
INFORMATIQUE THÉORIQUE ET APPLICATIONS

MARIE-PIERRE BÉAL

OLIVIER CARTON
Computing the prefix of an automaton
Informatique théorique et applications, tome 34, no 6 (2000),
p. 503-514
<http://www.numdam.org/item?id=ITA_2000__34_6_503_0>

© AFCET, 2000, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_2000__34_6_503_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informaties and Applications
Theoret. Informaties Appl. 34 (2000) 503-514

COMPUTING THE PREFIX OF AN AUTOMATON

MARIE-PIERRE BÉAL1 AND OLIVIER CARTON1

Abstract. We present an algorithm for Computing the prefix of an
automaton. Automata considered are non-deterministic, labelled on
words, and can have e-transitions. The prefix automaton of an au-
tomaton A has the following characteristic properties. It has the same
graph as A. Each accepting path has the same label as in A- For each
state <?, the longest common prefix of the labels of all paths going from q
to an initial or final state is empty. The interest of the computation of
the prefix of an automaton is that it is the first step of the minimiza-
tion of sequential transducers. The algorithm that we describe has the
same worst case time complexity as another algorithm due to Mohri
but our algorithm allows automata that have empty labelled cycles. If
we dénote by P(q) the longest common prefix of labels of paths going
from q to an initial or final state, it opérâtes in time O((P + 1) x \E\)
where P is the maximal length of ail P(q).

Mathematics Subject Classification. 68Q45.

1. INTRODUCTION

Transducers are finite state machines whose transitions or edges are labelled
by a pair made of an input word and an output word. They are widely used in
practice to model various things like lexical analyzers in language processing [14],
opérations in numération Systems [11] or also encoding or decoding schemes for
channels [2]. As a transducer has input and output labels, and even if these
labels are letters, there is in genera! no minimal equivalent object like for simple
finite state automata. It is very often required that the transducer has letters as
input labels and has moreover a deterministic input automaton. It is then called
sequential. Used as an encoder, this means that the output codeword is obtained
sequentially from the input data. Transducers which are not sequential, but which

1 Institut Gaspard Monge, Université de Marne-la-Vallée, 5 boulevard Descartes, 77454
Marne-la-Vallée Cedex 2, France; e-mail: Marie-Pierre.Beal@univ-mlv.fr
et 01ivier.Carton@univ-mlv.f url: http://ww-igm.univ-mlv.fr/~beal/
et http://www-igm.univ-mlv.fr/~carton/

© EDP Sciences 2001

504 M.-P. BÉAL AND O. CARTON

realize sequential functions, can be first determinized (see for instance [4] or [3]).
In the case of sequential transducers, there exists a minimal equivalent sequential
transducer, even if the output labels are variable length words.

A characterization of minimal sequential transducers was first given in [7].
A procedure to produce a minimal sequential transducer is there indicated. It
is in particular shown in [7] that the minimal sequential transducer is obtained in
two steps. The first one is the computation of the prefix automaton of the output •
automaton of the transducer. The second step is a classical minimization of the
transducer obtained at the end of the first step, seen as an ordinary fmite state
automaton. The prefix of an automaton can be interpreted as an automaton with
the same underlying graph, same behaviour but produces its output as soon as
possible. lts name comes from the fact that for any state q, the longest common
prefix P(q) of labels of paths going from q to an initial or final state is empty.

The first algorithm of computation of the prefix of an automaton appears in [12]
and [13]. The construction is there called a quasi-determinization. It has been
noticed by Mohri that the first step of the minimization of sequential transducers
is independent from the notion of transducers. The quasi-determinization is an
algorithm that works on finite state automata. It keeps the graph of an automaton
and changes only the labels of the edges. Roughly speaking, it pushes the labels
of the edges from the final states towards the initial states as much as possible.
The algorithm of Mohri has a time complexity O((P + 1) x \E\), where E is
the set of edges and P the maximum of the lengths of P(q) for all states q.
We assume here that the number of states |Q| is less than the number of edges.
Another algorithm for computing the prefix of automaton has been presented
in [5] and [6]. The approach of this algorithm is really different from ours. It
is based on the construction of the suffix tree of a tree and its time complexity
is O(\Q\-\-\E\+S log |A|), where A is the alphabet and S is the sum of the lengths
of the labels of all edges of the automaton. Breslauer's algorithm can thus be
better when there is a small number of edges and Mohri's algorithm is better in
the other case. In practice, S can be very large and P can be very small. This
makes the algorithms of Mohri and ours almost linear. A comparison of the two
complexities is given in [13].

Our algorith uses the same principle of pushing letters through states as Mohri's
algorithm does. Main restriction to Mohri's algorithm is that it does not work
when the automaton contains a cycle of empty label (the System of équations given
in [13] (Lem. 2, p. 182) does not admits a unique solution in this case). Some step
in Mohri's algorithm requires that the automaton has no empty labelled cycle.
However, if the starting automaton does not have any such cycle, this property
is kept along the process. The algorithm is therefore correct in this case. This
restriction is not really important for applications since the transducers used in
practice, like in language processing, have no empty labelled cycles in output.

In this paper, we present another algorithm of computation of the prefix of an
automaton which has the same worst case time complexity as Mohri's algorithm,
O((P + 1) x \E\)} and that works for all automata. The existence of empty labelled
cycles accounts for most of the dimculty in the coming algorithm. The time

COMPUTING THE PREFIX OF AN AUTOMATON 505

complexity is independent of the size of the alphabet. The algorithm consists in
decreasing by 1 the value P at each step. We present our algorithm for sequential
transducers but it can be directly extended to the case of subsequential transducers
(see [7] or [4] for the définition of a subsequential transducer).

In Section 2, we recall some basic définitions from automata theory and we
define the prefix automaton of an automaton. The computation algorithm of the
prefix of an automaton is presented in Section 3. The complexity is analyzed in
Section 4. In that section some data structures are described which can be used
to get the right time complexity of the algorithm.

2. PREFIX OF AN AUTOMATON AND APPLICATIONS

In the sequel, A dénotes a finite alphabet and e is the empty word. A word u is
a prefix of a word v if there is a word w such that v = uw. The word w is denoted
by u~1v. The longest common prefix of a set of words is the longest word which
is prefix of all words of the set.

An automaton over A* is composed of a set Q of states, a set E c Q x A* x Q of
edges and two sets / , F C Q of initial and final states. An edge e = (p, u> q) from
p to q is denoted by]) A g , the word u being the label of the edge. The automaton
is finite if Q and E are finite. A path is a possibly empty séquence of consécutive
edges. lts label is the concaténation of the labels of the consécutive edges. An
automaton is often denoted by A = (Q,E, / , F). An accepting path is a path
from an initial state to a final state. The language or set of words recognized (or
accepted) by an automaton is the set of labels of accepting paths. An automaton
is deterministic if it is labelled by letters of a finite alphabet A, if it has one initial
state and if for each state p and each letter a in A, there is at most one edge p A q
for some q.

We now define the prefix automaton of a given automaton A. This prefix au-
tomaton has the same graph as A, but the labels of the edges are changed. However
the labels of the accepting paths remain unchanged and the prefix automaton rec-
ognizes the same words. Furthermore, for any state q of the prefix automaton the
longest common prefix of the labels of all paths going from q to an initial or final
state is empty.

Let A — (Q, E, ƒ, F) be a finite non-deterministic automaton labelled by words.
We assume that the automaton is trim, that is, any state belongs to an accepting
path. For each state q, we dénote by PA(Ç)J or just P(q), the longest common
prefix of the labels of all paths going from q to an initial or final state. Remark
that P(q) ~ £ if q is initial or final.

The prefix automaton of A is the automaton Af = (Q,E',I,F) defined as
follows:

E = <q —— —+ r | q —> r is an edge of A > •

506 M.-P. BÉAL AND O. CARTON

One may easily check that if q A- r is an edge of A, then the word P(q) is by
définition a prefix of the word uP(r) and the previous définition is thus consistent.

Note that a path labelled by w from q to r in A becomes a path labelled
by P(q)~1wP(r) from q to r in the prefix automaton. If this path is accepting, q
is initial and r is final and thus P(q) and P(r) are both empty. Then the label of
the path in the prefix automaton is the same as in A. The label of a cycle of A is
conjugated to its label in the prefix automaton. In particular the empty labelled
cycles of the prefix automaton are the same as the ones of A.

By construction the longest common prefix of the labels of all paths going from q
to an initial or final state is empty in the prefix automaton.

Our définition of the prefix automaton allows edges coming in an initial state.
In most cases, there is none and for each non-initial state g, P(q) is the longest
common prefix of the labels of all paths going from q to a final state.

The words P(q) are the longest words such that P(q) = e if q is initial or final
and such that P(q) is a prefix of uP(r) for any edge q -^ r. Indeed, if a function P1

maps any state q to a word such that these two conditions are met, then P'(q) is
a prefix of P(q) for any state q.

FIGURE 1. An automaton A

FIGURE 2. The prefix automaton of A.

Example 2.1- Consider the automaton A pictured in Figure 1 where the initial
state is 1 and the final state is 4. The prefix automaton of A is pictured in Figure 2.

COMPUTING THE PREFIX OF AN AUTOMATON 507

The main application of the prefix of an automaton is minimization of sequential
and subsequential transducers. A transducer is defined as an automaton, except
that the labels of the edges are pairs made of an input word and an output word. A
transducer labelled in A x B* is sequential if it s input automaton is deterministic.
It has been proved ([7] and [8], p. 95) see also [12] and [13], that among the
sequential transducers Computing a given function, there is a minimal one which
can be obtained from any sequential transducer Computing the function. This
minimization is performed in two steps. The first step is the computation of the
prefix automaton of the output automaton of the transducer. The second step is
a minimization of the resulting transducer, considered as a finite automaton.

We refer to [12] for examples of minimization of sequential transducers.

3. COMPUTATION OF THE PREFIX OF AN AUTOMATON

In this section, we describe an algorithm which computes the prefix of an au-
tomaton. The automaton A = (Q, £7, / , T) is a non-deterministic automaton whose
edges are labelled by words over a finite alphabet A The labels can be the empty
word and cycles with empty labels are allowed.

We first describe the principle of the algorithm. If g is a state of *4, we recall
that P(q) dénotes the longest common prefix of the labels of all paths going from q
to an initial or final state. We dénote by p(q) the first letter of P(q) if P(q) ^ e,
and e if P(q) = e.

We dénote by PA the maximum of the lengths of all P(q) for all states q.
If Pj, > 0, we construct from the automaton A — (Q,£7,/, T) an automa-

ton Af = (<3, E'\ / , T) whose edges are defined as follows:

, = f A

It recognizes the same language as A and satisfies PA' = PA — 1- By iterating this
process, we get the prefix automaton.

We now explain the computation of the automaton Af. We call £-edge any edge
whose label is e. Let Ae be the sub-automaton of A obtained by keeping only
the £-edges. We first compute the strongly connected components of A£. This
can be performed by depth-first explorations of A£ [9]. The strongly connected
components are stored in an array c indexed by Q. For each state q we dénote
by c[q] a state that represents the strongly connected component of q. The call to
STRONGLY-CONNECTED-CoMPONENTs(v4e) in the pseudo code below will refer to
this procedure that. computes the array c.

Note that all states g in a same strongly connected component of Ae have
same P{q) and thus same p(q).

The construction of Af is then done with two depth-first explorations, first an
exploration of Ae, second, an exploration of A.

The first exploration computes p(q) for each state q of A£. This symbol, either
a letter or e, is stored in the cell letter[q] of an array letter. As p(q) is common to

508 M.-P. BÉAL AND O. CARTON

all states g in a same strongly connected component of *4£, we compute it only for
the states c[q].

At the beginning of the computation, all cells letter[q] are set to the default
value T which stands for undefined. During the computation, these values are
changed into symbols of A U {e}. Let X be the set A U {e, T}. We define a partial
order on the set X as follows. For each a ê A ,

e < a < T.

Note that each subset of X has an inf in X such that, for all x G X, all a, b G A
with a ^ 6 ,

inf(T,x) = x,

inf (a, b) — e.

We also assume that an array local indexed by Q gives, for each state ç, either e
if q is final or initial, or inf (5) where 5 is the set of letters that appear as the
first letter of a non-empty label of an edge going out of q. Note that if there is
no edge with a non-empty label going out of ç, local[q] is equal to T. The array
local is initialized by the procedure INIT-TABLE and updated with the procedures
UPDATE-TABLE-HEAD and UPDATE-TABLE-TAIL that we shall describe later.

For each state q in Q, the value of Zetter[c[g]] is first set to the inf of local[r], for
ail states r in the same strongly connected component of Ae as q. This is done
by the procedure INIT-LETTER. During the exploration of the automaton A£, if g
has a. successor r such that Ze££er[c[r]] < Ze^er[c[g]], then Ze#er[c[ç]] is changed in
inî(local[q], letter[c[q]]). We claim that the cell of index q of the array tetaercontains
p(q) at the end of this exploration. This exploration is done by the function FIND-
LETTER. It returns a boolean which is true if there is at least one state q with
p(q) non-empty.

We give below a pseudo code for the procedures INIT-LETTER, FIND-LETTER
and FIND-LETTER-VISIT. We follow the depth-first search présentation of [9].
lNiT-LETTER(set of states Q)

for each state q G Q do
letter[c[q}} <- T

for each state q G Q do
Je££er[c[g]] <— inî(local[q], letter[c[q]])

FiND-LETTER(automaton A£ = (Q, E£, / , F))
bool <— FALSE
for each state q G Q do

color[q] * - WHITE
for each state q e Q do

if color[q] = WHITE then
FIND-LETTER- VISIT(Ae, q)

return bool

COMPUTING THE PREFIX OF AN AUTOMATON 509

FiND-LETTER-VisiT(autoraaton Ae = {Q,E£,I,F), state g)
color[q] <— BLACK
for each edge (g, e, r) do

if color[r] = WHITE then
FlND-LETTER-VlSIT(„4e, r)

te££er[c[g]] <— inï (letter[c[q]\, letter[c[r}])
if Ze#er[c[g]] / e then

- TRUE

We now prove the correctness of our algorithm.

Proposition 3.1. Function FIND-LETTER computes p(q) for each state q.

Proof. For each state g, "Zetter[c[g]] > p(q)" is an invariant of the function
FIND-LETTER. Indeed, one has local[r] > p(q), for each state r in the same
strongly connected component as g. This implies that "Zetter[c[<?]] > p(q)n is an
invariant of the function INIT-LETTER(<3)- Moreover, if there is an edge (g,£,r)
andif letter[c[r]} > p(r), weget letter[c[r}} > p(r) > p(q). Then aletter[c[q]] > p(q)n

is invariant during FIND-LETTER-VisiT(A£,q).
We now show that if there is an edge (q,£,r) between two states q and r, we

have letter[c[q\] < letter[c[r)} at the end of F I N D - L E T T E R ^) . This fact is trivial
if q and r belong to the same strongly connected component of AE- If not, the end
of the exploration of state r is before the end of the exploration of q. Then the
line 5 of FIND-LETTER-VISIT(^ , q) implies that Je#er[c[g]] < Zeiier[c[r*]].

Let us assume there is a (possibly empty) path from q to a state r which
has an empty label and an edge going out of r labelled with au, where u is a
word. Then letter[c[q\] < a at the end of FIND-LETTER-VisiT(A£,q). Indeed,
at the end of F I N D - L E T T E R - V I S I T ^ , ^) , we have letter[c[r}} < a, and then also
letter[c[q}\ < letter[c[r]} < a.

Let us assume that p(q) is a letter a in A. Then there is a (possibly empty)
path from g to a state r which has an empty label and an edge going out of r
labelled with au, where wis a word. As a conséquence Ze#er[c[g]] < a and then
Zefter[c[g]] = p(q). Let us now assume that p(q) is the empty word. Then there
is either a (possibly empty) path from g to a state r which has an empty label
and an edge going out of r labelled with au, where u is a word, and there is
a (possibly empty) path from g to a state rf which has an empty label and an
edge going out of r' labelled with 6u, where u is a word, with b ^ a. In this
case Zê er[c[g]] < inf (a, b) = e, and then Zetter[c[g]] = p(q). Or there is a (possibly
empty) path from g to a state r which has an empty label and with r final or initial.
Again Zefter[c[g]] < ZeWer[c[r]] — e. Finally, /e^er[c[g]] = p(q) for each g. •

The second depth-first exploration is an exploration of the automaton *4. It
updates the labels of A in order to decrease the length of P(q) for each state q
such that p(q) is non-empty. For each edge (g, w,r), where u is a finite word,
the following two opérations are performed. The letter (or empty word) p(c[r]) is
added at the end of u. Then the first letter (or empty word) p(c[g]) is removed from
the beginning of u. Note that these two opérations are possible. If u is nonempty,

510 M.-P. BÉAL AND O. CARTON

then p{c[q)) is the first letter of u and if u = e then p(c[g]) = p(c[r]) or p(c[g]) = e.
These opérations change the labels of the edges of the automaton A and thus also
the values of the array local Lines 3 and 5 of MOVE-LETTER-VISIT change the
labels of the edge e in A. Since an edge with empty label can become an edge
with a non-empty label and conversely, the edge of Ae are also updated there. The
values of the array local are updated with two procedures UPDATE-TABLE-HEAD
and UPDATE-TABLE-TAIL described later, The exploration is done during the run
of procedure MOVE-LETTER whose pseudo code is given below.

MovE-LETTER(automaton A — (Q, E, / , F))
for each state q e Q do

color[q) <— W H I T E
for each state q e Q do

if color[q] = WHITE then
MOVE-LETTER- VISIT(*4, q)

MOVE-LETTER-VisiT(automaton A = (Q, E, I, F)), state q)
color[q] <— B L A C K
for each edge e = (#, u, r) where u is a (possibly empty) word do

append Zetter^r]] at the end of the label of e in A and update Ae

UPDATE-TABLE-TAiL(e, letter[c[r]\)
remove Ze££er[c[g]] from the head of the label of e in A and update A£

UPDATE-TABLE-HEAD(e, Ze#er[c[g]])
if color[r] — WHiTEthen

MOVE-LETTER- VISIT(»4, r)

Proposition 3.2. Function MOVE-LETTER transforms the automaton A in an
automaton A' whose edges are:

(—i ^

Ef — < q > r • | q ~^> r is an edge of A > •

Therèfore, the function M O V E - L E T T E R changes the label w of any path from q
to r into p(q)~xwp(r).

Proof. This follows directly from the construction. D

Proposition 3.3. Function MOVE-LETTER transforms the automaton A in an
automaton A! which has the same graph as A, keeps the labels of accepting paths
and satisfies PA> — PA — 1.

Proof. Let w be the label of a path from an initial state % to a final state t in A. The
label of the same path obtained at the end of MOVE-LETTER in A! is p(i)~1wp(t) =
w. Thus the labels of accepting paths are unchanged. Moreover, for each state q
one has PA>(Q) = PA{<Ù~XPA{<Ù- It follows that PA> = PA-1 iï PA> l. D

We now give a pseudo code of the procedure MAKE-PREFIX which is the main
procedure of the algorithm.

COMPUTING THE PREFIX OF AN AUTOMATON 511

MAKE-PREFix(automaton A = (Q, E, ƒ, F))

STRONGLY-CONNECTED-COMPONENTS(^4e)
repeat

INIT-LETTER(Q)

bool <— FIND-LETTER(.4£)
if bool then

MOVE-LETTER(*4)
until bool = FALSE

The result of the computation of the automaton A pictured in Figure 1 is the
automaton pictured in Figure 2. The automaton A is such that PA = £• Note
that this automaton has an empty labelled cycle.

Remark 3.4. The two procedures FIND-LETTER and FIND-LETTER-VISIT can
be performed on the directed acyclic graph obtained as the quotient of A£ by
the relation of being in a same strongly connected component. This graph can
be much smaller than A€ itself. It can be computed by the procedure
STRONGLY-CONNECTED-COMPONENTS.

Remark 3.5. By proposition 3.2, the label of a cycle is changed into one of its
conjugate by the function MOVE-LETTER. Therefore, the strongly connected com-
ponents of A£ are unchanged during the itération of function MAKE-PREFIX.

4. DATA STRUCTURES AND COMPLEXITY

In order to analyze the complexity of our algorithm, we briefly discuss a possible
implementation of structures required in the construction.

A classical way for implementing the automaton A is to use \Q\ adjacency lists
that represent the edges. We may assume that we have two adjacency lists for
each state q. The first one represents the edges of empty label going out of <?,
that is the edges that also belong to A£. The second one represents the edges of
non-empty label going out of q.

In order to compute, for each state ç, local{q) in a constant time, we maintain
an array L indexed by Q defined as follows:

• L[q] is the list of pairs (a, n) with a € A% n > 0 G N, such that q has at least
one outgoing edge labelled by a word whose first letter is a and such that n
is the positive number of edges going out of q and whose first letter is a.

We point out that the first component of an element of L[q] is a letter and never
contains e. Thus local(q) is e if L[q] has more than one element or if q is initial
or final. It is the letter a if L[q] contains exactly one pair (ayn) and q is neither
initial nor final. It is T otherwise.

The opération performed in the lists are the insertion of a new letter, that is
a pair (o, 1), the incrémentation and décrémentation of the second component of

512 M.-P. BÉAL AND O. CARTON

an element, and the deletion of a letter, that is of a pair (o, 1). We need all these
opérations to be performed in a constant time.

We use a known technique which allows us to get this time complexity (see for
example [1] Ex. 2.12 p. 71 and [10] exercise "Implantation de fonctions partielles"
1.14 Chap. 1). This technique is based on the use of array of size \Q\ x \A\ which
is not initialized.

We assume that the lists L[q] are doubly linked and implemented with cursors.
We dénote by T an array of variable size. The cells of T are used to store the
éléments of the lists L[q]. Each cell has several fields: a field label which contains
the letter, a field number that contains the number of edges going out of q whose
first letter is label, a field state which contains the state q such that the cell belongs
to L[q]} and finally fields next and prev that give the index of the next (respectively
previous) element in the same list. The cell of index q of the array L is the index
in T of the first element of L[q], if this list is non-empty.

Another array [ƒ, indexed by Q x A, gives for each pair (g, a) the index in T
of the cell of L[q] whose letter is a, if this letter is in L[q\. This array allows us
to access an element of a list in a constant time. The opérations of insertion,
deletion of an element in a list are then done in a constant time. The opérations
of incrémentation and décrémentation of the field number of the cell of a given
label in a given list are also done in a constant time. Indeed, to incrément the
field number of the letter a in L[q], one incréments the field number of the cell
of T indexed by U[q, a].

The array T is initially empty and its size is 0. The size of T is incremen^ed
when a new cell is needed in T. A cell that corresponds to an element of a list that
has just been removed is marked to be free. Thus the existence of a letter a in L[q]
is obtained by checking whether U[q, a] is an index i in [l,size(T)]; whether the
cell T[i] is not marked free, and whether the fields label and state are respectively
equal to a and q. This is performed in a constant time.

All the lists of successors that represent the edges of the automaton A and A£,
and the arrays local, L, T, U are updated when the label of an edge is changed
during the process. The arrays L and local are initialized by the procedure INIT-
TABLE. The arrays L, T, U and local are updated by the procedures
UPDATE-TABLE-HEAD and UPDATE-TABLE-TAIL.

We give- below a pseudo code for the procedure INIT-TABLE,

lNiT-TABLE(automaton A = (Q, E, / , F))
for each q G Q do

L[q] <— the empty list
local[q] <— T

for each q G Q do
for each edge (q>au, r) where a is letter and u a word do

if a is not in L[q] then
insert the pair (a, 1) in L[q]

else incrément the field number of the letter a in L[q]
if L[q] has more than one element or if q is initial or final then

local[q] *— s

COMPUTING THE PREFIX OF AN AUTOMATON 513

else if L[q] is not empty then
local[q] <— the unique letter of L[q]

We now describe the updating of the tables and lists. An update is needed as soon
as the label of an edge of A is changed. Note that the labels of the edges of the
automata A and Ae are changed in a constant time. Indeed, a label of an edge
going out of a state q that becomes empty is removed from the list of edges of
non-empty labels going out of g, and added into the list of edges of empty labels
going out of q (and conversely). This is performed in a constant time in line 3
and line 5 of MOVE-LETTER-VISIT. TO update the arrays L, T, U and local, we
distinguish the two kinds of modification of the labels of the edges. A letter or the
empty word can be added at the end of a label. The procedure called to update is
in this case the procedure UPDATE-TABLE-TAIL. A letter or the empty word can
be removed from the head of the label. The procedure called to update is in this
case the procedure UPDATE-TABLE-HEAD.

Pseudo codes for UPDATE-TABLE-TAIL and UPDATE-TABLE-HEAD are given
below.

UPDATE-TABLE-TAiL(edge e = (g,w, r), letter (or empty word) x)
if u = e and x / e then

if x is not in L[q) then
insert the pair (ar, 1) in L[q]

else incrément the field number of the letter x in L[q]
if L[q] has more than one element or if q is initial or final then

local[q] <— e
else local[q] <— the unique letter of L[q]

UPDATE-TABLE-HEAD(edge e = (ç,u,r), letter (or empty word) ar)
We have u = xuf, where uf is a finite word, whenever ar / e
if x ^ e then

décrément the field number of the letter x in L[q]
if this field is equal to 0 then

remove the pair (ar,O) from L[q]
if v! = bu" where b is a letter of A then

if b is not in L[q] then
insert the pair (6,1) in L[q]

else incrément the field number of the letter b in L[q]
if L[q] has more than one element or if q is initial or final then

local[q] <r~ e
else if L[q] has exactly one element t h e n

local[q] <— the unique letter of L[q]
e l se local[q] *— T

We analyze now the complexity of our algorithm. We dénote by \S\ the cardinality
of a set 5. As the automaton is trim, \Q\ <\E\ + 1. We also dénote by \E£\ the
cardinality of the current automaton Ae- We always have \E£\ < \E\ but the
automaton A£ may be much smaller than .4. We dénote here by P the maximal
length of the words P(q) for all states q.

514 M.-R BÉAL AND O. CARTON

Proposition 4.1. Function MAKE-PREFIX works in time O((P + 1) x \E\).

Proof. Function INIT-TABLE can be implemented to work in time 0(\Q\ + \E\):
Functions STRONGLY-CONNECTED-COMPONENTS and FIND-LETTER can be im-
plemented to work in time O(\Q\ + \E£\). Function INIT-LETTER works in time
O(|Q|). As discussed above, function UPDATE-TABLE works in time 0(1).

Function MOVE-LETTER works in time 0(\Q\ + \E\). Finally the loop in
MAKE-PREFIX is executed at most P + 1 times. The complexity of our algo-
rithm is then O((\Q\ 4- \E\) x (P + 1) + (\Q\ + \Ee\) x (P + 1)). Since the automata
considered are trim, |Q| < \E\ + 1 and the complexity is thus O((P +1) x \E\). D

Let S be the sum of the lengths of the labels of all edges of the automaton. The
space complexity of the algorithm is O((|Q| x \A\) + |£"| + S).

Acknowledgements. We thank Christian Chofïrut and Maxime Crochemore for useful
discussions and comments. Christian Choffrut pointed out to us the inaccuracy of the
algorithm of [13] in the particular case where the automaton has an empty labelled cycle.
We also thank the anonymous référées for their relevant remarks.

R E F E R E N C E S

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer
Algorithms. Addison Wesley (1974).

[2] M.-P. Béai, Codage Symbolique. Masson (1993).
[3] M.-P. Béai and O. Carton, Determinization of transducers over finita and infinité words.

Tech. Rep. 99-12, I.G.M., Université de Mar ne-la-Vallée (1999).
[4] J. Berstel, Transductions and Context-Free Languages. B.G. Teubner (1979).
[5] D. Breslauer, The suffix tree of a tree and minimizing sequential transducers, in CPM'96.

Springer-Verlag, Lecture Notes in Comput. Sci. 1075 (1996) 116-129.
[6] D. Breslauer, The suffix tree of a tree and minimizing sequential transducers. Theoret.

Comput. Sci. 191 (1998) 131-144.
[7] C. Choffrut, Contribution à l'étude de quelques familles remarquables de fonctions

rationnelles. Thèse d'État, Université Paris VII (1978).
[8] C. Choffrut, A generalization of Ginsburg and Rose's characterization of gsm mappings, in

ICALP'79. Springer-Verlag, Lecture Notes in Comput. Sci. 71 (1979) 88-103.
[9] T.H. Cormen, CE . Leiserson and R.L. Rivest, Introduction to Algorithms. MIT Press (1990).

[10] M. Crochemore, C. Hancart and T. Lecroq, Algorithmique du Texte. Vuibert (to appear).
[11] C. Prougny, Numération Systems, in Algebraic Combinatorics on Words, edited by

M. Lothaire. Cambridge (to appear).
[12] M. Mohri, Minimization of sequential transducers, in CPM'94, edited by M. Crochemore

and D. Gusfield. Springer-Verlag, Lecture Notes in Comput. Sci. 807 (1994) 151-163.
[13] M. Mohri, Minimization algorithms for sequential transducers. Theoret. Comput. Sci. 234

(2000) 177-201.
[14] E. Roche and Y. Schabes, Finite-State Language Processing. MIT Press, Cambridge (1997)

Chapter 7.

Communicated by Ch. Choffrut.
Received May, 2000. Accepted February, 2001.

To access this journal online:
www.edpsciences.org

