c -> d G T(C)
s\t:a-> ce T(C) s@t : a®c^> b<8>d € T(C)

with respect to the set of axioms in Définition 3.1 and in Définition 3.3, requir-
ing that the operators ; and © are compatible with the operators * and (E) in
C, respectively. We leave to the reader the check that T(C) is indeed a traced
gs-monoidal category, and that it vérifies the universal property. D

For a given signature E, we call GS(T>) its gs-monoidal tkeory, and we dénote
it by GS-Th(E); similarly, T(G5(E)) is the traced gs-monoidal theory of E, and
it is denoted by TGS-Th(S).

A computad [57] is a category where each hom-set is equipped with a directed
graph structure, whose edges can be regarded as cells which are not closed under
composition, in gênerai. The main f act for our analysis is that from a computad a
(structured) 2-category can be generated in a free way, by closing the cells under
all relevant opérations.

Définition 3.6 (computads). A gs-monoidal computad Cs is a pair (C,iS), where
C is a gs-monoidal category and S is a set of cells, each of which has two parallel
arrows of C as source and target, respectively. A gs-monoidal c-morphism {F, h) :
Cs -^ T^T is a pair such that F : C —> T> is a gs-monoidal functor and h : S —• T is
a fonction preserving source and target of cells in the expected way. GS-monoidal
computads and their morphisms form a category, denoted GS-Comp.

480 A. CORRADINI AND F. GADDUCCI

Proposition 3.7 (free traced gs-monoidal 2-categories). Let V2 : TGS-2Cat —>
GS-Comp be the forgetful functor mapping a traced gs-monoidal 2-category to the
underlying gs-monoidal computad (forgetting cell composition and trace structure):
it admits a left adjoint TGS2 : GS-Comp -» TGS-2Cat.

Proof. Let C$ be a gs-monoidal computad, and let T(C) — (T(C), ®,e,p, V, !,£r)
be the traced gs-monoidal category associated to C. Then the traced gs-monoidal
2-category associated to Cs is the structure TGS2(Cs) = {£, <S>, e, p, V, !, tr) where
the 2-objects and arrows of C are the same as the objects and arrows of T(C),
respectively, while the cells are the équivalence classes of the set of terms generated
by the following inference rules

t:a->be T(C) a:
C[a, b] a : s => t G Ç[a, b]

a :

a

s =>
a

t G
* / 3 :

• t e

Ç[a,

C[a,,b],P:

U =

G
=> v eÇ[
Q[a9c]

=^ v e C

6,cJ
a

a :

eÇ[a,

s => t <

6J,
t e - M

©c, 6(

G C[ûj 6]

]

fie]

C[a © c, 6 0 d] £r \ 6 (a) : tr^b(s) => tr^)6(t) G Ç[a, 6]

with respect to the set of axioms in Définition 3.1 and in Définition 3.3. We leave
to the reader the check that TG82(05) is indeed a traced gs-monoidal 2-category,
and that it vérifies the universal property. D

Intuitively, TGS2 générâtes new cells from those of the argument computad by
closing them under all opérations of traced monoidal catégories and vertical com-
position, imposing the axioms of traced 2-categories. In addition, it must preserve
the gs-monoidal structure on the underlying category, ensuring its compatibility
with the analogous opérations it introduces for cells.

4. REWRITING SÉQUENCES AS CELLS OF A 2-THEORY

This section présents the main resuit of the paper. We first show how to generate
a traced gs-monoidal 2-category, denoted TGS-2Th(7£), from a given rewriting
System 1Z\ next, we prove that the cells of TGS-2Th(7£) faithfully correspond to
séquences of E-injective rewrites, obtained using the rules of 71. In order to give an
effective présentation of such a traced gs-monoidal 2-category, we exploit the fact
that term graphs over E can be equipped with a traced gs-monoidal structure, and
actually there is an isomorphism between the resulting category and the traced
gs-monoidal theory built over E (see Prop. 3.5).

REWRITING ON CYCLIC STRUCTURES 481

Définition 4.1 (the category of term graphs). Let E be a (one-sorted) signature.
TGs dénotes the structure (T G E , ® , 0 , Gn (_,_), Gv(.), Gr, tr)\ where

• TGT, is the category having as objects underlined natural numbers, and as
arrows from j to z ail (i, jf)-ranked term graphs. Arrow composition is defined
as term graph composition (Def. 1.4), and the identity on i is the discrete
term graph G\d of rank (i, i) having i nodes, where the k-th root is also the
k-th variable, for all k € i.

• Functor © : TGs x TGs —> TGs is defined on arrows as the union of term
graphs (Def. 1.4), and on objects as n © m — n + m;

• For each n, m G N, Gn(n,m) is the discrete term graph of rank (n + m, n + m)
with n + m nodes, such that (denoting by r and v the root and variable
fonctions of one of its représentatives) r(x) = v(n + x) if x < m, and r(x) =
v(x — m) if m < x < n + m.

• For each n £ N, Gv(n) is the discrete term graph of rank (2n, n) with n
nodes, such that r(x) = x if x < n, and r(x) ~ x — n i f n < x < 2n.

• For each n, Gf1 is the discrete term graph of rank (0, n) with n nodes.
• For each n,m, A; G N, the function Êr^m : TG^\n-\- k,m + k] —> TGx[n,rn\

maps a term graph G of rank (n + &, m + /c) to G^ (see Def. 1.4).
Moreover, ATGs dénotes the structure {ATG^, ©, 0,Gn(_,_), GV(_), Gr), obtained
from TGs by eliminating the trace component tr, and where ATGJ: is the sub-
category of TG?, having the same objects but only acyclic term graphs having no
J_-nodes as arrows.

Lemma 4.2 (catégories of acyclic term graphs as théories). Let S be a
(one-sorted) signature. The structure ATGs introduced in Définition J^.l is a
gs-monoidal category isomorphic to GS-Th(S).

Prooj. See [15], Theorem 23. •

Proposition 4.3 (catégories of term graphs as théories). Let S be a (one-sorted)
signature. The structure T G s introduced in Définition 4-1 ^ a traced gs~monoidal
category isomorphic to TGS-Th(E).

Proof. See [19], Theorem 6.2.1. Our traced gs-monoidal catégories concide with
the 6J-ssmc structures of [19], but for the axiom trë,e(idi) — ide, which is not
valid in our présentation, since it results in the term graph [(0,1,0)] : 0 —» 0.
Nevertheless, the proof there can be carried out smoothly within our setting with
minor changes. D

The traced gs-monoidal 2-category generated by a rewriting System over a
signature E will have TGS-Th(S) as underlying category. The resuit just pre-
sented allows us to use term graphs over S to dénote the arrows of such a category,
and to make free use of its equational présentation when reasoning about them.
Now we fîrst show how to associate (in a quite straightforward way) with each
rewriting System 1Z its tgs-monoidal 2-theory TGS-2Th(7£), and then we proceed
by relating cells in this 2-category and rewriting séquences over 1Z.

482 A. CORRADINI AND F. GADDUCCI

Définition 4.4 (rules as ceïïs). Let R = (d,n,r r) be a rule, as in Définition 2.1.
Let n be the nuniber of empty nodes of d, and let m be the number of nodes of
d\ri. Then we define the term graphs L R and RR of rank (myn) as follows:

• L.R = [(r, d\r\, v}], where r : m —» N(d\ri) is a bijection, and v : n —* iV0.(d|rO
is a bijeetion between n and the set of empty nodes of d|n5.

• Ru is defined as the term graph obtained by applying rule R to LJI according
to Définition 2.2, le., Z R -*<Rr^d|n> Rn-

The ceïl representing rule R is the cell a(R) : £ R => i?R : n —• m.

Thus, iÎR is the term graph [(r', d', v)], where rfy is obtained from d by removing
the node ri and by "redirecting" ail pointers from n to r r, and r'(x) = rr if
r(x) = n, and rf{x) = r(o;) otherwise. If there is a path in d from rr to rj, then d'
is a cyclic graph (the path must be proper because by définition n ^ r r). Indeed,
it is easy to see that in this situation any application of the rule results in a cyclic
graph: this phenomenon is called redex capturing and it is analysed in [30].

Définition 4.5 (the tgs-monoidal 2-theory of a rewriting System). Let 1Z —
({Ri}iç/, S) be a rewriting System, and let GS-Th(S) be the gs-monoidal theory
of S. The gs-rnonoidal computad representing 1Z is defined as the computad C^ =
(GS-Th(E), {a(Ki)}ieI), where for eaeh rule Ri in n the cell a(R;) : LR. =ï RUi

is as in Définition 4.4. The tgs-monoidal 2-theory ofU, denoted by TGS-2Th(^),
is the free traced gs-monoidal 2-category generated by C-&,. ie., TG52(C^}, where
TGS2 is as in Proposition 3.7.

Before presenting our main result, we need two technical lemmas, relating
£-injective morphisms and term graph contexts. These are obvious généralisa-
tions of the corr esp onding results for the acyclic case, present ed in the fu.ll version
of [13].

Définition 4.6 (term graph contexts). A (term graph) context C[i>j] is a
well-formed term graph expression containing exactly one (ranked) place-holder
[i,j] (for some i, j G N).

We write C[i,j] : (n,m) to say that the rank of C[i,j] is {nym)y assuming
that the place-holder has rank (i>j).. If C^ j] is a context and G is a term
graph of rank (i>j)r by C[G] we dénote the term graph obtained by evaluating
the expression C after replacing [irj] by G.

Lemma 4.7 (S-injective morphisms and contexts). Let G be an acyclic term
graph of rank (m,n) without ^L-nodes such that ail its nodes are roots, and let
H be a terra graph.

1. If C[myn] is a context such that H = C[G]} then for every go G G and gH

e H a E-injective graph morphism 4>(C) : do —• dn between the underlying
graphs can be defined inductively on the structure of C.

5 Note that r and v are well-defined by the définition of n and m; moreover,. they could be
fixed in a canonical way, but we do not need this.

REWRITING ON CYCLIC STRUCTURES 483

2. If go € G and g H € H, then for every E-înjective graph rnorphism ƒ : do —>
dn between the underlying graphs a context *y{ f)[m,n) can be identified such
that i{f)[G] = H;furthermore, <j>(j(f)) - ƒ.

Proof (1) Since the proof goes by induction on the structure of the context, we
may assume that the base case (note that [G] = G by définition, and all the nodes
are also roots, thus forcing a unique choice for the graph isomorphism) and the
other inductive steps are already verifîed [13], except for C\m,n\ = (Cr[mrn])K
So, let g Hf be a chosen graph in H' = Cf[G] such that (gH'V *1S isomorphic to g H
via a morphism h (such a choice is always possible, since we defined construct ively
the opération of feedback: see the remark after Définition 1.4), and Iet 4>{Cf) :
do —>• dn> be the S-injective graph morphism identified by induction hypothesis.
Then, the morphism <f>(C) = /io UdH, o <j>{Cf) : do —• dn satisfies the required
conditions, for UdH, : du* —* (dj£r)^ the E-injective graph morphism induced by
the construction in Définition 1.4.

(2) We can assume that the statement holds for any graph gn containing no
cycle and no _L-node [13]. Thus, the proof proceeds similarîy to the proof of
Proposition 1.8. Let us consider e.g. a graph gn> containing one cycle less than
gH, such that g H is isomorphic to (gw)^ via a morphism h, and such that ƒ
induces an arrow ff : de —> du1 satisfying h o UdH, o ƒ ' = ƒ for the E-injective
graph morphism UdH, : dn> —>• (dn*)^ > Note that the choice of the cycle in g H to be
reduced (hence, the choice of g H*) is not determined uniquely, while the subséquent
choice of h is. By induction hypothesis, 7(//)[Gf] = Hr and <f>{j{ff)) = f'. We then
define 7(/) = (7(/')) t- BY t h e previous point, ^((7(/ /)) t) = ho UdH, ° <f>(if(f)),
so that # 7 (ƒ)) = 0((7(/ /)) t) = h o UdH, o 0(7(ƒ')) = ƒ, •

Please note that the above correspondence between contexts and morphisms (in
the same équivalence class) is not one-to-one, since we lack an explicit équivalence
relation equating those contexts intuitively corresponding to the same arrow.

Lemma 4.8 (term graph rewriting as contextualisation). Let R — (d,ri,rr) be a
rule and a : LR, =>> RR, : n —> m the associated cell by Définition 4-4- Then for
every context C[m,n] and for every graph go in C[LR] the pair A = {R, (f>(C) :
d\n -» do) is a E-injective redex of C[Ln] such that C[Ln] ~^A C[RR].

Proof Let 4>{C) : d\r\ —>• do be the S-injective graph morphism whose characterisa-
tion is ensured by Lemma 4.7: we just need to prove that C[LR] —^<R,0(C)> C[-RR]-
As before, since the proof goes by induction on the structure of the context, we
may assume that the base case (note that ^>([m,n]) = id> and L R —>(ntid) ^R ^
définition) and the other inductive steps are already verified, except for C[m,n]
= (C^m^n))^. So, let gf

0 be a chosen graph in C^XR] , such that (g'0)î is isomor-
phic to #o via a morphism /i, and let <t>(C') : d\ri —> df0 be the unique arrow in-
duced by Lemma 4.7, so that by induction hypothesis C"[XR] —>{

484 A. CORRADINI AND F. GADDUCCI

Let us assume that g'o —+ (R)0(C/)) 9I: ^ *s n°t difficult to check that the ap-
plication of the algorithm in Définition 2.2 transforms (#ó)̂ in^° (9iV > hence
C[LB] -><R,0(C)) C[RB], and the resuit holds6. D

We are now ready to present our main resuit: its proof follows closely the one
present ed in [13] for acyclic rewriting, exploit ing the two previous lemmas.

Theorem 4.9 (rewriting séquences as cells of the traced gs-monoidal 2-theory).
Let 1Z be a rewriting System, and let G and H be two term graphs having the same
rank (m,n). Then there is a cell a : G => H : n —> m in TGS-2Th(7£) if and
only if there is a Y>-injective rewriting séquence G —^ H.

Proof. We first ask the reader to look back at the construction of the free traced
gs-monoidal 2-category we presented in the proof of Proposition 3.7, and to note
that the cells in TGS-2Th(7£) are generated from the cells of computad CT^ (the
2-generators) by closing them with respect to all the opérations of traced gs-
monoidal catégories, and by imposing the corresponding axioms. Using structural
induction, a cell a can be proved decomposable into an equivalent (even if not
necessarily uniquely defined) cell ot\ • a2 • . -. • ak (where "•" dénotes (vertical)
composition in the hom-category TGS-2Th(7£)(n,m)) such that each a* contains
exactly one 2-generator and no vertical composition. Moreover, each single cell
a : G => H containing only one 2-generator can be further decomposed as C[a(R)],
for a suitable context C and a rule R E 1Z.

Only if part Let us restrict our attention to a single cell a : G => H containing
only one 2-generator, and let assume that it can be decomposed as C[a(R)] for
a suitable context C and a rule R G ^ . By the définition of a(R), we have
that G = C[LR] and H = C[Rn), and by Lemma 4.8 G -><R^(c)) H. The
statement follows by observing that vertical composition directly corresponds to
concaténation of rewriting séquences.
If Part. If G —*A H using a E-injective redex A = (R, ƒ) with R G 7£, then by
Lemma 4.7 there is a context 7(/) such that G = 7(7)[LR]. By Définition 4.4 and
Définition 4.5, the cell a(R) : Ln => Rj& is a 2-generator of TGS-2Th(7£), and
thus, since cells are closed under arbitrary contexts, 7(/)[a(R)] : G => 7(/)[JRR]
is a cell. It remains to show that H = 7(/)[i?R]. By Lemma 4.8 we have
G —(R^(7 (/))) 7 (/) [* R] , and by Lemma 4.7 0(7(/)) = ƒ, so that H = j(f)[Rn]
by the determinacy of the rewriting algorithm in Définition 2.2. The statement
easily extends to arbitrary rewriting séquences using vertical composition. D

5. DISCUSSION

Our définition of term graph rewriting (Def. 2.2) differs from the
corresponding définition in [3] for two main aspects: The présence of an initial

6Informally, the rewrite could be affected by the présence of the external (—)t context only
if the feedback should involve the root r/. In that case, it is easy to see that the Root undefine
phase guarantees the correctness, should the image of the left and right roots coincide: it severs
the link outgoing from the left root, even if the node itself is glued with the right root.

REWRITING ON CYCLIC STRUCTURES 485

phase (root undefine) where we transform the root of the redex in an empty node;
and the absence of a final garbage collection phase, removing from the resulting
terni graph all the non-variable nodes not reachable from the roots. We first dis-
cuss these two facts in turn, then we try to sustain our claim that the categorical
framework we presented allows for an easy comparison between various instances
of term (graph) rewriting. We conclude the section with a short historical overview
on the algebraic approach to the notion of fixed point and feedback.

5.1. THE "ROOT UNDEFINE PHASE" AND HANDLING OF CIRCULAR REDEXES

As far as the présence of the initial Root undefine phase in Définition 2.2 is
concerned, it is easy to check that it affects the resuit of the rewriting only in the
case of circular redexes, that is, when the image of the left and of the right roots
of the rule coincide. For E-injective redexes, this can only happen with collapsing
rules, i.e., those where the right root is a variable. The paradigmatic example
hère is the circular / , i.e., the application of the identity rule Ri : I(x) —> x to
the cyclic graph Gj having one node labelled / and one looping edge.

1 _L 1

Ri GI G±

Using the définition in [3] or, equivalently, our Définition 2.2 without the first
phase, this redex reduces to itself. In fact, since the image of the left root (/)
and of the right root (x) of Ri coincide in G/, the Build, Redirect and Root
removal phases have no effect on Gj. Instead, applying the whole construction of
Définition 2.2, the Root undefine phase makes the /-node of Gi empty, and the
other phases leave it unchanged. Thus the resuit is graph G± consisting of a single
JL-node which is the only root, i.en Gj —^•RÎ GJ_. Another example of réduction
of a circular redex is the rewriting G3 —»R2 G4 at the end of Section 1.

It is worth mentioning that other définitions of term graph rewriting agrée
with ours on circular redexes (see [1,12,34,40]7), and that many authors already
discussed the disagreement of various définitions of rewriting in the handling of
circular redexes. In our opinion, this disagreement is due to the operational nature
of most définitions, which leaves some degree of freedom in the handling of "patho-
logical" cases like circular redexes. To our knowledge, our paper is the first one
where an operational construction is proved to be correct with respect to a more
déclarative, categorical counterpart, as stated by the main resuit, Theorem 4.9.

It is instructive to détermine the cell of TGS-2Th({/}) which corresponds to
the réduction of the circular / . According to Définition 4.4, the cell representing
Ri is a (Ri) = (VJ_ * (idi_ <g> /)) => Vj_ : 1 —» 2, and since cells are closed under
traces, there is a cell tr^^aÇRi)) — i r j^V^* (âdi <g>/)) => fr"o i(VjJ : 0 ^ 1 . It is
easy to check that the source of this ceïï represents the term graph G/, while the

7In fact, our définition of term graph rewriting coincides with that proposed in [12], which
is based on the "Double-Pushout Approach" to graph rewriting. We refrained from using it, in
order to ease the comparison with [3].

486 A. CORRADINI AND F. GADDUCCI

target is G±. Informally, we can say that a circular redex reduces to _l_ because
the categorical structure forces the rewrite relation to be a pre-congruence, that
is, to be closed with respect to all the operators, including feedback. This shows
that our main resuit does not hold if circular redexes are treated in a different way
in the operational construction.

5.2. ADDING GARBAGE COLLECTION TO TERM GRAPH REWRITING

The absence of garbage collection in our définition is due to the f act that, on the
categorical side, the 2-transformation "!" is not required to be natural. As argued
in [15], the naturality of ! is the categorical counterpart of automatic garbage
collection^ since it implies p*!^ = !n

 : R ~* Û f°r any n-axy operator g, meaning
that a term graph with a single garbage node g is "the same" as the term graph
obtained by removing it. Also, for each term graph G of rank (1, n + 1) we would
have tr~^Q(G) = tr-o(G)*!.o = U (because !ç = idg)> meaning that ail garbage
nodes can be safely removed at once from a cyclic term graph without roots. As
a conséquence, we obtain a categorical représentation (analogous to Th. 4.3) of
"terrn graphs without garbage nodes", and a correspondence between E-injective
rewrites with garbage collection and cells of the 2-theory, as in Theorem 4.9, simply
by requiring the naturality of ! in the définition of traced gs-monoidal 2-category.

The categorical framework makes easy also to consider an alternative solution,
consisting of adding a set of "garbage collection rules" which incrementally delete
the garbage nodes produced during the rewriting. For this, it is sufïicient to require
that "!" is an op-lax natural 2-transformation.

Définition 5.1 (lax, op-lax, and pseudo-natural 2-transformations [39]). Let
F, G : C —> D be 2-functors. A 2-transformation rj : F ^ G is lax natural
if it cornes equipped with a family of cells rj of D, indexed by arrows ƒ € £[a, &],
such that r]f : r}a*Ga,b(f) => Fa^U)*^ £ D[Fo(a), Go(b)\; it is op-lax natural if it
cornes equipped with a family of cells 77e0 as above, but in the opposite direction,
i.e.y rfj° : Fa^{f) * Vb =̂ Va * Ga,b(f)] it is pseudo-natural if it is both lax and
op-lax natural, and for each arrow ƒ the cells rjf and 77̂ ° form an isomorphic pair.

Theorem 5.2 (rewriting séquences with garbage collection as cells). Let 1Z —
({Ri}iex, E) be a rewriting System, and let TGS-2Thgc(7£) be the free traced gs-
monoidal 2-category generaled by the gs-computad (GS-Th(S), 5), requiring "!"
to be an op-lax natural transformation.

Now let G and H be two term graphs with no garbage nodes. Then there is a
cell a : G => H in TGS-2Th5C(7£) if and only if there is a E-injective rewriting
séquence G — *̂c-̂ H, where the subscript gc means that we add after the root
removal phase a garbage collection one.

The resuit above follows easily from Theorem 4.9, by observing that the
additional rewrites can only be applied to garbage nodes. The op-lax natural-
ity breaks down to the présence of cells #*U => !n and tr~0(G) => \n for each
n-ary operator g and each graph G of rank (1, n + 1). Therefore, in this formula-
tion garbage collection can be executed concurrently with other rewrites, without

REWRITING ON CYCLIC STRUCTURES 487

affecting the correctness of the System. In fact, our solution closely resembles
the classical référence counting algorithm for distributed garbage collection, where
each processor (that is, each node) is equipped with the number of other proces-
sors actually linked to it: while #*!^ means that no pointers is looking up to g, and
thus it can be deleted, tr~ 0(G) can be considered as an oracle, statically detecting
the occurrence of a self-reference cycle, and allowing for its deletion.

5.3. REWRITING WITH FOLDING/UNFOLDING AND SHARING/UNSHARING

Theorem 4.9 states that cells in the 2-theory of Tl represent T>-injective rewriting
séquences. This restriction can be relaxed by adding to the System explicit rules
which change locally the degree of sharing in a term graph (for the acyclic case,
such rules have been considered e.g. in [2,36]). Categorically, this is obtained
requiring the transformation "V" to be pseudo-natural. Then, for each n-ary
operator ƒ, the cell V / : ƒ * Vi_ => V ,̂ * (ƒ 0 /) allows one to créât e two copies of
ƒ if it is shared, while the inverse Vcf : V„ *(ƒ ® ƒ)=>•ƒ* Vi_ merges together
two copies of ƒ if they share ail their successors. Furthermore, derived cells allow
one to "unfold" or "fold" cyclic structures. For example, let us consider again
the term £r^x(V^* (idi® /)), representing the "J-loop" Gr. it is equivalent to
^ro,i (1*^7ù> ^ytne n r s t naturality axiom of Définition 3.3. By pseudo-naturality of
V, and since cells are closed under traces, there is a cell £7*0̂ (V/) ' ^T^iG^* ViJ ^

^"öiC^i * (^® ̂))î a nd this last term is equivalent to tï~ö"1(V^* (id±®I))\ I, by the
second naturality axiom of Définition 3.3: it then represents a partial unfolding of
the /-loop.

Theorem 5.3 (rewriting séquences with unsharing as cells). Let 1Z =
({Ri}i€/,E) be a rewriting system, and let TGS-2Ths(7£) be the free traced gs-
monoidal 2-category generated by the gs-computad (GS-Th(E),5), requiring "V;;

to be a pseudo-natural transformation.
Now let G and H be two term graphs such that there is a rewriting séquence

G -*^ H: Then there exists a cell a : G => H in TGS-2Ths(7J). •

In the extended 2-theory TGS-2Ths(7£) a rewriting step via a non-S-injective
redex can be simulated by a cell composed of a séquence of unsharing/unfolding
cells (that transform the redex into a E-injective one), of the 2-generator corre-
sponding to the rule, and finally of a séquence of sharing/folding cells (that restore
the original degree of sharing). For acyclic graphs, the theorem is worked out in
detail in the full version of [13], and it is closely related to Theorem 7.1 in [2],
which is not based on a categorical framework. In the gênerai case, the resuit
relies on the interweaving between trace operators and sharing/unsharing rules,
modelling the process of folding/unfolding of cycles. The converse of the theorem
clearly does not hold, because in TGS-2Th5(7£) more "housekeeping" opérations
can be performed than it is actually required for the application of a given rule.

488 A. CORRADINI AND F. GADDUCCI

5.4. RELATING REWRITING FORMALISMS VIA ADJUNCTIONS

The categorical présentation can be exploited to relate formalisms via
suitable adjunctions. The diagram below summarises the relationships between
traced gs-monoidal 2-categories and other 2-categories used to represent other
rewriting formalisms based on terms or term graphs. Arrows represent adjunc-
tions in the direction of the left adjoint. Adjunction (1) essentially models the
2-categorical présentation of term rewriting using algebraic 2-theories [44,49,51],
where a rewriting System is represented by a cartesian computad (an element of
C-Comp), and its free cartesian 2-category has cells for ail rewriting séquences.
Adjunction (2) models acyclic term graph rewriting, and it is described in [13],
where also the commutativity of the top square of adjuctions is discussed. Ad-
junction (3) models rational term rewriting (RTR), ie., the extension of standard
term rewriting obtained by allowing for possibly infinité terms with a finite num-
ber of sub-terms, and for infinité parallel rewriting, as originally deflned in [11].
Both an operational and a logical présentations of RTR are proposed in [14], and
in the corresponding full paper we plan to include the categorical présentation of
RTR based on adjunction (3) and on itération 2-theories [9,28]. Adjunction (4)
models possibly cyclic term graph rewriting, as described in this paper. The verti-
cal adjunctions (7,8) add traced or feedback structure, resulting in possibly cyclic
term graphs to the left, and in rational terms to the right. Finally, the horizontal
adjunctions (0,5,6) are obtained by enforcing the naturality of V and !8.

acyclic GS-2Cat 5 *-C-2Cat finite terms
term graphs V y

GS-Comp —0-*~ C-Comp

term graphs TGS-2Cat 6 »-It-2Cat rational terms

In particular, adjunction (6) maps the traced gs-monoidal theory of a signature
TGS-Th(E) to the itération theory It-Th(E), and the unit of the adjunction maps
a term graph G of rank (n, m) to an n-tuple of rational terms over m variables,
essentially obtained by "unraveling" G from its roots. It is especially interesting
to note that this framework helps us to clarify the rôle of J_-nodes of term graphs,
ie., those resulting from the réduction of a circular redex. We argued in [11,12]
that such a node corresponds to the completely undefined term, i.e., the bottom
element of the CPO of possibly infinité, possibly partial terms. This turns out
to be correct, because rational terms in the itération theory of S are naturally
endowed with a CPO structure, and the above mentioned unit maps such nodes

8Adjunctions (3,6,8) actually need an additional set of axioms, besides those for the trace
structure, in order to deal with the occurrence of nested cycles. The first axiomatisation for
itération théories appeared in [26], by means of a set of commutative identifies. Related solutions
include the group axioms of the recent [27], or the functorial implication (also enzymatic rule)
used in [19,21,26]. Without these axioms, the resulting structure is a Conway 2-theory [4,9,28].

REWRITING ON CYCLIC STRUCTURES 489

to the bottom element there (which explains why we denoted them by _L). This
interprétation compares favourably with the treatment of such nodes in e.g. [1],
for which a fresh constant • is added to the signature.

5.5. SOME HISTORICAL REMARKS

The observation that cartesian catégories are monoidal catégories equipped with
additional natural transformations is quite old, and indeed many authors studied
categorical structures that are weaker than the former and richer than the lat ter.
We refer the reader to the concluding remarks of [15] for a survey on some of the
motivations leading to such structures. It is instead relatively easier to track down
the interest towards (cartesian) catégories enriched with enough properties in order
to encompass an explicit recursive structure, since it can be largely dated back
to the first studies on the semantics of flowchart schemes, intended as syntactic
devices representing the control structure of a program.

Roughly, a flowchart scheme is a term graph (actually, it would be better
described as a cyclic hypergraph, but we can avoid this distinction in our dis-
cussion, for the sake of clarity), where each node represents a functionality of the
program, and the links dénote the control dependencies bet ween the various com-
ponents. In this setting, the fixed point operator can be interpreted as a direct
translation of the GO TO statement: such an intuition explains the rationale behind
the pioneering work of, among others, Elgot and Wand [23,59], where a feedback
(or itération) operator was introduced in order to provide a linear syntax mecha-
nism for the inductive définition of flowchart schemes. For example, Theorem 3.1
of [24] présents a décomposition resuit for flowchart schemes that subsumes our
Proposition 1.8. The connection between algebraic théories and the step-by-step
semantics for program schemes moved the interest towards cartesian catégories,
either order enriched [32,52] or equipped with a (unique) fixed point operator. The
privileged status of algebraic théories was further motivated by the correspondence
between rational trees and certain varieties of itérative algebras [25,31], thus pro-
viding a characterisation for behaviourally equivalent flowchart schemes. This is
the line that brought the development of Itération Théories, as recollected in [7,8].

What we may consider the first results on the completeness of a linear syntax for
the présentation of flowchart schemes-and its relationship with their behavioural
semantics-are due to Bloom and Èsik [6]. This is the line bringing to the in-depth
analysis of such axiomatics represented by the algebra of flownomials developed
by Câzânescu and §tefanescu [18,20,21]. Roughly, in their approach they relate
flowchart schemes to symmetrie monoidal catégories enriched with (non-natural)
transformations that correspond to our V and !, as well as to their duals, and with
an explicit feedback operator. Even if our présentation uses the trace structure
of [37], introduced to deal with tortue monoidal catégories, for symmetrie monoidal
catégories it is essentially the same as in [20]9.

9In fact, our Proposition 4.3 already appeared in the literature, most notably in the mentioned
[19]. Also the intuition that "itération = feedback + cartesianity"—corresponding to the arrow

490 A. CORRADINI AND F. GADDUCCI

Term graph rewriting bas a long history inside the theoretical computer science
field, too, The starting point can be considered the need of efficient implementa-
tions for recursive program schemes, linked with tbeir operational interprétation
(see e.g. the textbook [33] by Guessarian for early références). The syntactical so-
lution proposed by Berry and Lévy [5] (and generalised by Boudol [10]) introduces
a notion of family réduction over terms which simulâtes some kind of rewriting
up-to sharing. The operational solution instead directly implements a term as a
graph, transforming each équation occurring in a program scheme int o a graph
rewriting rule. While the work of Staples [54-56] may be the first to address ex-
plicitly the problem of correctness and completeness for such transformations, it
is with [3] that an accepted notation for term graph rewriting is established. It is
noteworthy that, given the operational interprétation of the program scheme, fixed
points enter the picture only as a side-effect of suitable implementation stratégies
of the rewriting, as shown by [30], and since then cyclic term graph rewriting has
been considered by various authors [1,12,29,41].

To a certain extent, we consider our work at the borderline of both areas. It fits
into the term graph rewriting community, since it discusses an alternative solution
for the collapsing rules problem. But it also provides a linear syntax présenta-
tion for both term graphs (the data structure), and for term graph rewrites (the
computational structure), thus offering insights on the relationship between the
operational and the syntactical solution to the optimal implementation problem
for term rewriting. In order to provide such a correspondence, it recalls previ-
ous results (in particular, the equational présentations) from the field of flowchart
schemes, thus establishing a connection-that was present in the early Seventies,
but has since then been overlooked- between now separated threads of research.

REFERENCES

[1] Z.M. Ariola and J.W. Klop, Equational term graph rewriting. Fund. Inform. 26 (1996)
207-240.

[2] Z.M. Ariola, J.W. Klop and D. Plump, Confluent rewriting of bisimilar term graphs,
C. Palamidessi and J. Parrow, Eds., Expressiveness in Concurrency. Elsevier Sciences, Elec-
tron. Notes Theoret. Comput. Sei. 7 (1997). Available at http://www.elsevier.nl/locate/
entcs/volume7 .html/.

[3] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasrneijer
and M.R. Sleep, Term graph réduction, J.W. de Bakker, A.J. Nijman and P.C. Treleaven,
Eds., Parallel Architectures and Languages Europe. Springer Verlag, Lecture Notes in Com-
put Set 259 (1987) 141-158.

[4] L. Bernâtsky and Z, Esik, Semantics of flowchart programs and the free Conway théories.
Theoret. Informaties Appl. 32 (1998) 35-78.

[5] G. Berry and J.-J. Lévy, Minimal and optimal computations of recursive programs. J. ACM
26 (1979) 148-175.

[6] S. Bloom and Z. Ésik, Axiomatizing schemes and their behaviors. J. Comput. System Sci.
31 (1985) 375-393.

component of the adjunction 6 in the diagram of Section 5.4, and reconsidered recently by
Hasegawa [35] and Hyland-can be dated back to [6], and explicitly to [4,20,22].

REWRITING ON CYCLIC STRUCTURES 491

[7] S. Bloom and Z. Ésik, Itération Théories. EATCS Monographs on Theoret ical Computer
Science. Springer Verlag (1993).

[8] S. Bloom and Z. Ésik, The equational logic of fixed points. TheoreL Comput. Sci. 179
(1997) 1-60.

[9] S.L. Bloom, Z. Ésik, A. Labella and KG. Mânes, Itération 2-théories, M. Johnson, Ed.,
Algebraic Methodology and Software Technology. Springer Verlag, Lecture Notes in Comput
Sci. 1349 (1997) 30-44.

[10] G, Boudol, Comput ational semantics of term rewriting Systems, M. Ni vat and J. Reynolds,
Eds., Algebraic Methods in Semantics. Cambridge University Press (1985) 170-235.

[11] A. Corradini, Term rewriting in CT^, M.-C. Gaudel and J.-P. Jouannaud, Eds., Trees in
Algebra and Programming. Springer Verlag, Lecture Notes in Comput. Sci. 668 (1993) 468-
484.

[12] A. Corradini and F. Drewes, (Cyclic) term graph rewriting is adequate for rational parallel
term rewriting, Technical Report TR-97-14. Dipartimento di Informatica, Pisa (1997).

[13] A. Corradini and F. Gadducci, A 2-categorical présentation of term graph rewriting,
E. Moggi and G. Rosolini, Eds., Category Theory and Computer Science. Springer Ver-
lag, Lecture Notes in Comput Sci. 1290 (1997) 87-105.

[14] A. Corradini and F. Gadducci, Rational term rewriting, M. Ni vat, Ed., Foundations of
Software Science and Commutation Structures. Springer Verlag, Lecture Notes in Comput
Sci. 1378 (1998) 156-171.

[15] A. Corradini and F. Gadducci, An algebraic présentation of term graphs, via gs-monoidal
catégories. Applied Categorical Structures^ to appear.

[16] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel and M. Lowe, Algebraic ap-
proaches to graph transformation I: Basic concepts and double pushout approach, G. Rozen-
berg, Ed., Handbook o f Graph Grammars and Computing by Graph Transformation 1.
World Scientific (1997).

'[17] A. Corradini and F. Rossi, Hyperedge replacement jungle rewriting for term rewriting Sys-
tems and logic programming. Theoret. Comput Sci. 109 (1993) 7-48.

[18] Gh. §tefânescu, On nowehart théories: Part IL The nondeterministic case. Theoret. Comput.
Sci. 52 (1987) 307-340.

[19] Gh. §tefânescu, Algebra of nownomials. Technical Report SFB-Bericht 342/16/94 A. Tech-
nical University of Miinchen, Institut fur Informatik (1994).

[20] V.-E. Câzânescu and Gh. Çtefânescu, Towards a new algebraic foundation of nowehart
scheme theory. Pand. Inform. 13 (1990) 171-210.

[21] V.-E. Câzânescu and Gh. §tefanescu, A gênerai resuit on abstract nowehart schemes with
applications to the study of accessibility, réduction and minimization. Theoret Comput.
Sci. 99 (1992) 1-63.

[22] V.-E. Câzânescu and Gh. §tefânescu, Feedback, itération and répétition, Gh. Paun, Ed.,
Mathematical Aspects of Natural and Formai Languages. World Scientific (1995) 43-62.

[23] C.C. Elgot, Monadic computations and itérative algebraic théories, H.E. Rosé and J.C.
Shepherdson, Eds,, Logic Colloquium 1973. North Holland, Stud. Logic Found. Math. 80
(1975) 175-230.

[24] C.C. Elgot, Structured programming with and without GO TO statements. IEEE Trans.
Software Engrg. 2 (1976) 41-54.

[25] C.C. Elgot, C.C. Bloom and R. Tindell, The algebraic structure of rooted trees. J. Comput.
System Sci. 16 (1978) 362-339.

[26] Z. Ésik, Identities in itérative théories and rational algebraic théories. Computational Lin-
guistics and Computer Languages 14 (1980) 183-207.

[27] Z. Ésik, Group axioms for itération. Inform. and Comput 148 (1999) 131-180.
[28] Z. Ésik and A. Labella, Equational properties of itération in algebraically complete caté-

gories. Theoret Comput. Sci. 195 (1998) 61-89.
[29] W.M. Farmer, J.D. Ramsdell and R. J. Watro, A correetness proof for combinator réduction

with cycles. ACM Trans. Program. Lang. Syst 12 (1990) 123-134.

492 A. CORRADINI AND F. GADDUCCI

[30] W.M. Farmer and R.J. Watro, Redex capturing in term graph rewriting, R.V. Book, Ed.,
Rewriting Techniques and Applications. Springer Verlag, Lecture Notes in Comput. Sci. 488
(1991) 13-24.

[31] S. Ginali, Regular trees and the free itérative theory. J. Comput System Sci. 18 (1979)
222-242.

[32] J.A. Goguen, J.W. Tatcher, E.G. Wagner and J.R Wright, Initial algebra semantics and
continuous algebras. J. ACM 24 (1977) 68-95.

[33] I. Guessarian, Algebraic Semantics. Springer Verlag, Lecture Notes in Comput. Sci. 99
(1981).

[34] M. Hasegawa, Models of Sharing Graphs. Ph.D. Thesis, University of Edinburgh, Depart-
ment of Computer Science (1997).

[35] M. Hasegawa, Recursion from cyclic sharing: Traced monoidal catégories and models of
cyclic lambda-calculus, Ph. de Groote and R. Hindly, Eds., Typed Lambda Calculi and
Applications. Springer Verlag, Lecture Notes in Comput. Sci. 1210 (1997) 196-213.

[36] B. Hoffmann and D. Plump, Implementing term rewriting by jungle évaluation. Theoret.
Informaties Appl 25 (1991) 445-472.

[37] A. Joyal, R.H. Street and D. Verity, Traced monoidal catégories. Math. Proc. Cambridge
Philos. Soc. 119 (1996) 425-446.

[38] G. Kelly, Basic Concepts of Enriched Category Theory. Cambridge University Press (1982).
[39] G.M. Kelly and R.H. Street, Review of the éléments of 2-categories, G.M. Kelly, Ed., Sydney

Category Seminar. Springer Verlag, Lecture Notes in Math. 420 (1974) 75-103.
[40] J.R. Kennaway, On "On Graph Rewritings". Theoret Comput Sci. 52 (1980) 37-58.
[41] J.R. Kennaway, J.W. Klop, M.R. Sleep and F.J. de Vries, On the adequacy of graph rewriting

for simulating term rewriting. ACM Trans. Program. Lang. Syst. 16 (1994) 493-523.
[42] J.W. Klop, Term rewriting Systems, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford

University Press, Handb. Log. Comput Sci. 1 (1992) 1-116.
[43] N. Marti-Oliet and J. Meseguer, From Pétri nets to linear logic through catégories: A survey.

Intrenat J. Foundations Comput Sci. 4 (1991) 297-399.
[44] J. Meseguer, Conditional rewriting logic as a unified model of concurrency. Theoret Comput.

Set 96 (1992) 73-155.
[45] J. Meseguer and U. Montanari, Pétri nets are monoids. Inform. and Comput 88 (1990)

105-155.
[46] H. Miyoshi, Rewriting logic for cyclic sharing structures, T. Sato and A. Middeldorp,

Eds., Fuji International Symposium on Functional and Logic Programming. World Scientific
(1998) 167-186.

[47] U. Montanari and F. Rossi, Contextual nets. Acta Inform. 32 (1995) 545-596.
[48] M.J. Plasmeijer and M.C.J.D. van Eekelen, Functional Programming and Parallel Graph

Rewriting. Addison Wesley (1993).
[49] A.J. Power, An abstract formulation for rewrite Systems, D.H. Pitt, D.E. Rydehard, P. Dy-

bjer, A.M. Pitts and A. Poigne, Eds., Category Theory and Computer Science. Springer
Verlag, Lecture Notes in Comput. Sci. 389 (1989) 300-312.

[50] W. Reisig, Pétri Nets: An Introduction. EACTS Monographs on Theoretical Computer
Science. Springer Verlag (1985).

[51] D.E. Rydehard and E.G. S tell, Foundations of equational déductions: A categorical treat-
ment of equational proofs and unification algorithms, D.H. Pitt, A. Poigne and D.E.
Rydehard, Eds., Category Theory and Computer Science. Springer Verlag, Lecture Notes in
Comput Sci. 283 (1987) 114-139.

[52] D. Scott, The lattice of flow diagrams, E. Engeler, Ed., Semantics of Algorithmic Languages,
Springer Verlag, Lecture Notes in Math. 182 (1971) 311-366.

[53] M.R. Sleep, M.J. Plasmeijer and M.C. van Eekelen, Term Graph Rewriting: Theory and
Practice. Wiley (1993).

[54] J. Staples, Computation of graph-like expressions. Theoret. Comput Sci. 10 (1980) 171-195.
[55] J. Staples, Optimal évaluation of graph-Hke expressions. Theoret. Comput. Sci. 10 (1980)

297-316.

REWRITING ON CYCLIC STRUCTURES 493

[56] J. Staples, Speeding up subtree replacement Systems. Theoret. Comput. Sci. 11 (1980)
39-47.

[57] R.H. Street, Categorical structures, M. Hazewinkel, Ed., Handbook of Algebra. Elsevier
(1996) 529-577.

[58] D.A. Turner, A new implementation technique for applicative languages. Software: Practice
and Expérience 9 (1979) 31-49.

[59] M. Wand, A concrete approach to abstract recursive définitions, M. Nivat, Ed., Automata,
Languages and Programming. North Holland (1973) 331-341.

Received December 16, 1998. Revised August 2 and September 1, 1999.

