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ON THE HORTON-STRAHLER NUMBER
FOR COMBINATORIAL TRIES

MARKUS E. NEBEL1

Abstract. In this paper we investigate the average Horton-Strahler
number of all possible tree-structures of binary tries. For that purpose
we consider a generalization of extended binary trees where leaves are
distinguished in order to represent the location of keys within a cor-
responding trie. Assuming a uniform distribution for those trees we
prove that the expected Horton-Strahler number of a tree with a in-
ternai nodes and (3 leaves that correspond to a key is asymptotically
given by

42^-° log(q)(2/? - l)(q ( 2 + 1 )

provided that a and (3 grow in some fixed proportion p when a —• oo.
A similar result is shown for trees with a internai nodes but with an
arbitrary number of keys.

AMS Subject Classification. 05A15, 05C05, 68W40.

1. INTRODUCTION

Let T be a binary tree, Le. a tree where each node has at most two descendants.
Then the Horton-Strahler number of T denoted hs(T) is recursively defined by

f 0 : T is either a leaf or empty
hs(T) := <̂  hs(T.l) + 1 : if hs(T.l) = hs(T.r)

[ max(/is(TJ),/i5(T.r)) : otherwise.

Here, T.l (resp. T.r) dénotes the left (resp. right) subtree of T. The Horton-
Strahler number was originally introduced to classify river Systems (see [12] and
[22]) but it has also been adopted in computer science, molecular biology, medi-
cine and other disciplines. Ershov [6], for example, has shown that the minimal
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number of registers needed to evaluate an arithmetic expression E with binary
operators, which is représentée as a binary tree T(£) (the syntax-tree), is given
by 1 + hs(T(£)). If all syntax-trees with n internai nodes (n binary operators) are
assumed to be equally likely, then it is known that the average number of registers
that are needed to evaluate an expression optimally is given by

\ Iog2(27r2n) - ^ ± i + F(n) + O{n~^+&) (1)

for all ö > 0, n —> oo, where 7 = 0.577215... is Euler's constant and F is a pe-
riodic, oscillating function of small amplitude (see e.g. [7] and [13]). Syntax-trees
corresponding to expressions built with unary and binary operators were consid-
ered in [9]. Furthermore, the minimum stack-size required for a traversai of a
binary tree T is also given by 1 + hs(T) (e.g. see [7] and [11]). Meir et al. [18]
investigated the Horton-Strahler number of channel networks with a fixed number
of inputs. The combinatorics of the Horton-Strahler analysis has been used in
computer graphies for the création of faithful synthetic images of trees (see [23]).
The impact of the Horton-Strahler number on molecular biology comes from the-
oretical considérations about secondary structures of single-stranded nucleic acids
(see [24] and the références given there).

All those applications and studies have in common that they deal with ordinary
extended binary trees, i.e. trees where each node is either a leaf or has two
descendants. All the cited papers which present an average case analysis consider
the uniform model, i.e. they assume that all trees of a given size are equally likely.

The Horton-Strahler number of tries has been investigated in a recent work by
Devroye and Kruszewski [4]. A trie is a binary tree which is used to store the set
of keys K = {&i,. •., fcn} in the following manner: each key k^ considered as a
string of O's and I's due to its binary représentation, defines a path in a binary
tree T (0 indicates a left turn, 1 a right turn); the trie defined by k\,..., kn is the
smallest binary tree for which the paths truncated at the leaves of T are all pairwise
different. Thus each leaf of T stores exa'ctly one of the keys ki7 1 < i < n. Note
that T does not need to be an extended binary tree. T might have internai nodes
with only one successor. However, the Horton-Strahler number hs(T) remains
unchanged when we turn T into an extended binary tree. Devroye and Kruszewski
considered random tries constructed from n i.i.d. séquences of Bernoulli random
variables with parameter p, 0 < p < 1; they have shown that the Horton-Strahler
number Hn of those tries fulfils

Hn 1
log n log . , 11—r

ö o min(p,l— p)

in probability as n —• 00. The presented (Bernoulli-) model of a random trie is
very realsitic. For example, if we choose p being \, this model describes exactly
the behavior of tries built from random integer data assuming all integers to be
equally likely.
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K = {^1,^2,^3,^4} = {0001,0010,1010,1101}

k2

FIGURE 1. An example for a set of keys K, the resulting trie and
the corresponding C-trie.

In this paper we will adopt a combinatorial point of view by regarding ail
tree-structures that might be generated by the trie algorithm. For that purpose
we will consider a class of generalized extended binary trees the so-called C-tries
(for combinatorial tries) which were introduced in [20]. Let a C-trie be an extended
binary tree where each leaf is either colored black or white; each black leaf has to be
the brother of an internai node. If we now interpret a white leaf as the location of
a key and a black leaf as a NIL-pointer the C-tries resemble all the tree-structures
which the trie algorithm might generate. An example for that correspondence
can be found in Figure 1. It is obvious that all the correspondences given above
between the Horton-Strahler number and the parameters such as the number of
registers needed for a syntax-tree évaluation or the stack-size for a traversai remain
valid even by coloring the leaves. A C-trie wit h a internai no des (wit h a internai
nodes and fi white leaves) is defined to be of size a (of size (a, /?)) and will be called
a-trie ((a,/?)-trie). Note that 2 < j3 < a + 1 must hold. A C-trie of size (a,a+1) is
nothing else but an ordinary extended binary tree. For our investigations we will
assume that ail C-tries of size a (resp. (a,/?)) are equally likely which is a quite
different assumption compared to the before mentioned Bernoulli-model where it
is more likely that a trie is balanced than being of a linear structure. This is why
our investigation is rather of a combinatorial character.

Note that the idea of coloring leaves is not only useful for introducing a
combinatorial equivalent for the tree-structures of binary tries. By introducing
the number of white leaves as a second parameter we are more flexible to model
natural phenomena. By varying the ratio of a and (3 we can control the average
shape of the related trees since a large number of black leaves can only exist if
the tree has many linear lists within its inner structure. Thus we hope that the
results presented in the rest of this paper will be of interest with respect to geol-
ogy, molecular biology, synthetic images of trees, channel networks, ... Think for
example of a river network modelled by an extended binary tree T and the task
to model different lengths of the rivers. By adding a new node with a black leaf
as one of its successors in between two arbitrary existing nodes of T (see Fig. 2),
we do not change the tree's Horton-Strahler number (as it should be since the
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V

FIGURE 2. Affecting additive parameters by adding anew node
in between two existing ones. All trees shown in the figure have
the same Horton-Strahler number but different path lengths.

length of a river should not affect the classification of a river network). However,
we change length-sensitive paramètres like e.g. the external path length.

Thus, even if ail ôur results are presented using the term C-trie instead of
generalized extended binary tree they should be considered as applicable to many
other areas.

2. THE AVERAGE HORTON-STRAHLER NUMBER

The aim of this section is to dérive the average Horton-Strahler number for
uniform random C-tries as defined in Section 1, i.e. the average value of the
function hs applied to a set of C-tries of the same size (a, /?). We will use gener-
ating fonctions in order to prove our results. The way these generating functions
are derived is similar to that in [7], the methodology used to détermine asymp-
totics for the coefficients in question is standard and can be found in [8]. By
[x™1 • • •x7^k]f(xi,... ,Xk) we dénote the coefficient at x™1 • • -x^k in an expansion
o f f(xu...,xk) a t (xu...,xk) = ( 0 , . . . , 0 ) .

We start our investigations by determining the generating function Hp(x>y)
which counts those C-tries that have a Horton-Strahler number of exactly p.

Lemma 1. Let x mark an internai node and let y mark a white leaf. The
generating function Hp(xJy) of C-tries T with hs(T) = p possesses the follow-
ing closed form représentation:

1 - 2 * -

vhere $ = arccos (lte{v+l) + &(2 + v{* + v))\ .
V 2x2y2 )

Proof In order to dérive a représentation for the generating function in question
we have to distinguish the cases shown in Figure 3. For p > 2 these cases translate
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{DM} {D,B}

p

FIGURE 3. Ail possible décompositions of a C-trie T with hs(T) =
p. The number below a triangle détermines the value of hs of the
subtrie represented.

into the following récurrence for Hp{x,y)\

(4)

Hère, the boundary condition for p — 1 is still to be determined yet. It is obvious
that a C-trie T with hs(T) = 1 has to have a linear structure, i.e. either the left or
the right subtrie of each internai node has to be a leaf. Thus Hx(x,y) must fulfil
H\(x,y) = xy2 + (2x -h 2xy)H1{x,y) and therefore

rr / - „A XV2

iV ' ^ l-2x-2xy

In order to solve this récurrence we divide both sides of (4) by xHp(x,y)y thus

Subtracting this from the analogous identity obtained for p -f 1 éliminâtes the
summation. We find

0 = + 2Hp(x, y) (5)

Let Vp(x, y) := £ ^y) • Dividing (5) by Hp(x, y) our récurrence can be expressed
by means of Vp:
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with the initial condition V2(xyy) = ^(s'^V We can détermine H2(x,y) by using
H\(x,y) and the récurrence (4) which yields

_ l
2[ 'V)~

This new récurrence can be solved by a trigonométrie change of variables. We
set V2(x,y) = 2cos(0) and generally Vp(x,y) = 2cos((j)p). Since cos2(x) = |
(1 -h cos(2x)) holds we see that the récurrence translates into

Therefore, for p > 2, 0p+i = 2cj)p = 2p~l4> must hold which gives the explicit form

We can go back to Hp(x, y) by regarding

/« .A T^/^ _ Hp-X{x,y) Hp„2(x,y) Hx(x,y)
iv~>*7 **K~j Hp(x,y) Hp-ïfay) ' H2(x,y) Hp(x,y)

By means of the identity sin(2x) = 2sin(x) cos(:r) the product on the left-hand
side collapses to sin(2p~10) when multiplied by sin(0). This complètes the proof.

D

Next we consider those C-tries that have a Horton-Strahler number of at least p.

Lemma 2. Let Sp(x,y) := J2j>pHj(x,y)} n := {1_£*f2xy)2, e := y/1 - 4« and
u := TTT- We Aaue

= y.
1 - v?*-1

Proof. In order to prove the lemma we use the identity sin(x) — ~-% {e%x ~ e lx

i2 = — 1, which we insert in (2). Together with t := e~ï(^ and r := 2p~l we find

Now consider those parts of the représentation that depend on p. Summing them
up for j > p yields

i~t2r ~ ^ ~
j>P m,k>0

^° 1
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Since the mapping (m, fc) —> 2m(2k + 1) is a bijection on N2 —> N the last sum

equals ^ . Therefore Sp(x,y) = 2z sin(^) 1_2^_2xy îTF n o l c l s . Returning to

trigonométrie functions, z.e. setting i = e~ï(^ = cos(<£) — isin(</>), gives us

For p > 1 it is now possible to express the trigonométrie functions by means of
Chebyshev polynomials. For p — 1 we run into trouble since in that case we
would refer to the ^-th polynomial which does not exist. Thus, the next step
is to express Sp(x,y) by means of \(j) instead of <f>. By applying the identity
2cos(a;)sm(x) = sin(2x) we find that

-ism(cf>)xy2 c a s (^ ) s in (^ )cos (2P- 1 ^ ) 2xy2

p[XjV) \-2x-2xy sin(2^-1^) 1 - 2x - 2xy

holds. From équation (3) we dérive closed form expressions for i sin(0) and cos(|0)
which we insert into the last représentation of Sp(x, y). Then, applying the follow-
ing identities for the Chebyshev polynomial of the first-kind (Tn(x)) (see e.g. [1]
22.3.15) and the second-kind {Un(x)) (see e.g. [1] 22.3.16)

Tn(cos(4>)) = cos(n^),

yield

Sp{x,y) = -

Hère K := cos(|</>) = - 1~2^~2 x v holds. Now let T(x, y) be the ordinary generating
function of ail C-tries. In [21] the following représentation can be found:

T(x,y) = l - ^ - V ( l - 2 x ) ( l - 2 ^ -

This, together with two further identities for Chebyshev polynomials

Tn{x) = Un(x) - xUn-i(x), (see e.g. [1], 22.5.6),

Un+i(x) = 2xUn(x) - Un-i(x), (see e.g. [15] (B77)),

gives us

Sp(x, y) = T(x, y)-y-



286 M.E. NEBEL

for U-i(x) := 0. A closed form représentation for Un(x) is given in [15] (B74). By
fundamental algebraic manipulations this représentation can be transformed into

2v1 - x~2

Now, since 1 — k~2 — 1 — AK holds, we get

We complete the proof by using the substitutions of the lemma and applying some
obvious simplifications. D

Remark. Besides the Horton-Strahler number there is another monotonie
màrking of binary trees which is related to the évaluation of arithmetic expressions
and the traversai. This is the so called stack-number of the tree which was inves-
tigated in numerous papers (e.g. [3,14,16,19,20] and [21]). It corresponds to the
stack-size needed to traverse a tree in preorder using the traditional algorithm (see
e.g. [17], p. 319ff) and the number of cells on a stack needed to evaluate an arith-
metic expression by means of a simple traversai algorithm (see [15] for details).
For non-colored extended binary trees we have the following correspondence: the
number of trees with a internai nodes, with a stack-number of at most 2k — 1, is
equal to the number of trees with eu internai nodes and a Horton-Strahler number
of k (see e.g. [15], Th. 5.8). If we inspect the generating functions of the previous
lemma and of [20] and [21] we see that such a relation does not exist for C-tries
neither of size a nor of size (a, /?).

In order to compute the average Horton-Strahler number we need a représen-
tation of the generating function M(x,y) :— 5Zp>i pHp(x-> y)- ^ is n°t hard to see
that M(x,y) = J2P>i SP(xyy) holds. Therefore we have

•M(x,y) =

Here V2(n) dénotes the dyadic valuation of n, Le. the number of positive divisors
Of n which are a power of two.

Now, everything is prepared to détermine an asymptotic equivalent for the
average Horton-Strahler number. We use the Mellin summation method as de-
scribed in [10] to evaluate the sum. For that purpose we set u = exp(—'t) and
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apply the well-known identity

f*c-\-ioo1 rc-\-zoo

j) = =-: / T(s)j st~sds i = —1

for some c in the fundamental strip of the Mellin transform of exp(—tj) and for T(s)
the complete gamma function. This is how it is possible to express the number-
theoretic function V2(n) by means of the Riemann Zeta function Ç(z) (see [2] for
details). We have (see e.g. [15], p. 155)

and therefore with u = exp(-t)

pc+ioo

v2\n) +
n>l

-i pc+ioo

K = ir-. / as)2sT{s)t-s{2s - ïy'ds.
Zl7ri Jc-ioo

Now, according to the Mellin summation formula, we have to sum the residues
of ((s)2sT(s)t~s(2s — l ) " 1 left to the fundamental strip, i.e. the residues with
a real part less or equal to one. There are singularities at s = 1 and 5 = — n,
n € NU{0}, but we only have to consider those which are larger than —1 since the
others will only imply terms that can be neglected. There are further singularities
at s = f^ t =: Xfcï & ̂  ^ \ { 0 } Ï which would imply some oscillation in the lower
order terms. As the known methods for multivariate asymptotics only allow to
détermine the leading term, the singularities Xk will only be considered later in
the univariate case. The sum of the residues for 5 = 1 and 5 = 0 is given by

2 2 lnft) + 2 7 - 2 ln(?r) - 3 ln(2)
ï+ 41n(2)

Here, 7 = 0.5772156649... dénotes Eulers's constant.
In order to approximate the coefficient of M (a;, y) at xay^ we are interested in an

expansion of our generating function at its dominant singularity. For that purpose
we assume y being a positive constant not equal to 0 in order to détermine the
dominant singularity with respect to x, i-e. the value of x which has the smallest
modulus and which is a singular point of M{x,y). Note that this approach leads
to the restriction that our asymptotic will only be valid when a and f3 grow
simultaneously in a fixéd proportion. By définition of M(x,y) and properties of
the Horton-Strahler number we have the following trivial bounds for [xa]M(Xj y):

\xa\T(x,y) < [xa]M{x,y) < Iog2(a + l)\xa\T(x,y).
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Under the assumption that y is a constant and since x — ^—p is the dominant
singularity oïT(x,y) the O-transfer method introduced in [8] leads to

Therefore the Cauchy-Hadamard formula tells us that both the minorant and the
majorant of M(x, y) have a radius of convergence of ^—^ and we infer that ^ - is
the radius of convergence of M (ar, y) itself. Thus, by the theorem of Pringsheim, we
can conclude that x = ^—^ is a dominant singularity of our generating function.
It résides to prove that it is the only dominant singularity. For that purpose we
consider the représentation (6) of M(x,y). Besides the algebraic singularity at
x = 24^ implied by our substitution, the factor of the sum is only singular for
u = 0 i.e. for x = 0. This is why it does not extend the set of dominant
singularities. The sum ^2n>i(v2(n)+l)un possesses the minorant J2n>i u " a ndthe
majorant ]Cn>i(n+ l )^ n both with a radius of convergence equal to 1. Therefore
the set of solutions of \u\ = 1 might contribute further dominant singularities.
However, \u\ — 1 has only one solution with an appropriate modulus, namely x =

^ - Thus we can conclude that there is only one dominant singularity. Since t =

~~ l°g ( iqpf ) a n d £ becomes 0 at our dominant singularity we expand — log ( —^

about e = 0 to get t - 2e and thus t - 2^{1~^~^-^^-. We conclude that

for an expansion at x = 3+4"> * complies with 2 ̂  + y/l — x(2 + 4y). On the
assumption that y is constant and for u = exp(—£), the factor y^(*-u) possesses
the expansion yt + ö(t2). So, the most significant term of the expansion of M(x, y)
around x — -^~ is given by

yt ln(t) \/2y(\ + 2y) ,
2 ln(2) 2 log(2) V l + y j g U X[Z + 4 y j j }' ( ? j

This représentation can be used to approximate the coefficients of M(x,y). We
find:

Lemma 3. Let p := ~ be.fixed. The coefficient of M(x,y) at xay@ is asymptoti-
cally given by

a —> 00.
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Proof. We use the following well-known expansions

log((l-:r(2 ^
n>l n k>0

and extract the coefficient at xay@ in the resulting expansion of the right-hand
sideof (7). We find

By induction on a it is possible to prove the following recursion for a(a):

a(0) = 0,
' . 2 a - 3 . , , ( - 1 ) Q 1

2r(| - a)£(a

This recursion can be solved by using ordinary generating functions. For A(z) :=
f / ' ^(*)d* + E ^(^)^a- Applying the

identity E a > 1 ç(a;)2a = | \ / 1 — ^(^ — 1) + | , which for instance Zeilberger's "fast
algorithm" (see [25]) finds for you, yields a simple d.ifferential équation for A{z)
which possesses the solution A(z) — —y/1— z\og(l - z) and thus

a{a) ^ [za]y/T^l}og({l-z)-1) '-'•

holds. By applying the (D-transfer method we find the approximation a (a)
r^ — lQgW which proves the lemma. D

In order to get the average value, the coefficient given in Lemma 3 has to
be divided by the total number of C-tries of size (a,/?). We can proceed in the
same way as done in the previous proof in order to approximate the coefficient
[xayl3]T(x,y). Thus we factor T(x,y) into

1 - 2x 1 - 2x i —
2x 2x
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which corresponds to an expansion of T(x,y) around the singularity y — —^
(assuming now that x is constant). Since the leftmost term of (8) only possesses
coefficients at y° it can be neglected. Furthermore, ^/l — Axy(l — 2x)~1 can be
expanded using the binomial theorem, which yields

= (j) (" "^(-

Now, taking the factor — ̂ ~^ into account proves that [xayP]T(x,y)
— \^{ot 4- 1, /3). Thus we conclude that

Dividing the coefficient given in Lemma 3 by the previous quantity provides the
following theorem:

Theorem 1. On the assumption that all (a,j3)-tries are equally likely the average
Horton-S trahler number of a C-trie of size (o:,/?) is asymptotically given by

p := | fixed, a —» oo.

Remark. The asymptotic given for the number of (a, /?)-tries is equal to the exact
number of C-tries of this size for a > 0. This is due to the fact that we find a
factorization of T(x, y) when expanding it around its dominant singularity. Thus,
besides some terms at y°, no terms were neglected when we have developed the
leading term and have extracted the coefficients.

Looking at a plot of our average Horton-Strahler number of C-tries (see the
last section of this paper) it seems to be hardly dependent on j3. This impression
is justified when we use Stirling's formula to approximate the binomial coefficient
(2/f ) wittnn our result. We find that the average Horton-Strahler number of C-tries
is asymptotically given by

• 1 \ log(q)(a + l)(a + 2)^ (2a + 1\
/3-lJ 8 • 4aaf log(2) \a-lj'

Thus, only for very sparse C-tries, i.e. C-tries with few white leaves only, we
have an influence of (3 on the average Horton-Strahler number. But for every
fixed p and a —> oo also j3 tends to infinity and thus -ÖZJ becomes zero. Thus it
becomes possible to express the average Horton-Strahler number of (a,/3)-tries on
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dependence of a only. We conclude this discussion by noting that

lim
a—KX) 4«+!a* \ a - l ) 2

holds. Thus we have the following corollary:

Corollary 1. Under the assumption that the number of internai nodes a and the
number of white leaves f3 grow in some fixed proportion the average Horton-Strahler
number of (a, (3) -tries is asymptotically given by

log(a)
21og(2)

Remark. We can also conclude the resuit of the previous corollary by using
the multivariate Darboux-method presented in [5] in order to approximate the
coefficient of the leading term in (7) and the number of C-tries of size (a,/?). In
that case, because of side-conditions given by the method, p = % has to be strictly
larger that one. However, it is impossible to dérive the more accurate results
presented in Lemma 3 and Theorem 1 in that way.

We will now use our generating functions to dérive an asymptotic equivalent
for the average Horton-Strahler number for C-tries of size a. As methodology is
much more developed for univariate generating functions it is possible to dérive
results of higher précision. Note, that in the uniform model it is not possible to
dérive a univariate resuit with respect to the number of white leaves since all the
generating functions would count infinitely many C-tries of any given size ƒ?. This
is due to the fact, that the number of white leaves does not limit the number of
internai nodes even if we fix the Horton-Strahler number of the C-tries considered.
Thus, we return ter (6) and set y = 1 in ail parts of the generating function. It is
obvious that we find the same intégral as a représentation of Y2n>i(V2(n)~^~^)uTl a s

in the bivariate case since the substitution u = exp(—t) yields the same resuit even
if we set y to 1. But now it makes sensé to consider terms of lower significance
also, because the O-transfer method for univariate generating functions makes
it possible to translate them into the right contributions for the asymptotics in
question. Therefore we sum the residues of the singularities at s € {1, —n, Xk}-> n £
NU{0}, k e Z\{0}, and multiply them by the expansion of the factor
which gives us

(1 Ht) +27-2111(70- 3 ln(2)\ „ r(Xfc)Ç(Xfc) t

\ 41n(2) ) t + ^o ln(2) * + ( }

Again, we are interested in an expansion at the dominant singularity which is
x = ^1=1 = | . Thus we have to set t = 2\/6\/l — 6x in order to resubstitutex =
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t in (9) which yields the desired expansion:

21n(2)
- 2 \n(n)

21n(2)

y /6Vl-6xln(( l-6x)-1)
21n(2)

- 6rr(27 - + ln(3))
21n(2)

- 6x|).

Now we can apply the transfer formulae according to [8]. We have

/n —Ct — 1

and

7rn3
n

which provide the following lemma:

Lemma 4. The coefficient of M(x, 1) at xa is asymptotically given by

* ( q ) - 7 + 21n(2) - 2 + 21n(?r) -

f

Finally, this quantity has to be divided by the asymptotic number of a-tries which
is known (see [20]) to be given by 6^+aaTi/(2^/n) + O{a~§). After numerous
simplifications we find:

Theorem 2. On the assumption that all C-tries of the same size are equally likely
the average Horton-Strahler number of an a-trie is asymptotically given by
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Xk = S
\

—» oo. The function A(x) is a periodic function of small modulus
(\A(x)\ < 0.041) and possesses the following représentation as a Fourier series:

Remark. Note that this is exactly the same resuit as for non-colored extended
binary trees given in (1) when setting a to 6a. The same effect with a different
constant can be observed for the average stack-number. In that case we have to set
a to §a in order to get the same leading term as for non-colored trees. The fact,
that there are different constants for different parameters, supports a conjecture
stated in [20] which says that it seems to be impossible to conclude the behavior
of C-tries with respect to "traversal-parameters" from the well know results for
ordinary extended binary trees (e.g. by a simple rearrangement together with an
appropriate weighting of the trees). The bound |A(x)| < 0.041 can be found by
means of numerical studies.

3. VlSUALIZATION AND CONCLUSIONS
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FIGURE 4. The average
stack-number (upper graph)
and Horton-Strahler number
(lower graph) on dependence
of the number of internai
no des a.

FIGURE 5. The ratio of
the average Horton-Strahler
number and the average
stack-number.

In this section we will provide some plots of the results presented in [20], in [21]
and in this paper. This is how we are going to compare the average stack-size with
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the average Horton-Strahler number which are related in the following way: if we
think of applications of the Horton-Strahler number such as a tree traversai or
the évaluation of an arithmetic expression, the stack-size of the corresponding tree
describes the amount of space needed when we apply a usual preorder traversai
or a simple traversai strategy for évaluation. Those methods can be optimized
with respect to the amount of space needed by easing the restriction that subtrees
must be visited in a fixed order. The space requirement of the resulting strategy is
described by the Horton-Strahler number. Therefore, we will speak of an economy
of space when comparing both parameters.

FIGURE 6. A plot of the av-
eragé Horton-Strahler num-
ber on dependence of p and j3.

FIGURE 7. The différence
of the average stack-number
and the average Horton-
Strahler number on depen-
dence of p and ƒ?.

The first plot is presented in Figure 4. It shows the absolute values of the
average stack-number and the average Horton-Strahler number. As we can see the
order of growth of both graphs is quite different. Even if the total stack-number for
C-tries of size a is small, the relative economy of space implied by the application
of the optimized algorithms related to the Horton-Strahler number is remarkable
(as we can see in Fig. 5). In the bivariate setting a similar behavior can be found.
If we take a look at Figure 6 we see that the average Horton-Strahler number for
C-tries of size (a, f3) grows slowly and is of small value even for sparse C-tries, i.e.
for C-tries with a large internai structure but only a few white leaves. As we would
have expected from the univariate case, Figure 7 shows that the economy of space
grows the larger the (a,/?)-tries become. We can also observe that the advantage
of the optimized algorithms gets larger with p growing and not only the relative
but also the total economy of space get large when the C-tries become sparse. For
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example on the assumption of p = 8 the total economy of space is about 60 for
(a,/?)-tries with only 20 white leaves.

The author would like to thank the anonymous référées for their comments and criticism
which helped to improve the quality of the paper. I am also indebted to one of the
référées for suggesting the notions a-trie and (a, /?)-trie respectively.
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