
INFORMATIQUE THÉORIQUE ET APPLICATIONS

VLADIMIR A. ZAKHAROV
On the decidability of the equivalence problem
for monadic recursive programs
Informatique théorique et applications, tome 34, no 2 (2000),
p. 157-171
<http://www.numdam.org/item?id=ITA_2000__34_2_157_0>

© AFCET, 2000, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_2000__34_2_157_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Theoretical Informaties and Applications
Theoret. Informaties Appl. 34 (2000) 157-171

ON THE DECIDABILITY OF THE EQUIVALENCE
PROBLEM FOR MONADIC RECURSIVE PROGRAMS

VLADIMIR A. ZAKHAROV1

Abstract. We present a uniform and easy-to-use technique for
deciding the équivalence problem for deterministic monadic linear re-
cursive programs. The key idea is to reduce this problem to the well-
known group-theoretic problems by revealing an algebraic nature of
program computations. We show that the équivalence problem for
monadic linear recursive programs over finite and fixed alphabets of
basic functions and logical conditions is decidable in polynomial time
for the semantics based on the free monoids and free commutative
monoids.

AMS Subject Classification. 68Q60.

Informally, the équivalence problem for programs is to find out whether two
given programs have the same behavior. Taking various formalizations of the
terms "program" and "behavior", we get numerous variants of this problem. Some
variants of the équivalence problem are decidable [1,3,7,11-13,18,20,21,24,26],
There are also many cases when the équivalence problem was proved to be undecid-
able [4,8,13,16-19]. The study of the frontier between decidable and undecidable
cases of the équivalence problem for models of computations is of fondamental
interest in computer science, since it significantly influences both the theory and
practice of programming. By tackling the équivalence problem we understand
better the relationship between the syntactic and semantic components of com-
puter programs and comprehend to what extent spécifie changes in the structure
of program affect its behavior.

The decidability of the équivalence problem essentially dépends on the
expressive power of computational model and the exact meaning of the term "the
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same behavior". When programs under considération are deterministic, it is as-
sumed that two programs have the same behavior if for every valid input they
output identical results (if any). The functional équivalence thus deflned is un-
decidable for the universal computational models whose program are capable to
compute all recursive functions. At the same time it is decidable for the less pow-
erful models such as Yanov's schemata [20,26], finite multi-tape and push-down
deterministic automata [10,23], monadic functional schemata [1,6], and some oth-
ers. Sometimes the frontier between the decidable and undecidable are rather
subtle: by changing a bit the syntax of computational models, we jump from the
decidable cases to the undecidable ones. Thus, the équivalence problem is decid-
able for deterministic multi-tape automata [10], one counter automata [25], and
monadic recursive programs w.r.t. semantics based on free monoids of basic func-
tions [1], whereas it is undecidable for nondeterministic multi-tape automata [18],
multi-counter automata [11], and for polyadic recursive programs [4]. In this paper
we refine the decidability/undecidability frontier for the équivalence problem for
monadic recursive programs w.r.t. some natural semantics based on the monoids
of basic functions.

The concept of monadic recursive programs (MRPs) was introduced by
de Bakker and Scott in [4]. They raised the décision problems for recursive pro-
grams and proved, using the results of Paterson [16], that the équivalence problem
for polyadic recursive programs is undecidable. The first decidability results for
MRPs were obtained in [1,6]. Garland and Luckham [6] proved the équivalence
problem to be decidable for linear MRPs w.r.t. the semantics IA based on the
free monoid of basic functions (built-in procedures). Ashcroft et al. [1] obtained
a somewhat more gênerai resuit, establishing the decidability of the équivalence
problem for free MRPs w.r.t. to the semantics lACOn$t based on the free monoid of
basic functions augmented with constants. Both proofs use techniques from formai
language and automata théories; time complexity of the décision algorithms is ex-
ponential of program size. Sabelfeld [22] proposed a complete equational calculus
for linear MRPs. Lisovik [14,15] proved the decidability of the équivalence problem
for meta-linear MRPs w.r.t. ZYconst. He proposed an original technique, reducing
the équivalence problem for MRPs to the solvability problem for linear Diophan-
tine équations. Friedman [5] showed that the équivalence problem for MRPs w.r.t.
Wconst is interreducible with the équivalence problem for deterministic pushdown
automata. Recently the latter has been proved to be decidable [23].

All these decidability results focus on the unique semantics Z ĉonst based on the
free monoid augmented with constants and yield no resuit for équivalence w.r.t.
other classes of interprétations [2]. The obtained décision algorithms have at least
the exponential time complexity even when the signature of programs is finite and
fixed. To overcome these difficulties and extend the decidability results we pro-
pose a uniform and simple technique for deciding the équivalence problem for linear
MRP w.r.t. to the interprétations based on the length-preserving monoids of basic
functions. The key idea is to reduce the équivalence problem for MRPs to some
known algebraic problems (such as the identity problem for semigroups) by reveal-
ing the algebraic properties of program computations. When the corresponding
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algebraic. problems are efficiently decidable, this method yields polynomial-time
décision procedures as a resuit. By applying our approach to some classes of
program interprétations, we show that the équivalence problem for linear MRPs
• w.r.t. semantics based on the free monoids and free commutative monoids is de-
cidable in polinomial time.

1. PRELIMINARIES

In this section we define the syntax and the semantics of monadic recursive
programs (MRPs). To simplify notation we modify a little the original concept of
MRP presented in [1,4,6].

1.1. SYNTAX OF M R P S

Fix two finite alphabets A = {a1 , . . . , aN}, C = {c1 , . . . , cM} and an infinité
alphabet V = {F1,F2i... }.

The éléments of A are called basic actions. Intuitively, basic actions stand for
elementary built-in procedures, like sin(x) or tail(L). A finite séquence of basic
actions is called a basic term. The set of all basic terms is denoted by A*. We
write À for the empty séquence of actions and call it the empty term.

Symbols of C are called conditions. Every condition may be viewed as a finite.
tuple (at,... o~k) of truth-values of primitive relations on program data, like.x < y
or L = nü: It is assumed that the set of primitive relations used in programs is
finite and fixed, therefore the internai structure of conditions is of no importance.

Eléments of V are called procedures', they stand for the names of recursive
procedures defined in programs. A finite séquence of basic actions and procedures
is called a term. The set of all terms over A U V is denoted by Term. As usual,
we write \t\ for the length of a term t, and t\t2 for the concaténation of t\ and £2-
The notation F G t is used to indicate that a procedure F occurs in t.

A définition of a procedure F is an expression D of the form

^(cS^Mc2 ,^), . . . ,^,^), (1)

where U G Term, 1 < i < M. The first occurrence of F in D is called the head of
D, and the list of pairs (c1, £1), (c2, £2), • • •, (cM, *M) is the body of D. For every
pair (cl, ti) in the body of D, the term U is called a à-variant of the définition.

A (deterministic) monadic recursive program (MRP) over the alphabets A, C,
V is a tuple TV = (G, L>i, L>2, • • •, Dn), where

• G G Term is the goal of the program;
• Di, D2,..., Dn are définitions of pairwise different procedures i7! , . . . , Fn.

The set of procedures {Fx , . . . ,Fn} defined in TV is denoted by Vn. Given a
procedure F in Vn and condition c in C we write D7Z{F) for the définition of
F in 7T, and D7Z(F,G) for the o variant of Dn(F). When a program is understood
the subseript n will be omitted. It is assumed that every procedure F occurred in
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n is defined in ir. The size of n is the total length ^ J2 \^(F, c)\ or* a u terms

occurred in n.
Given a MRP TT and a pair of procedures F', Fn in V^ we say that F1 refers

to F" if there exists a séquence of procedures F±, F 2 , . . . , Fm, m > 1, such that
F' = Fu F" = Fmi and for every i, 1 < i < m, Fâ+i" G .D(i^, c) for some c G C.
A procedure F in 7 \ is called

• a self-referenced if F refers to itself;
• a marginal if F does not refer to any self-referenced procedure in TT;
• a terminated if either some variant D(F, c) is a basic term or F refers to Ff

whose variant D(F\ c) is a basic term.

Example 1.1. Let us consider a recursive program written in the conventional
style of [1,4,6]. This program is intended to compute the disbalance of parantheses
[, ] in symbolic strings.

FQ(X);

FQ(X) <= if x ~ nil then i*2(#) e l s e ^i(^)
Fi(x) <= if head(x) = [ then plusl(F0(tail(x)))

else if head(x) = ] then minusl(Fo(tail(x))) else Fo(tail(x))\
F2(x) <= zero(x).

This program includes basic actions head(x), tail(x), plusl(x), minusl(x) and
zero(x). Dénote them by a, 6, c, d, f respectively. The primitive relations used in
this programs are x = nil, head(x) ~ [ and head(x) = ]. Thus, we have
8 conditions c 1 , . . . , c8 standing for the tuples of truth-values (_L, J_, _L),..., (T, T,
T) of primitive relations. By the définitions above we présent this program as
follows:

Fo : (c1,F1),(c
2,F1),(c

3,F1),(c\F1),(c
5,F2),(c

6,F2),(c
7,F2),(c

8,F2);
( } ( ) ( ) ( )

(c5, Fob), (c6, dFob), (c7, cFob), (c8, cFob);
F2 : (c\f),(c\ f),(c3j),(c4, f),(c5,f),(c6J),(c7J),(c*,f).

In this program Fo,Fi are self-referenced terminated procedures, whereas F<z is a
marginal procedure.

1.2. DYNAMIC FRAMES AND MODELS

The semantics of MRP is defined by means of dynamic Kripke structures (frames
and models) (see [9]).

A dynamic deterministic frame (or simply a frame) over alphabet A is a triple
ƒ*= (£,s0;JR), where

• S is a non-empty set of data states;
• SQ is the initial state, So E S;
• R : A x S —>• S is an updating function.

For every a £ A, s E S the state R(a, s) is interpreted as the result of application of
the action a to the data state 5. An updating function R can be naturally extended
to the set A* of basic terms as follows: R*(\,s) = 5, R*(atys) = R(a,R*(t,s)).
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A state s" is said to be reachable from sf if s" = i£*(£,s') for some £ G A*.
Dénote by [t]j? the state s = R*(t,so) reachable from the initial state by means
of £. As usual, the subscript T will be omitted when the frame is understood. Since
we will deal only with data states reachable from the initial state, it is assumed
that every state s G S is reachable from the initial state $Q7 i.e. S = {[£] : £ G A*}.

A frame !FS = {S*, s, Rf) is said to be a subfrarne of T = (5, SQ, R) induced by
a state s G S if S' = {R*(s,t) : t G A*} and Rf is the restriction of R to S". A
frame T is

• a semigroup if T can be mapped homomorphically onto every subframe Ts\
• a length-preserving if [ti] = [£2] implies |£i| = fo\ for every pair £1, £2 of

basic terms;
• a universal if [£1] = [£2] implies £1 = £2 for every pair £1, £2 of basic terms.

Taking the initial state so = [A] for the unit, one may regard a semigroup frame
T as a fmitely generated monoid (5,*) such that [£1] * [£2] = [£i£2]- Clearly, the
universal frame U corresponds to the free monoid on A. In this paper we deal
with the length-preserving semigroup frames.

A dynamic deterministic model (or simply a model) over alphabets A> C is a
pair M — (T, Ç) such that

• T = (5, so, R) is a frame over A;
• £ : S —> C is a valuation function, indicating for every data state s € 5 a

condition c G C satisfiable at 5.
Let 7T = (G, £>!, £>2, • • -, Dn) be some MRP and M — (J7, £) be a model based on
a frame T — (5, SQ, R). A finite or infinité séquence of triples

r = (£1, si, ci), (£2, s2, c 2 ) . . . , (ii, s», Ci),..., (2)

where U G Term, s% G 5, Ci £ C, i > 0, is called a rwn o ƒ ?r on M if £1 = G and
for every z, i > 1, one of the following requirements is satisfled:

1. if U is a basic term then Si — R*(U, Si-i)-, Q = ^(s»), and the triple (£$, Si,c^)
is the last element of (2);

2. if £i is a non-basic term of the form U = TFt, where F G 7 \ , £ G ̂ 4*, then

When r is finite and a triple (sm, cm, £m) is its last element we say that r terminâtes
having sm as the result When run r is an infinité séquence we say that r loops.
Since MRPs and frames under considération are deterministic, every program ?r
has the unique run r(ivyM) on a given model M. We dénote by [r(?r, M)\ the
result of r(?r,M), assuming that [r(7r, M)] is undefined, when r(?r, M) loops.

Let ixf and TT" be some MRPs, M a model, and T be a frame. Then TT' and TT"
are called

• equivalent on M (vr' ~ M TT'7 in symbols) if [/-(TT7, M)] = [r(7r", Af)], ie . either
both runs r(?r/,M) and r(?r//,M) loop (and hence have no results) or they
both terminate with the same data state 5 as their results;

• equivalent on T (TT' ~ ^ ?r" in symbols) if n' ^M n" for every model M =
{J7,0 based on T.
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For a given frame T the équivalence problem w.r.t. T is to check for an
arbitrary pair 7Ti, TT2 of MRPs whether n' ~F TT" holds. When the decidabil-
ity and complexity aspects of the équivalence problem are concerned the frame T
under considération is assumed to be effectively characterized in logic or algebraic
ternis. It is worth noticing that if a frame T\ can be homomorphically mapped
onto a frame F2 then for every pair of MRPs TT\, TT2 the équivalence ÏT\ ^ ^ TT2
implies TT\ ~;F2 TT2. SO, we have

Proposition 1.2. IflA is a univers al frame then TT\ ^U ^2 => ni ^F ^2 holds for
an arbitrary frame F and every pair TTI , TT2 .

1.3. LINEAR MRPs

A term t is said to be linear if it contains at most one occurrence of some
procedure F E V. A définition D of F is called linear if each variant of D is a
linear term. A MRP vr = (G, Du D2, - • •, Dn) is called meta-linear {linear) if every
définition Di, 1 < i < n, (and the goal G as well) is linear. In this paper we study
the équivalence problem for the linear MRPs only. A linear MRP TT is called normal
if its goal G is in 7 \ and for every procedures F in 7^, each variant D(F, c), c G C,
is either a basic term or one of the form £F'a, where £ e 4̂*, F ' G P , a £ A

Proposition 1.3. For even/ MRP TT t/iere exists a normal MRP TT' such that
7T ^ ^ T T 7 .

Every linear MRP TT can be normaiized efficiently in linear time by adding some
auxiliary procedures and définitions to TT. Taking into account Propositions 1.2,
1.3, we assume in what follows that every linear MRP under considération is in
the normal form.

Some useful properties of MRP's computations on the length-preserving models
are revealed by the following propositions:

Proposition 1.4. Let T be a length-preserving frame and ir be some normal linear
MRP having G as its goal. Suppose co,Ci,'... ,cn is a séquence of conditions and
Fo, i7!, . . . , Fn is a séquence of procedures such that FQ — G and

ii 1 < i < n. Then the séquence of triples

(Go, 50,co), (Ti, si, e i ) , . . . , (Ti,Si,d),..., (Tn,sn,cn),

where so = [X] is the initial state of T} Ti — t± ...UFidi, and Si — [ a i . . . a i ] ,
1 < i < n, is a prefix of a run r(?r, M) of TT on some model M based on T'.

Proof Since [ai.. .ai] ^ [ÜJ .. .ai] for every pair i , j , 0 < i < j , we arrive at
the conclusion of proposition by taking M = (ƒ", ̂ ) such that £(so) = Co and
£([ai. ...ai]) == Ci, 1 < i < n. D

Proposition 1.5. Let ÏF be a length-preserving frame andiri, 7T2 be some normal
linear MRPs having G1, G2 as their goals. Given two séquences of conditions
Co-»ch • • • >cli2 and cl>ch • • • >42

 suPPOse that FQ 1 ,F^, . . . ,F^ and F0
2,Fx

2,...,F%2
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are two séquences of procedures, such that FQ = Gk and D(F^_1}c^_1) —
k = 1,2, 1 <i <nk.

Then the séquences of triples

0,4), (TiSsî,cï))...)(î;\5hcî),...)(T^1,41)41), and

where s0 = [X] is the initial state of T, ï f = t\ . . . t\ F*a\, s\ = [ a * . . . a f ] /
k = 1,2, 1 < i < riky are the préfixes of the runs r(7ri,M) and r(7T2,M) on the
same model M based on J7 iff cj = c% and for every i, 1 < i < min(ni, n 2 ) , either
H — ci 0T iai • • • ai\ T1 lai • • • ai\ •

Proof Follows from Proposition 1.4 and the inherent property of the length-
preserving frames. •

2. THE ÉQUIVALENCE PROBLEM W.R.T. THE LENGTH-PRESERVING
FRAMES

In this section we present a novel straightforward approach to the équivalence
problem for linear MRPs w.r.t. some length-preserving semigroup frames. lts
key idea is as follows. Given a frame T and a pair of MRPs TTI, TT2 we choose
at first some spécifie semigroup W to encode all pairs of states (s',s"). Then,
using this coding, we construct a graph structure F to represent all pairs-of runs
r(7Ti, M), r(7T2, M) of TTI, n2 on the models based on T. It will be proved that only
a boundary fragment of r(7ri,7T2.) should be analyzed to check the équivalence of
7Ti and 7T2. Thus, the équivalence problem w.r.t. J7 can be reduced to the identity
problem "wf = wNl" on W. When the latter is decidable in polynomial time
and W is a group then the équivalence problem for MRPs w.r.t. ÏF is decidable
in polynomial time as well. Applying this technique, we demonstrate that the
équivalence problem is decidable for the frames associated with the commutative
monoids and it is decidable in polynomial time for the frames associated with the
free monoids (the universal frames) and the free commutative monoids.

Given a semigroup frame T = (5, so,R) we consider F as a monoid and write
T x T for the direct product of the monoids.

Suppose VF is a fmitely generated monoid, U is a submonoid of W, and w+, w*
are the distinguished éléments in W. Dénote by o and e a binary opération on W
and the unit of W respectively. The quadruple K = {W, U, w+,w*) is said to be a
criterial systern for T if K and T meet the following requirements:
(Rl) there exists a homomorphism ip of F x T in U such that

[tl] = [t2] <* w+ o ̂ ({[^], [t2])) o w* = e

holds for every pair ti7 t2 in A*]
(R2) for every element w in the coset U o w* (in the coset w+ o 17) the équation

l o u j = e (woX = e) has at most one solution X in the coset w+ oU (Uow*
respectively).
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It is worth noting that if W is a group then (R2) is always satisfied.
Let K = (W, U, u>+, w*) be a criterial System for a semigroup frame T. Given a

pair of normal linear MRPs TT̂ , i = 1, 2, such that Pni flP^2 = 0, define a labelled
directed graph F. The nodes of F are the quadruples of the form (H1, H2, w', tu"),
where iJ2 € 7 ^ U {À}, i = 1, 2, and w\ w/f are the éléments of cosets w+ o JJ and
£/ou>* respectively. The node (G1, G2,w+,u>*), where G1, G2 are the goals of the
MRPs, is called the root of F. The set of nodes is divided into three subsets Xi,
X2, and X3 such that

Xx = {(H\H2,w'tw") : w+-ow"£e, H1 G 7 ^ , i = 1,2},
X2 = {(H1

iH
2,w',w") : w+oW

// = e,or H1 G P^H3'* = A, i G {1, 2}},
and ail other nodes are in X$.

The arcs of F are marked with pairs (c1, c2) in C x C. For every node x in F we
define the set Ax as follows:

( {(c\c2): c'eC, i = l,2},lîx£Xu

Ax= { {(c,c) : CGC}, if x e X2,
{ 0, ifxex3.

Each node rc in Xi has \C\2 = M2 outgoing arcs, and each node x in X2 has \C\ — M
outgoing arcs marked with pairs in Ax. The nodes in X3 have no outgoing arcs.
The arcs connect the nodes in F as follows.

Suppose x = (F1, F 2 , w, u) is a node in XiUX2, and (c1^2) G Ax. Then the arc
marked with (c1, c2) leads from x to xf = "(i/1, i?2, ̂ r , w'), where
«/ = wo(/3(([T

1],[T2])), u/ = ^.«t1 ,t2))ou, and the terms iJfc, ifc, Tfc, fc = l,2,
are defined as follows. If Fk G P̂ fc and the term D(Fk

yc
k) is one of the form

TFb, where T e A% FeP*kl b G A then # * = F, t* - 6, Tfc = T. If F*1 G 7 ^
and D{Fk,ck) is a basic term T, then Hk = tk = A, Tfc = T. If Ffc = A then
Hk = fk = Tk = x

To the end of the section we assume that T is a length-preserving frame,
K — (W, C/, w+, w*) is a criterial System for J7, programs 71*1 and TT2 are nor-
mal linear MRPs having G1, G2 as their goals, and F is graph structure for TTI
and 7T2 defined above.

Lemma 2.1. Suppose xo, x r , . . . , xm, xm+i-, m > 0, is a finite séquence of nodes
in F such that Xo is the root of F and x$ = (F^1, Ff,Wi%Ui), 1 < i < m + 1.

( c S , ^ ) ( } , ï ) ( ^ , m )
x 0 — • x i — > • • • — > x m + i

25 a directed path in F z/f ̂ /iere exists a model M based on T such that the runs
r(7TA;, M ) , k = 1, 2, Aaue Éfte préfixes

and the following requirements are satisfied

1. i/mfc < 771 i/ien T^fc Z5 a 6a5zc term;
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2. for every i, 0 < i < nik, either T^ is a basic terra t\ and i = m& holds, or
T^ is one of the form t^F^b^, such that

Wi = w+ o ip{{(t\...t}], [ * ? . . . * ? ] »

Proof. By induction on m, using Proposition 1.4 and the définition of F. •

Lemma 2.2. Suppose c i , . . . , cm, m > 0, zs a /traie séquence of conditions and
Fo

fc, F*,..., F^ are £K/O séquences o f éléments in V^,} U {À}, A; = 1, 2, such that
i^+i £ D(F^,ci+1) if D(Ff,Ci+i) is not a basic term, and F^+1 = A otherwise,
hold for every i, 0 < i < m. Then for every node x0 = {F^F^w.u) in T there
exists a directed path

leading to the node xm = {H1 ,H2,wf,uf), such that wf = w o ^(([T1], [T2]));

u' = ^(([t1},^2])^ for some basic termst1^2^1^2. ThetermsHh, tk, Tfc, k =
1,2, depend on F^FQ and the séquence of pairs (ci, C i ) , . . . , (cm , cm) onfa/.

Proo/. Follows from the définition of F. •

À node x in F is said to be rejected if either x = (À, À, w',w/f) and w' o w" ^ e,
or x — (F1,F2,w/,w/f) is such that one of the terms F 1 , F2 is A, whereas the
other is a non-marginal procedure. A node x = (F1, F2, w, u) is câlled a marginal
if each of the terms F1 , F 2 is either a basic term A or a marginal procedure.

Lemma 2.3. TTI ~ ^ TT2 iff no rejected node is accessible from the root Y.

Proof. Follows from Proposition 1.5, Lemmas 2.1, 2.2, and requirement (RI) of
criterial System. •

Lemma 2.4. Suppose one of the procedures F1 , F 2 is terminated, a node
x = (F1^F2^w\u) is accessible from the root ofV, and w ov ou / e holds for
every element v in U. Then sorne rejected node is accessible from the root ofT.

Proof Suppose F 1 is terminated. Then, by Proposition 1.2 and Lemma 2.2,
a node y = (A, Jï,t(/,u') is accessible from x by some path marked with pairs
(ci, Ci),..., (cm, cm). If i? is a non-marginal procedure then y is a rejected node
which has to be found, Otherwise, a node z = (A, A, u>", u") is accessible fröm y
by some path marked with pairs (cm+i, cm+i), . . . , (cn, cn), m < n. Note, that,
by Lemma 2.2, we have w" = w o ̂ ({[T1], [T2])), V = ^(([i1], [̂ 2])) o u holds for
some terms t1, t2, T1, T2!. Since w ov ou ^ e holds for every element v in t/, we
arrive at the conclusion tu" o tt" / e. Hence, z is a rejected node. •

Lemma 2.5. Suppose one of the procedures F1, F2 is terminated and the nodes
x\ = {Fl,F2,wi,ui), X2 = (F1,F2,tU2,^2) are accessible from the root ofT.
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Suppose also that only one of the identities w\ = w2-> u\ — u2 holds. Then some
rejected node is accessible from the root of F as welL

Proof Consider the case wi = w2, u± ^ u2- Suppose F1 is a terminated procedure
in 7Ti. Following the proof of Lemma 2.4, we come to the conclusion that either
some node y± = (À, H2, w[1 u[) such that H2 is a non-marginal procedure, or some
node z\ = (À, À, w"y u'{) is accessible from x\ by some path marked with pairs
(ei, e i ) , . . . , (cm, Cm). In the former case X\ is a rejected node accessible from the
root of F which we have to found. In the latter case two alternatives are possible.
If vjf{ov!{ 7̂  e then z\ is a rejected node accessible from the root of F. If wf{ov!{ = e
then, by Lemma 2.2, a node z2 — (X,X,w2,u2) is accessible from x2 by the path
marked with pairs (ei, e i ) , . . . , (cn, cn). Following this way, we have

for some basic terms Ê1, £2, T1, T2. Since ẑ i = IÜ2J ^1 7̂  ̂ 2, eind ^'/ on'/ = e, we
obtain, as a conséquence of (R2) in the définition of criterial System, w2' ° w2' ^ e.
This means that z2 is a rejected node.

In the case of u\ ~ u2i w\ ^ w2 the proof is analogous. D

Lemma 2.6. Let L = max(|7ri|, |TT2 j) + 1,- and F1 ,F2 be a pair of procedures such
that one of them is non-marginal, whereas the other is terminated. Suppose that at
least L pairwise different nodes x\ = (F1, F2,wi: u'i)7... ,XL = (F1, F2,VÜL, U£)
are accessible from the root of F. Then some rejected node is accessible from the
root of F as well.

Proof By Lemma 2.5, it suffices to consider the case, when the éléments ui,..., UL
are pairwise different. Suppose F1 is terminated and F2 is non-marginal. Then
there exists a séquence of conditions c*,..., c^ and a séquence of procedures
Fl...F^ such that m < L, F* = F\ D(Fl,cj) = 2?i?+i&î, l < i < m,
and D(F^n, c^J = T^ G A*. On the other hand, since F2 is a non-marginal proce-
dure, there exists a séquence of conditions c2 , . . . , c\ and a séquence of procedures
Fl ...Fl such that n < L, F? = F2, D{Fj, c2) = ifFf+tf, 1 <j < n and Fn

2

is a self-referenced procedure. To simplify notation we assume n •= m. Consider a
matrix {vij}*^'™' whose éléments are. Vij = w+ o tp(([b\ . . . bj], [b2 . . . b2})) o Uj. By
requirement (R2) of criterial system, for every i: 1 < i < m, the list of éléments
vu, Vi2, • -., ViL (the i-th row of the matrix) contains at most one element equal to
the unit e of W. Since m < L, there exists fc, 1 < k < Ly such that all éléments
of the column Vik,V2k, • • • > m̂fc are non-unit. Therefore, by définition of F, there
exists a path from Xk to a node y = (X^F^w'\uf). Clearly, y is a rejected node
since Fj? is non-marginal. D

Theorem 2.7. Suppose T is a length-preserving semigroup frame over the
alphabet A, and K = (W, Î7, w~*~,w*) is a criterial system for F such that the
identity problem "wi = w2?" in W is decidable, Then the équivalence problem
"TTI ~f7T2 ?" w.r-.t. T is decidable for linear MRPs.
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Proof. Suppose TT\ and TT2 are normal MRPs, and L = max(|7ri|, |TT2|) + 1. Since
the identity problem "w\ — ̂ 2?" is decidable, any finite fragment of T can be
constructed effectively. By Lemma 2.3, to verify the équivalence of TV\ and TT2 one
needs only to check the accessibility of the rejected nodes from the root of F.

The following observations should be taken into account when searching for the
rejected nodes. Let F1 , F 2 be a pair of procedures in TTI, TT2-

1. If both F1 and F2 are non-terminated then, clearly, no rejected node is
accessible from any node x of the form (F1, F2 , w, u).

2. If one of F1, F 2 is a terminated procedure, whereas the other is non-marginal
then, by Lemmas 2.5, 2.6, at most L nodes x of the form (F1 , F 2 , w, u) should
be analyzed to check the accessibility of the rejected nodes from the root of
F.

3. If some finite fragment of F contains l non-marginal nodes then it contains
at most l\C\L marginal nodes.

Thus, to verify the équivalence of TTI and TT2 it sufRces to analyze only a finite
fragment of F containing O(L3 + L3|C|L) nodes. •

Theorem 2.7 provides us with an exponential-time algorithm deciding the
équivalence problem for MRPs. To get a polynomial-time algorithm one needs
to reduce the searching space of F down to the fragment of polynomial size. This
is possible when the criterial monoid W is a group. So, we continue the list of
lemmas, assuming now that the criterial system under considération is based on a
group W.

Lemma 2.8. Let x = (F1, F2,wi,ux) and y — (F1, F2,u>i,wi) be a pair of
marginal nodes in F. If no rejected node is accessible from both x and y then
(ui ° wi)"1 = (ii2 o W2)~l.

Proof By the définition of marginal nodes and Lemma 2.2, there exists a séquence
of conditions C\,... cm, such that

(Cl,ci) (C2,C2) (cm ,Cm) ,

x = x0 —> xi —> • • • —> xm = z ,
y = yO • S/1 — > • • • > Vm = Z

are directed paths in F, leading to zf = (À, À, u>', u'), zN — (À, À, wf\ uf/)^ and

u' =
w" = w2o<p(([Ti},{T2})), u" = 'P(([t1},{t2}))ou2

hold for some terms t1, t2, T1, T2. Since both zf and z11 are not rejected nodes,
we have wf o uf = wN o un = e and hence

1 ] , [T2])) o ̂ (([t1], [t2])) = (Ul o w^-1 = («2 o t ^ ) " 1 .

D
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L e m m a 2.9. Let L = max(|7ri|, |'*7T21), andF$, F$ be a pair of marginal procedures
in Tri, 7T2. Suppose

are pairwise different marginal nodes accessible from the root ofT. Suppose also
that no rejected nodes are accessible from yiy...yL. Then a rejected node is
accessible from yL+x iff (uL+i ° WL+I)"1 ^ («i o wi ) " 1 .

Proof. (<=) Follows from Lemma 2.8.
(=>) Suppose (UL+I °U)L+I)~1 = (v>i owi)"1. Consider an arbitrary path

(cj,cg) (clcl) (c^cl) ,
VL+1 = %0 > Xi > • • • > Xm+1 = Z (3)

leading to a node zf = (A, À, t//, u'), and assume that for every i, 1 < i < m
we have Xi = (Fz

l,F^v},vf) such that D(F^_1,c
1l) = TfFfb^l < % < m, and

D(F™>c]L) = rm+i> * = !»2- Clearly, m + 1 < L. Then similar to the proof of
Lemma 2.6 consider a matrix {vijYjZi™ whose éléments are
Vij = w+ o (p({[bj . -. &i], [6f . . . of])) o Uj-. By (i?2) of the définition of criterial sys-
tem, at most one element in each row is equal to e. Since m + 1 < L, there exists
&, 1 ^ fc < L, such that every element in the column Vok^iky • • - ^mk is non-unit.
Hence, by définition of F, there exists a path from y% to a node zn — (À, F^ u>", u").
Put wo = <p((K ... b\], [6^ . . . &?])) and u0 = ¥>«[!? . . .T^ + 1 ] , [T? . . . T^+1])>.
Since z ; / is not a rejected node, we have e = w" o un — w^o WQ O UQ O ufe.
Therefore, WQ O-UQ = (uk o Wk)~x- Applying Lemma 2.8, we obtain

= e.

Therefore ^' is not a rejected node. Since an arbitrary path (3) from Ï/L+I is
considered, we arrive at the conclusion that no rejected node is accessible from
2/L+i- O

By putting Lemmas 2.1-2.9 together we obtain:

Theorem 2.10. Suppose T is a length-preserving semigroup frame over the al-
phabet A, and K = (W7, £ƒ, w+,w*) is a criterial systemfor T\ Suppose also that W
is a group, and the identity problem aw\ — U)% ?" in W is decidable in time r(m),
where m = max(|u?i|, \w2\)- Then the équivalence problem "iri ~j? TT2?" is decid-
able for linear MRPs in time Cin3(T(C2n3) + logn), where n = max(|7ri|, |7r2|).
Constants C\,C<i depend on \A\, \C\, and the homomorphism cp.

Remark 2.11. We would like to emphasize that Theorem 2.10 guarantees the
polynomial-time decidability of the équivalence problem w.r.t. T ONLY when
the recursive procedures have définitions of the form (1). The concept of MRP
introduced in [1,4,6] has somewhat different syntax. The MRPs considered in
[1,4,6] can be translated (or, it is better to say, adapted) to the MRPs we deal
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with in this paper, but the size of the target MRP will be exponential of the size
of the source one.

3. APPLICATIONS

The following examples demonstrate the capability of Theorems 2.7, 2.10.

Example 3.1. Let T be a universal frame U over the alphabet A = {a1 , . . . , aN}.
Consider a monoid W = (U x U) U {w+} characterized by the identities

([Tl],
w+ o w+ = e, w+ o ([£], [t]) = ([£], [t]} o w+ = w+.

It is not difficult to verify that K = (W,U x W,u>+,w+) is a criterial System for
U. Therefore, we have:

Corollary 3.2. [27]. The équivalence problem w.r.t. the universal frames is
decidable for linear MRPs in time O(n3 logn).

Proof The • decidability of. the équivalence problem w.r.t. U follows from
Theorem 2.7. To establish a polynomial upper bound, it is worth noting that for
every pair of terms ti, t^ of the same length, équation u?+oXo</?({[£i], [t2]))ow+ = e
has a solution X in U x U iff w+ o ip(([tx], [t2])) = w+- Then, by Lemmas 2.4, 2.5,
for every pair of procedures F1 , F2 , one of whose is terminated, no more then two
nodes of the form (Fl,F2,w,u) should be checked in F to verify the accessibility
of some rejected node. D

Example 3.3. Let ffc be a frame associated with a free commutative monoid.
Suppose A = {a1,... ,aN} and dénote by Z a free Abelian group of the range
N generated by some éléments gi,...,gjv- Then K = (Z,Z,e,e) is a criterial
System for JF/C, assuming <p(([ai], [À])) = g* and <p(([A], [dj])) = qj1 for every pair
of actions a^üj.

Corollary 3.4. The équivalence problem w.r.t, T$c is decidable for linear MRPs
in time O(n3 logn).

Proof Follows from Theorem 2.10. •

Example 3.5. Suppose a frame T*c is associated with a partially commutative
monoid characterized by the identities \a%a?\ = [a '̂a2], (i,j) E / , / Ç { 1 , . . . , N}
x{l, . . . , iV}. Consider a monoid W whose éléments are all pairs in T\ x T\
together with spécifie éléments w~*~,w*. The binary opération o is defined as
follows: w+ o w* = e, {[Tx], [T2]) o {[tx]; [t2]) = ( [ T M [T2t2]), w+ o ([a], [a]> =

+ ^ = (W.T^xT^w^.w") is a criterial System for J7^. Thus, we obtain:

Corollary 3.6. The équivalence problem w.r.t. Tl is decidable for linear MRPs.

However, we still do not know if this problem can be decided in polynomial
time.
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Using our algebraic technique we obtain thus some new decidable cases of the
équivalence problem for monadic recursive programs. Our approach to the design-
ing of the efficient décision algorithms for the équivalence problem can be extended
to the more gênerai classes of interprétations and MPRs.

4. NOTE

This paper was presented at MFCS'98 Satellite Workshop on Frontiers between
the Decidability and Undecidability (FBDU'98), Brno, Czech Republic, August
24-25,1998.

The authors would like to thank the anonymous référées of this paper for helpful remarks.
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