@article{ITA_2000__34_2_87_0, author = {Bampis, E. and Giannakos, A. and Karzanov, A. and Manoussakis, Y. and Milis, I.}, title = {Perfect matching in general vs. cubic graphs : a note on the planar and bipartite cases}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {87--97}, publisher = {EDP-Sciences}, volume = {34}, number = {2}, year = {2000}, mrnumber = {1774303}, zbl = {0959.05092}, language = {en}, url = {http://archive.numdam.org/item/ITA_2000__34_2_87_0/} }
TY - JOUR AU - Bampis, E. AU - Giannakos, A. AU - Karzanov, A. AU - Manoussakis, Y. AU - Milis, I. TI - Perfect matching in general vs. cubic graphs : a note on the planar and bipartite cases JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2000 SP - 87 EP - 97 VL - 34 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/item/ITA_2000__34_2_87_0/ LA - en ID - ITA_2000__34_2_87_0 ER -
%0 Journal Article %A Bampis, E. %A Giannakos, A. %A Karzanov, A. %A Manoussakis, Y. %A Milis, I. %T Perfect matching in general vs. cubic graphs : a note on the planar and bipartite cases %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2000 %P 87-97 %V 34 %N 2 %I EDP-Sciences %U http://archive.numdam.org/item/ITA_2000__34_2_87_0/ %G en %F ITA_2000__34_2_87_0
Bampis, E.; Giannakos, A.; Karzanov, A.; Manoussakis, Y.; Milis, I. Perfect matching in general vs. cubic graphs : a note on the planar and bipartite cases. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 2, pp. 87-97. http://archive.numdam.org/item/ITA_2000__34_2_87_0/
[1] Computing a maximum cardinality matching in a bipartite graph in time O(n1.5√ m/log n ). Inform. Process. Lett. 37 (1991) 237-240. | MR | Zbl
, , and ,[2] Matchings in cubic graphs are as difficult as in general graphs, LaMI, Université d' Evry - Val d'Essonne (1995).
, , , and ,[3] Approximate and exact parallel scheduling, Part 1: The basic technique with applications to optimal parallel list ranking in logarithmic time. SIAM J. Comput. 17 (1988) 128-142. | MR | Zbl
and ,[4] Applications of the planar separator theorem. J. Inform. Process. 4 (1981) 203-207. | MR | Zbl
, and ,[5] Perfect matching for regular graphs is AC°-hard for the general matching problem. J. Comput. System Sci. 44 (1992) 94-102. | MR | Zbl
and ,[6] Paths, trees and flowers Canad. J. Math. 17 (1965) 449-467. | MR | Zbl
,[7] Clique partitions, graph compression and speeding-up algorithms, 23th STOC (1991) 123-133.
and ,[8] Sublinear time parallel algorithms for matchings and related problems. J. Algorithms 14 (1993) 180-213. | MR | Zbl
, and ,[9] Cubic graphs. ACM Computing Surveys 27 (1995) 471-495.
and ,[10] The matching problem for bipartite graphs with polynomially bounded permanents is in NC, 28th FOCS (1987) 166-172.
and ,[11] Optimal parallel algorithms on planar graphs. Inform. and Comput 84 (1990) 71-96. | MR | Zbl
,[12] Fast parallel algorithms for graph matching problems. Oxford University Press, preprint (to appear). | MR | Zbl
and ,[13] A fast parallel algorithm for routing in permutation networks. IEEE Trans. Comput. C-30 (1981) 93-100. | MR | Zbl
, and ,[14] Finding a maximum matching in a circular-arc graph. Inform. Process. Lett. 35 (1993) 185-193. | MR | Zbl
,[15] Matching Theory. Elsevier Science Publishers (1986). | MR | Zbl
and ,[16] An O(|V|½|E|) algorithm for finding maximum matchings in general graphs, 21th FOCS (1980) 17-23.
and ,[17] Flow in planar graphs wüh multiply sources and sinks, Proc. 30th FOCS (1989) 112-117.
and ,[18] Parallel algorithms for maximum matching and other problems in interval graphs, TR 88-927. Cornell University (1988).
and ,[19] Matching is as easy as matrix inversion. Combinatorica 7 (1987) 105-113. | MR | Zbl
, and ,[20] Planar Graphs: Theory and Algorithms. North-Holland (1988). | MR | Zbl
and ,[21] The four color problem. Academic Press, New York (1967). | MR | Zbl
,[22] Matching and vertex packing: how "hard" are they?, Quo Vadis, Graph Theory?, edited by J. Gimbel, J.W. Kennedy and L.V. Quintas. Ann. Discrete Math. 55 (1993) 275-312. | MR | Zbl
,[23] An optimal parallel algorithm for graph planarity, 30th FOCS (1989) 282-287.
and ,[24] Maximum matching in general graphs through randomization. J. Algorithms 10 (1989) 557-567. | MR | Zbl
,[25] NC algorithms for Computing the number of perfect matchings in K3,3-free graphs and related problems. Inform. and Comput. 80 (1989) 152-164. | MR | Zbl
,[26] A theory of alternating paths and blossoms for proving correctness of the O(√VE) general graph maximum matching algorithm. Combinatorica 14 (1994) 71-109. | MR | Zbl
,